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Robust Lane Detection in Urban Environments

Stephan Sehestedt, Sarath Kodagoda, Alen Alempijevic, Gamini Dissanayake

Abstract— Most of the lane marking detection algorithms
reported in the literature are suitable for highway scenarios.
This paper presents a novel clustered particle filter based
approach to lane detection, which is suitable for urban streets in
normal traffic conditions. Furthermore, a quality measure for
the detection is calculated as a measure of reliability. The core of
this approach is the usage of weak models, i.e. the avoidance of
strong assumptions about the road geometry. Experiments were
carried out in Sydney urban areas with a vehicle mounted laser
range scanner and a ccd camera. Through experimentations,
we have shown that a clustered particle filter can be used to
efficiently extract lane markings.

I. INTRODUCTION

Today we observe an increasing demand for traffic safety

systems to minimize the risk of accidents. There are a large

number of vision based systems for lateral and longitudi-

nal vehicle control, collision avoidance and lane departure

warning, which have been developed during the last decade

around the world (some examples are [1], [2], [3] and [4]).

Recently announced DARPA Urban Grand Challenge is yet

another proof of enthusiasm in autonomous urban driving.

The development of advanced driver assistance systems

and ultimately autonomous driving requires the ability to

analyse the road scene. One prerequisite for this is the

extraction of lanes and lane markings. This information is

essential in order to obey traffic rules and to detect possible

hazards.

The presented work aims on a novel approach to robustly

extract lane markings in urban traffic scenarios. Former

approaches concentrated on highway like scenarios, where

the traffic situations are less complex and markings are

generally very visible [5], [6], [7]. However, many of the

proposed methods are not suitable for urban traffic.

A number of different constraints are commonly used to

be able to detect and track lane markings, such as lanes being

straight [8] or only slightly curved [6]. Such an assumption

holds for freeways but is certain to fail in urban areas.

Furthermore, geometric models were applied [6], [5], which
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Fig. 1. a) The testbed vehicle and b) the sensors mounted on the roof.

describe the shape of a lane. These models rely on the

visibility of markings. However, in urban areas we often have

to deal with occlusions and bad or missing markings over

extended periods of time.

As outlined, strong assumptions about the lane geometry

must be expected to be violated. Therefore, we concluded

that the use of weaker models is necessary. In this work we

use a particle filter, which particles move from the bottom

to the top of the 2D image plane of a inverse perspective

mapped image. Each sample represents the possible position

of a piece of lane marking and the according weights indicate

the probability of this.

Although we are using this filter in a software to actually

track lanes, here we concentrate on the difficult task of

detection. Tracking is then within the scope of a following

publication.

Data Collection and testing is done on our research vehicle

shown in Fig. 1. For this work we use a vertically mounted

laser scanner and a colour ccd camera, both located on the

roof of the car. Runs are undertaken in Sydney’s urban area.

The remainder of this publication is organised as follows.

In section II we briefly explain the basic particle filter to then

present our implementation of a clustered particle filter as we

use it for lane marking tracking. In section III we present our

novel approach to track lane markings in an image stream in

real time. Furthermore, in IV we present experimental results

with real world data. Finally, future work and the conclusions

are discussed in sections V and VI.

II. PARTICLE FILTER

Monte Carlo Methods or Particle Filters allow to approx-

imate arbitrary multimodal probability distributions recur-

sively. To estimate the state of a system a set of samples

X at time t is used. This set Xt = 〈xi
t | i = 1...N〉

and it’s associated weights ωi
t represent the belief at time

t. The weights are computed according to a sensor model,

which contains the information of how likely it is that a



TABLE I

THE THREE STEPS OF THE PARTICLE FILTER ALGORITHM

1) Prediction: Draw xi

t
∼ p(xi

t
| xi

t−1
, ut−1).

2) Update: Compute the importance factors ωi

t
= ηp(yt | xi

t
),

with η being a normalization factor to ensure that the weights
sum up to 1. Here, yt is a sensor reading at time t.

3) Resample.

sample x represents the true state. The computation of the

posterior is then done in three steps: 1. Prediction. 2. Update

3. Resampling.

The additional resampling step ensures that the resources,

i.e. the particles, are concentrated in areas of high probability.

Thus, the samples are used in the areas of interest. However,

due to this step the particle filter also tends to converge to

one state, which means that in the basic implementation this

filter would not be suitable to track multiple hypotheses over

extended periods of time. Clearly in our application we need

to able to track multiple lane markings, also without prior

knowledge of how many.

For a more wholesome summary of Monte Carlo methods

refer to [12], [11].

