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Abstract

This paper studies the problem of accurately recovering a sparse vector β? from
highly corrupted linear measurements y = Xβ? + e? + w where e? is a sparse
error vector whose nonzero entries may be unbounded and w is a bounded noise.
We propose a so-called extended Lasso optimization which takes into consider-
ation sparse prior information of both β? and e?. Our first result shows that the
extended Lasso can faithfully recover both the regression and the corruption vec-
tors. Our analysis is relied on a notion of extended restricted eigenvalue for the
design matrix X . Our second set of results applies to a general class of Gaus-
sian design matrix X with i.i.d rows N (0,Σ), for which we provide a surprising
phenomenon: the extended Lasso can recover exact signed supports of both β?
and e? from only Ω(k log p log n) observations, even the fraction of corruption is
arbitrarily close to one. Our analysis also shows that this amount of observations
required to achieve exact signed support is optimal.

1 Introduction

One of the central problems in statistics is the linear regression in which the goal is to accurately
estimate a regression vector β? ∈ Rp from the noisy observations

y = Xβ? + w, (1)

where X ∈ Rn×p is the measurement or design matrix, and w ∈ Rn is the stochastic observation
vector noise. A particular situation recently attracted much attention from research community
concerns with the model in which the number of regression variables p is larger than the number
of observations n (p ≥ n). In such circumstances, without imposing some additional assumptions
for this model, it is well known that the problem is ill-posed, and thus the linear regression is not
consistent. Accordingly, there have been various lines of work on high dimensional inference based
on imposing different types of structure constraints such as sparsity and group sparsity [15] [5] [21].
Among them, the most popular model focused on sparsity assumption of the regression vector. To
estimate β, a standard method, namely Lasso [15], was proposed to use l1-penalty as a surrogate
function to enforce sparsity constraint.

min
β

1

2
‖y −Xβ‖22 + λ ‖β‖1 , (2)

where λ is the positive regularization parameter and l1-norm ‖β‖1 is defined by ‖β‖1 =
∑p
i=1 |βi|.

During the past few years, there has been numerous studies to understand the `1-regularization for
sparse regression models [23] [11] [10] [17] [4] [2] [22]. These works are mainly characterized by
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the type of the loss functions considered. For instance, some authors [4] seek to obtain a regression
estimate β̂ that delivers small prediction error while other authors [2] [11] [22] seek to produce a
regressor with minimal parameter estimation error, which is measured by the `2-norm of (β̂ − β?).
Another line of work [23] [17] considers the variable selection in which the goal is to obtain an
estimate that correctly identifies the support of the true regression vector. To achieve low prediction
or parameter estimation loss, it is now well known that it is both sufficient and necessary to impose
certain lower bounds on the smallest singular values of the design matrix [10] [2], while a notion of
small mutual incoherence for the design matrix [4] [23] [17] is required to achieve accurate variable
selection.

We notice that all the previous work relies on the assumption that the observation noise has bounded
energy. Without this assumption, it is very likely that the estimated regressor is either not reliable
or unable to identify the correct support. With this observation in mind, in this paper, we extend the
linear model (1) by considering the noise with unbounded energy. It is clear that if all the entries
of y is corrupted by large error, then it is impossible to faithfully recover the regression vector β?.
However, in many practical applications such as face and acoustic recognition, only a portion of the
observation vector is contaminated by gross error. Formally, we have the mathematical model

y = Xβ? + e? + w, (3)

where e? ∈ Rn is the sparse error whose locations of nonzero entries are unknown and magnitudes
can be arbitrarily large and w is another noise vector with bounded entries. In this paper, we assume
that w has a multivariate Gaussian N (0, σ2In×n) distribution. This model also includes as a par-
ticular case the missing data problem in which all the entries of y is not fully observed, but some
are missing. This problem is particularly important in computer vision and biology applications.
If some entries of y are missing, the nonzero entries of e? whose locations are associated with the
missing entries of the observation vector y have the same values as entries of y but with inverse
signs.