A. Clustered Particle Filters

In order to be able to track multiple lane markings we

apply a clustered particle filter, similar to what is presented

in [13]. There the sample set is divided into clusters that

each represent one hypothesis. A cluster is divided into two

clusters when a subset of samples has a certain distance to

the others and if this subset has a high average weight. If the

clusters get near to each other, they get fused to one single

set.

This approach uses a modified proposal distribution, where

we take account of the existance of multiple hypotheses.

According to [12], the weights are calculated as

ωi
t = η

p(yt | xi
t)p(xi

t | xi
t−1)

q(xi
t | xi

t−1, yt)
(1)

η is a normalizing constant, which ensures that the weights

sum up to 1. In that way, ωi
t is only dependent on xi

t, yt,

and yt−1. To take account of the existence of clusters, the

normalizing constant η is now dependent on the individual

clusters and becomes ηi and consequently the weights are

now computed as

ωi
t = η(xi

t)p(yt | xi
t) (2)

For Cj
t being the sum of weights of the jth cluster

η(xi
t) = 1/Cj

t (3)

This method is known in statistics literature as two stage

sampling. The application to mobile robot localization is

described in [13].

B. Adaptive Particle Filter

Furthermore, we apply KLD-Sampling, as introduced by

Dieter Fox [14]. This is a technique for adjusting the sample

set to a size that ensures a certain minimum quality of the

approximation of the posterior. This improves the the overall

performance significantly by adding robustness and reducing

the computational burden.

III. LANE MARKING TRACKING

In this section our approach to lane marking tracking

is presented. Furthermore, we outline all the background

necessary to implement the proposed method.

A. Principle

Detection of lane markings in image data is not a trivial

task. That is mainly due to the non existence of unique mod-

els, poor quality of lane markings due to wear, occlusions

due to the presence of traffic and complex road geometry.

This leads us to the conclusion that any method using a too

strong model of the road (lane), will fail eventually. Thus,

weak models must be applied. As a result of this, particle

filters are a good choice for the task of lane marking tracking

due to their ability to handle poor process models.

The idea of the proposed method is to use an inverse

perspective mapped image (IPM image) to run a particle

set from the bottom to the top and observe the presence

of lane markings in each line. Furthermore, we make sure

that the filter is able to track multiple lines and to store each

estimated line as a trail. In this way we produce a correct

data association, e.g. we associate every detected piece of

lane marking to one trail, which then represents the marking

of one lane.

Various issues need to be solved to apply this method. A

clustering routine needs to be implemented which allows to

detect a number of lane markings at any time. We need to

be able to split clusters into subclusters to correctly detect

markings in special situations like the appearance of an

additional lane, where a line splits up into two lines. Above

this, we want to be able to handle high degrees of curvature

also in the presence of broken markings with large gaps.

The basic principle is illustrated in Fig. 2. 2(a) shows

the original image from which the IPM image (2(b)) is

computed. In Fig. 2(b) we do not have any prior knowledge

about the lane markings and therefore the filter is initialized

with a uniform distribution. As the particles move up in

the image (according a process model), the filter eventually

converges to the position of the marking. In Fig. 2(c) and

2(d) the filter tracks the lane marking correctly.

In the following we will present the single components of

our approach, which are the process model, the observation

model and clustering. Above this, we present the usage of

an uncertainty measure for the estimate of a marking.

B. Inverse Perspective Mapping

Lane detection is generally based on the localization of a

specific pattern (the lane markings) in the acquired image and

can be performed with the analysis of a single still image.



The method for lane marking detection employed in our

paper is based on the Generic Obstacle and Lane Detection

(GOLD) implementation.

In order to fit the lane model to the acquired road images

geometrical image warping is performed with Inverse Per-

spective Mapping (IPM) The IPM technique projects each

pixel of a 2D perspective view of a 3D object and re-maps it

to a new position constructing a new image on an inverse 2D

plane. Conversely, this will result in a bird’s eye view of the

road, removing the perspective effect. Each pixel represents

the same portion of the road, allowing a homogeneous

distribution of the information among all image pixels. To

remove the perspective effect, it is necessary to know a

priori the specific acquisition conditions (camera position,

orientation, optics) and the scene represented in the image

(the road, which is now assumed to be flat) . Mathematically,

IPM can be described as a projection from a 3D Euclidean

space W = (x, y, z) onto a planar 2D space I = (u, v).

u(x, y, 0) =
arctan( y

x
) − θ − α

2α(n − 1)−1
(4)

v(x, y, 0) =
arctan( h√

x2+y2
)

2α(n − 1)−1
(5)

Where θ is the angle between the projection of the optical

axis on the flat plane, 2θ is the camera angular aperture,

n being the camera resolution and h the viewpoint of the

camera C above the ground as can be seen in Fig. 3.