The problems of recovering the data under gross error has gained increasing attentions recently with
many interesting practical applications [18] [6] [7] as well as theoretical consideration [9] [13] [8].
Another recent line of research on recovering the data from grossly corrupted measurements has
been also studied in the context of robust principal component analysis (RPCA) [3] [20] [1]. Let us
consider some examples to illustrate:

• Face recognition. The model (3) has been originally proposed by Wright et al. [19] in
the context of face recognition. In this problem, a face test sample y is assumed to be
represented as a linear combination of training faces in the dictionary X , y = Xβ where β
is the coefficient vector used for classification. However, it is often the case that the face is
occluded by unwanted objects such as glasses, hats etc. These occlusions, which occupy a
portion of the test face, can be considered as the sparse error e? in the model (3).

• Subspace clustering. One of the important problem on high dimensional analysis is to
cluster the data points into multiple subspaces. A recent work of Elhamifar and Vidal [6]
showed that this problem can be solved by expressing each data point as a sparse linear
combination of all other data points. Coefficient vectors recovered from solving the Lasso
problems are then employed for clustering. If the data points are represented as a matrixX ,
then we wish to find a sparse coefficient matrix B such that X = XB and diag(B) = 0.
When the data is missing or contaminated with outliers, [6] formulates the problem as
X = XB + E and minimize a sum of two `1-norms with respect to both B and E.

• Sensor network. In this model, sensors collect measurements of a signal β? independently
by simply projecting β? onto row vectors of a sensing matrix X , yi = 〈Xi, β

?〉. The
measurements yi are then sent to the center hub for analysis. However, it is highly likely
that some sensors might fail to send the measurements correctly and sometimes report
totally irrelevant measurements. Therefore, it is more accurate to employ the observation
model (3) than model (1).

It is worth noticing that in the aforementioned applications, e? plays the role as the sparse (unde-
sired) error. However, in many other applications, e? can contain meaningful information, and thus
necessary to be recovered. An example of this kind is signal separation, in which β? and e? are two
distinct signal components (video or audio). Furthermore, in applications such as classification and
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clustering, the assumption that the test sample y is a linear combination of a few training samples in
the dictionary (design matrix) X might be violated. This sparse component e? can thus be seen as
the compensation for linear regression model mismatch.

Given the observation model (1) and the sparsity assumptions on both regression vector β? and error
e?, we propose the following convex minimization to estimate the unknown parameter β? as well as
the error e?.

min
β,e

1

2
‖y −Xβ − e‖22 + λβ ‖β‖1 + λe ‖e‖1 , (4)

where λβ and λe are positive regularization parameters. This optimization, we call extended Lasso,
can be seen as a generalization of the Lasso program. Indeed, by setting λe = 0, (4) returns to
the standard Lasso. The additional regularization associated with e encourages sparsity on the error
where parameter λe controls the sparsity level. In this paper, we focus on the following questions:
what are necessary and sufficient conditions for the ambient dimension p, the number of observations
n, the sparsity index k of the regression β? and the fraction of corruption so that (i) the extended
Lasso is able (or unable) to recover the exact support sets of both β? and e?? (ii) the extended Lasso
is able to recover β? and e? with small prediction error and parameter error? We are particularly
interested in understanding the asymptotic situation where the the fraction of error is arbitrarily close
to 100%.

Previous work. The problem of recovering the estimation vector β? and error e? has originally
proposed and analyzed by Wright and Ma [18]. In the absence of the stochastic noise w in the
observation model (3), the authors proposed to estimate (β?, e?) by solving the linear program

min
β,e
‖β‖1 + ‖e‖1 s.t. y = Xβ + e. (5)

The result of [18] is asymptotic in nature. They showed that for a class of Gaussian design matrix
with i.i.d entries, the optimization (5) can recover (β?, e?) precisely with high probability even when
the fraction of corruption is arbitrarily close to one. However, the result holds under rather stringent
conditions. In particularly, they require the number of observations n grow proportionally with the
ambient dimension p, and the sparsity index k is a very small portion of n. These conditions is
of course far from the optimal bound in compressed sensing (CS) and statistics literature (recall
k ≤ O(n/ log p) is sufficient in conventional analysis [17]).

Another line of work has also focused on the optimization (5). In both papers of Laska et al. [7] and
Li et al. [9], the authors establish that for Gaussian design matrix X , if n ≥ C(k + s) log p where s
is the sparsity level of e?, then the recovery is exact. This follows from the fact that the combination
matrix [X, I] obeys the restricted isometry property, a well-known property used to guarantee exact
recovery of sparse vectors via `1-minimization. These results, however, do not allow the fraction of
corruption close to one.

Among the previous work, the most closely related to the current paper are recent results by Li [8]
and Nguyen et al. [13] in which a positive regularization parameter λ is employed to control the
sparsity of e?. Using different methods, both sets of authors show that as λ is deterministically se-
lected to be 1/

√
log p and X is a sub-orthogonal matrix, then the solution of following optimization

is exact even a constant fraction of observation is corrupted. Moreover, [8] establishes a similar
result with Gaussian design matrix in which the number of observations is only an order of k log p -
an amount that is known to be optimal in CS and statistics.

min
β,e
‖β‖1 + λ ‖e‖1 s.t. y = Xβ + e. (6)

Our contribution. This paper considers a general setting in which the observations are contaminated
by both sparse and dense errors. We allow the corruptions to linearly grow with the number of
observations and have arbitrarily large magnitudes. We establish a general scaling of the quadruplet
(n, p, k, s) such that the extended Lasso stably recovers both the regression and corruption vectors.
Of particular interest to us are the following equations:

(a) First, under what scalings of (n, p, k, s) does the extended Lasso obtain the unique solution
with small estimation error.

(b) Second, under what scalings of (n, p, k) does the extended Lasso obtain the exact signed
support recovery even almost all the observations are corrupted?
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(c) Third, under what scalings of (n, p, k, s) does no solution of the extended Lasso specify
the correct signed support?

To answer for the first question, we introduce a notion of extended restricted eigenvalue for a matrix
[X, I] where I is an identity matrix. We show that this property satisfies for a general class of
random Gaussian design matrix. The answers to the last two questions requires stricter conditions
for the design matrix. In particular, for random Gaussian design matrix with i.i.d rows N (0,Σ), we
rely on two standard assumptions: invertibility and mutual incoherence.

If we denote Z = [X, I] where I is an identity matrix and β = [β?
T

, e?
T

]T , then the observation
vector y is reformulated as y = Zβ + w, which is the same as standard Lasso model. However,
previous results [2] [17] applying to random Gaussian design matrix are irrelevant to this setting
since the Z no longer behave like a Gaussian matrix. To establish theoretical analysis, we need
more study on the interaction between the Gaussian and identity matrices. By exploiting the fact
that the matrixZ consists of two component where one component has special structure, our analysis
reveals an interesting phenomenon: extended Lasso can accurately recover both the regressor β? and
corruption e? even when the fraction of corruption is up to 100%. We measure the recoverability of
these variables under two criterions: parameter accuracy and feature selection accuracy. Moreover,
our analysis can be extended to the situation in which the identity matrix can be replaced by a tight
frame D as well as extended to other models such as group Lasso or matrix Lasso with sparse error.

Notation We summarize here some standard notation used throughout the paper. We reserve T
and S as the sparse support of β? and e?, respectively. Given and design matrix X ∈ Rn×p and
subsets S and T , we use XST to denote the |S| × |T | submatrix obtained by extracting those rows
indexed by S and columns indexed by T . We use the notation C1, C2, c1, c2, etc., to refer to positive
constants, whose value may change from line to line. Given two functions f and g, the notation
f(n) = O(g(n)) means that there exists a constant c < +∞ such that f(n) ≤ cg(n); the notation
f(n) = Ω(g(n)) means that f(n) ≥ cg(n) and the notation f(n) = Θ(g(n)) means that f(n) =
(g(n)) and f(n) = Ω(g(n)). The symbol f(n) = o(g(n)) means that f(n)/g(n)→ 0.