(a) (b)

(c) (d)

Fig. 2. a) The original image. b) Initialization phase, the particles (in red)
are uniformily distributed. c) and d) The filter converges and then follows
the marking

Fig. 3. The IPM Parameters

Furthermore, x and y are points in world co-ordinate system

and u and v are points in the image co-ordinate system.

The mapping (4 and 5) is derived using triangulation and

trigonometry of the IPM model [15].

The remapping process defined by (4 and 5) is im-

plemented by scanning the array of pixels of coordinates

which form the remapped image in order to associate to

each of them the corresponding value assumed by the point

of coordinates. The resolution of the remapped image has

been chosen as a trade-off between information loss and

processing time. At the moment we are using the blue

channel of an rgb image only. C1C2C3 space gives better

results but at the cost of computational effort.

As mentioned above, the mapping assumes that the road

is flat. However, in due to non flat road profile and vehicle

pitch this assumption is in most cases not true. Therefore,

we use a vertically mounted laser to correct for the error.

The result can be seen in figure, where the left image shows

the uncorrected ipm image and the right one the corrected

version.

Lane marking detection is performed on the remapped

image applying a lane model which stipulates that a road

marking is represented by a predominantly vertical bright

line (lane marking) of constant width surrounded by a darker

region (the road). Thus, the pixels belonging to a road

marking have a brightness value higher than their left and

right neighbours at a given horizontal distance. A vertical

edge in an image conforms similarly to the same principle;

the intensity difference between neighbouring pixels must

be over a threshold to be validated. Therefore, an exhaustive

search across each row of the image will produce potential

lane marking candidates where the match probability can be

measured with the edge quality (difference of intensity).

This result is exploited as a sensor model in this work,

because this method produces high quality observations also

(a) (b)

Fig. 4. a) The uncorrected IPM image. b) The corrected IPM image using
a vertically mounted laser.



in areas of shadow and changing light conditions. For further

details refer to the section about sensor models below.

Another reason to use the 2d image plane of an IPM image

is the easier implementation of a process model as described

below.

C. The Process Model

In the process model we define how the particles move

in the image. For every incoming observation, the filter

starts from the bottom of the image. In every time step

the particles are then moved to the next line of the image

according to a defined Markov model, which incorporates

general knowledge about road design.

In this model we define that a straight lane is more likely

than a lane of any degree of curvature. Furthermore, a low

degree of curvature is more likely than a high degree of

curvature. This property is derived from the observation

that most road segments are straight or only slightly curved

and larger degrees of curvature are usually only present for

relatively short times. Finally, we also take into account that

there is a certain maximum degree of curvature, which will

by definition not be exceeded.

A simplified Markov model for this is illustrated in Fig.

5 as an example of how it works in principle. This simple

version lacks the distinguishment between different degrees

of curvature and should be regarded for illustrational pur-

poses only. Qualitatively, we define that if the particle was

moving straight it is then more likely to move straight again

than moving to the left or the right. Moreover, if a sample

moved left or right, then it is equally likely to move into this

direction again or to just move straight.

Alternatively, a (constrained) random walk process may

be applied. Constrained in the meaning that it is more likely

that a particle just moves straight up into the next line, rather

than moving up and to the left or right.

D. Observation Models

It is reasonable to apply a number of observation models

to gain additional robustness for the estimate. Currently we

are using an edge image, which also encodes the strength

of the edges. The model assumes that the stronger an edge

is the more likely it is to be part of a lane marking. This

Fig. 5. The constrained random walk model. Where p1 = p3 and p2 > p1.

assumption is reasonable, because markings are generally

features on the road which are designed to be outstanding.

Thus, these features should always be very distinguishable

from the surroundings.

Additionally, we use prior knowledge about the colour of

the lane markings, i.g. we know whether these are white or

yellow and can therefore use the distance to this colour as

a quality measure. Again, this is doable because the lane

markings colour does not coincide with the surroundings

colour in general.

E. Multiple Markings

It is essential to be able to detect multiple lines for we want

to obtain knowledge about as many lanes as possible. For

this, the filter needs to be able to detect multiple hypotheses.

New tracks may be initiated at any time.

For this task we implemented a modified version of a clus-

tered particle filter as described above. The main difference

is that we have to remember clusters, so that the association

of a particle with a cluster remains in following time steps

and therefore the data association is maintained.

Clusters may only be dropped when the average uncer-

tainty was high for a long time. This time is defined by

the rules for lane markings given by law, which define the

maximum gap between dashes and for other special cases.