2 Main results

In this section, we provide precise statements of the main results of this paper. In the first sub-
section, we establish the parameter estimation and provide a deterministic result which bases on the
notion of extended restricted eigenvalue. We further show that the random Gaussian design matrix
satisfies this property with high probability. The next sub-section considers the feature estimation.
We establish conditions for the design matrix such that the solution of the extended Lasso has the
exact signed supports.

2.1 Parameter estimation

As in conventional Lasso, to obtain a low parameter estimation bound, it is necessary to impose
conditions on the design matrix X . In this paper, we introduce a notion of extended restricted
eigenvalue (extended RE) condition. Let C be a restricted set, we say that the matrix X satisfies the
extended RE assumption over the set C if there exists some κl > 0 such that

‖Xh+ f‖2 ≥ κl(‖h‖2 + ‖f‖2) for all (h, f) ∈ C, (7)

where the restricted set C of interest is defined with λn := λe/λβ as follow

C := {(h, f) ∈ Rp × Rn | ‖hT c‖1 + λn ‖fSc‖1 ≤ 3 ‖hT ‖1 + 3λn ‖fS‖1}. (8)

This assumption is a natural extension of the restricted eigenvalue condition and restricted strong
convexity considered in [2] [14] and [12]. In the absent of a vector f in the equation (7) and in the
set C, this condition returns to the restricted eigenvalue defined in [2]. As explained at more length
in [2] and [16], restricted eigenvalue is among the weakest assumption on the design matrix such
that the solution of the Lasso is consistent.

With this assumption at hand, we now state the first theorem
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Theorem 1. Consider the optimal solution (β̂, ê) to the optimization problem (4) with regularization
parameters chosen as

λβ ≥
2

γ
‖X∗w‖∞ and λn :=

λe
λβ

= γ
‖w‖∞
‖X∗w‖∞

, (9)

where γ ∈ (0, 1]. Assuming that the design matrix X obeys the extended RE, then the error set
(h, f) = (β̂ − β?, ê− e?) is bounded by

‖h‖2 + ‖f‖2 ≤ 3κ−2
l

(
λβ
√
k + λe

√
s
)
. (10)

There are several interesting observations from this theorem

1) The error bound naturally split into two components related to the sparsity indices of β? and e?.
In addition, the error bound contains three quantity: the sparsity indices, regularization parameters
and the extended RE constant. If the terms related to the corruption e? are omitted, then we obtain
similar parameter estimation bound as the standard Lasso [2] [12].

2) The choice of regularization parameters λβ and λe can make explicitly: assuming w is a Gaussian
random vector whose entries areN (0, σ2) and the design matrix has unit-normed columns, it is clear
that with high probability, ‖X∗w‖∞ ≤ 2

√
σ2 log p and ‖w‖∞ ≤ 2

√
σ2 log n. Thus, it is sufficient

to select λβ ≥ 4
γ

√
σ2 log p and λe ≥ 4

√
σ2 log n.

3) At the first glance, the parameter γ does not seem to have any meaningful interpretation and the
γ = 1 seems to be the best selection due to the smallest estimation error it can produce. However,
this parameter actually control the sparsity level of the regression vector with respect to the fraction
of corruption. This relation is made via the restricted set C.

In the following lemma, we show that the extended RE condition actually exists for a large class of
random Gaussian design matrix whose rows are i.i.d zero mean with covariance Σ. Before stating the
lemma, let us define some quantities operating on the covariance matrix Σ: Cmin := λmin(Σ) is the
smallest eigenvalue of Σ, Cmax := λmax(Σ) is the biggest eigenvalue of Σ and ξ(Σ) := maxi Σii
is the maximal entry on the diagonal of the matrix Σ.
Lemma 1. Consider the random Gaussian design matrix whose rows are i.i.dN (0,Σ) and assume
n2Cmaxξ(Σ) = Θ(1). Select

λn :=
γ√
ξ(Σ)n

√
log n

log p
, (11)

then with probability greater than 1 − c1 exp(−c2n), the matrix X satisfies the extended RE with

parameter κl = 1
4
√

2
, provided that n ≥ C ξ(Σ)

Cmin
k log p and s ≤ min

{
C1

n
γ2 logn , C2n

}
for some

small constants C1, C2.

We would like to make some remarks:

1) The choice of parameter λn is nothing special here. When design matrix is Gaussian and indepen-
dent with the Gaussian stochastic noise w, we can easily show that ‖X∗w‖∞ ≤ 2

√
ξ(Σ)nδ2 log p

with probability at least 1− 2 exp(− log p). Therefore, the selection of λn follows from Theorem 1.

2) The proof of this lemma, shown in the Appendix, boils down to control two terms

• Restricted eigenvalue with X .

‖Xh‖22 + ‖f‖22 ≥ κr(‖h‖
2
2 + ‖f‖22) for all (h, f) ∈ C.

• Mutual incoherence. Column space of the matrix X is incoherent with the column space
of the identity matrix. That is, there exists some κm > 0 such that

| 〈Xh, f〉 | ≤ κm(‖h‖2 + ‖f‖2)2 for all (h, f) ∈ C.

If the incoherence between these two column spaces is sufficiently small such that 4κm < κr, then
we can conclude that ‖Xh+ f‖22 ≥ (κr − 2κm)(‖h‖2 + ‖f‖2)2. The small mutual incoherence
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property is especially important since it provides how the regression separates away from the sparse
error.

3) To simplify our result, we consider a special case of the uniform Gaussian design, in which
Σ = 1

nIp×p. In this situation, Cmin = Cmax = ξ(Σ) = 1/n. We have the following result which is
a corollary of Theorem 1 and Lemma 1
Corollary 1 (Standard Gaussian design). Let X be a standard Gaussian design matrix. Consider
the optimal solution (β̂, ê) to the optimization problem (4) with regularization parameters chosen as

λβ ≥
4

γ

√
σ2 log p and λe ≥ 4

√
σ2 log n, (12)

where γ ∈ (0, 1]. Also assuming that n ≥ Ck log p and s ≤ min{C1
n

γ2 logn , C2n} for some small
constants C1, C2. Then with probability greater than 1 − c1 exp(−c2n), the error set (h, f) =

(β̂ − β?, ê− e?) is bounded by

‖h‖2 + ‖f‖2 ≤ 384

(
1

γ

√
σ2k log p+

√
σ2s log n

)
, (13)

Corollary 1 reveals an interesting phenomenon: by setting γ = 1/
√

log n, even when the fraction
of corruption is linearly proportional with the number of samples n, the extended Lasso (4) is still
capable to recover both coefficient vector β? and corruption (missing) vector e? within a bounded
error (13). Without the dense noise w in the observation model (3) (σ = 0), the extended Lasso
recovers the exact solution. This result is impossible to achieve with standard Lasso. Furthermore, if
we know in prior that the number of corrupted observations is an order ofO(n/ log p), then selecting
γ = 1 instead of 1/ log n will minimize the estimation error (see equation (13)) of Theorem 1.

2.2 Feature selection with random Gaussian design

In many applications, the feature selection criteria is more preferred [17] [23]. Feature selection
refers to the property that the recovered parameter has the same signed support as the true regressor.
In general, good feature selection implies good parameter estimation but the reverse direction does
not usually hold. In this part, we investigate conditions for the design matrix and the scaling of
(n, p, k, s) such as both regression and sparse error vectors obtain this criteria.

Consider the linear model (3) where X is the Gaussian random design matrix whose rows are i.i.d
zero mean with covariance matrix Σ. It has been well known in the Lasso that in order to obtain
feature selection accuracy, the covariance matrix Σ must obey two properties: invertibility and small
mutual coherence restricted on the set T . The first property guarantees that (4) is strictly convex,
leading to the unique solution of the convex program, while the second property requires the sepa-
ration between two components of Σ, one related to the set T and the other to the set T c must be
sufficiently small.

1. Invertibility. To guarantee uniqueness, we require ΣTT to be invertible. Particularly, let
Cmin = λmin(ΣTT ), we require Cmin > 0.