Fig. 6 illustrates such a situation, where a single line splits

up into two lines. Apparently, both lines are needed to be able

to extract both lanes. In the images it visible how the sample

set splits up to then track both lines.

F. Uncertainty

There are certain reasons why we want to keep track of

the uncertainty in our estimates. Whenever we do not have

enough data for a good estimate we want to able to not

regard in further considerations. That means, if data is bad

or incomplete, which gives rise to high uncertainty, then it

is necessary to have a measure for the uncertainty.

This measure is derived from the variance in the sample

set. Obviously, when there is no or bad data, the samples

will be distributed over a larger area. This indicates that the

produced estimate is less accurate.

Adding the uncertainty measure we can now see the full

functionality of the filter, which is illustrated in Fig. 7. Here

the particles are shown as red dots, the estimates are shown

in green and the uncertainty in yellow.

In Fig. 7(b) the filter is initialized with a high uncertainty.

Fig. 7(c) shows when the filter converges the uncertainty

decreases. As long as there is a meaningful observation, the

uncertainty remains low. However, in a gap the uncertainty

grows as in Fig. 7(d). After reconverging at the end of the

gap the uncertainty is low again. Hence, this measure allows

us to extract dashed and non dashed lines and also enables

the filter to produce meaningful outputs with bad data.

Hence, this measure allows us to extract dashed and non

dashed lines and also enables the filter to produce meaningful

outputs with bad data.
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Fig. 6. a) The original image. b) Initialization phase, the particles (in red)
are uniformily distributed. c) and d) The filter converges and then follows
the marking

IV. EXPERIMENTAL RESULTS

The algorithm was tested with several gigabytes of data

sets captured by our testbed vehicle CRUISE (see Fig. 1).

The testbed is instrumented with several laser scanners,

cameras and radar. The data are logged in three different

computers synchronized via Ethernet. All our C++ software

implementations are based on the Orca2 component based

software framework [16].

For it is virtually impossible to define a ground truth we

had to rely on visual control to check the results. Therefore,

only qualitative expression about the detection performance

can be given and are supported by the images. It can be

seen that in situations of high curvature and gaps and in

difficult light conditions the proposed algorithm is still able

to produce good results (see Fig. 6, 7, 9, 10).

Performance measures in an early Matlab implementation

give an average processing time for one image of approx-

imately 0.2 seconds. In a not yet finished and therefore

barely optimized Orca2/C++ implementation we experience

processing times of below 0.05 seconds per image.

V. FUTURE WORK

The presented approach is part of ongoing research and

several things could not be discussed in this paper. Some of

these are briefly discussed in this section.

Currently we are working on the implementation of new

sensor models. The goal is to avoid any process that would

(a) (b)

(c) (d)

Fig. 7. a) The original image. b) Initialization phase, the particles (in red)
are uniformily distributed and uncertainty is high. c) The filter converged,
so the uncertainty is low d) Due to a gap in the marking the uncertainty
grows and decreases as soon as the filter starts converging again.

Fig. 8. The camera and vertically mounted laser.

work on the whole image (as the one presented in section III-

B. Instead, we only want to process parts of the image where

we have samples. The main benefit is lower computational

effort.

Above this we want to use the original image directly for

sensor models rather than using IPM images alone, because

the IPM process drops some information of the original

image. In the original image colour models and template

matching might be used. Template matching is especially

interesting to track specific kinds of markings like double

lines.

We also intend to address the issue of lane marking

tracking. One feasible solution is to utilize the a priori

knowledge. It can be done in two ways. The first is to
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Fig. 9. a) The original image. b) and c) The estimated lane marking (green)
and the according uncertainty (yellow).

(a) (b)

(c)

Fig. 10. a) The original image. b) and c) The estimated lane marking
(green) and the according uncertainty (yellow).

track individual lines, i.e. the filter is initialized with an

estimate using vehicle egomotion. The other possibility is

to incorporate the previous information in the filter itself.

Furthermore, the robustness of the algorithm can be im-

proved by incorporating geometry of the lanes, such as the

lane width whenever possible.

VI. CONCLUSIONS

In this work we have presented a novel and robust particle

filter based algorithm for lane marking detection. The algo-

rithm runs in real-time and is able to pick up any number of

lanes. The main advantage of the detection algorithm lies in

the use of weak models, which is arguably more general. This

is also the main distinguishment to many of the previously

presented algorithms. Furthermore, the basic algorithm is

relatively easy to implement and offers good results.

We have only addressed the most difficult lane marking

”detection” problem and now we are working on the lane

marking ”detection and tracking” problem. The work on this

topic will be proceeded and most points outlined in section

V are currently under development.
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