2. Mutual incoherence. For some γ ∈ (0, 1),∥∥Σ∗T cT (ΣTT )−1
∥∥
∞ ≤

1

2
(1− γ) (14)

where ‖·‖∞ refers to `∞/`∞ operator norm. It is worth noting that in the standard Lasso
the factor 1

2 is omitted. Our condition is tighter than condition used to establish feature
estimation in the Lasso by a constant factor. In fact, the quantity 1/2 is nothing special
here and we can set any value close to one with a compensation that the number of samples
n will increase. Thus, we put 1/2 for the simplicity of the proof.

Toward the end, we will also elaborate three other quantities operating on the restricted co-
variance matrix ΣTT : Cmax, which is defined as the maximum eigenvalue of ΣTT : Cmax :=
λmax(ΣTT ); D−max and D+

max, which are denoted as `∞-norm of matrices Σ−1
TT and ΣTT :

D−max :=
∥∥(ΣTT )−1

∥∥
∞ and D+

max := ‖ΣTT ‖∞.
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Our result also involves in two other quantities operating on the conditional covariance matrix of
(XT c |XT ) defined as

ΣT c|T := ΣT cT c − ΣT cTΣ−1
TTΣTT c . (15)

We then define ρu(ΣT c|T ) = maxi(ΣT c|T )ii and ρl(ΣT c|T ) = 1
2 mini6=j [(ΣT c|T )ii + (ΣT c|T )jj −

2(ΣT c|T )ij ]. Toward the end, we denote a shorthand ρu and ρl.

We establish the following result for Gaussian random design whose covariance matrix Σ obeys the
two assumptions.
Theorem 2. (Achievability) Given the linear model (3) with random Gaussian design and the co-
variance matrix Σ satisfy invertibility and incoherence properties for any γ ∈ (0, 1), suppose we
solve the extended Lasso (4) with regularization parameters obeying

λβ =
4

γ

√
max{ρu, D+

max}nσ2 log p and λe = 8
√
σ2 log n. (16)

Also, let η = 1
32γ2 logn , the sequence (n, p, k, s) and regularization parameters λβ , λe satisfying

s ≤ ηn

n ≥ max

{
C1

1

(1− η)

ρu
Cmin

k log(p− k), C2
η

(1− η)2

max{ρu, D+
max}

Cmin
k log(p− k) log n

}
,

(17)
where C1 and C2 are numerical constants. In addition, suppose that mini∈T |β?i | > fβ(λβ) and
mini∈S |e?i | > fe(λβ , λe) where

fβ := c1
λβ
n− s

√
k log(p− k)

n

∥∥∥Σ
−1/2
TT

∥∥∥2

∞
+ 20

√
σ2 log k

Cmin(n− s)
and (18)

fe := c2(Cmax(k
√
s+ s

√
k))1/2 λβ

n− s

√
k log(p− k)

n

∥∥∥Σ
−1/2
TT

∥∥∥2

∞
+ c3λe. (19)

Then the following properties holds with probability greater than 1−c exp(−c′max{log n, log pk})

1. The solution pair (β̂, ê) of the extended Lasso (4) is unique and has exact signed support.

2. `∞-norm bounds:
∥∥∥β̂ − β?∥∥∥

∞
≤ fβ(λβ) and ‖ê− e?‖∞ ≤ fe(λβ).

There are several interesting observations from the theorem

1) The first and important observation is that extended Lasso is robust to arbitrarily large and sparse
error observation. In that sense, the extended Lasso can be viewed as a generalization of the Lasso.
Under the same invertibility and mutual incoherence assumptions on the covariance matrix Σ as
the standard Lasso, the extended Lasso program can recover both the regression vector and error
with exact signed supports even when almost all the observations are contaminated by arbitrarily
large error with unknown support. What we sacrifice for the corruption robustness is an additional
log factor to the number of samples. We notice that when the error fraction is O(n/ log n), only
O(k log(p − k)) samples are sufficient to recover the exact signed supports of both regression and
sparse error vectors.

2) We consider the special case with Gaussian random design in which the covariance matrix Σ =
1
nIp×p. In this case, entries of X is i.i.d N (0, 1/n) and we have quantities Cmin = Cmax =
D+

max = D−max = ρu = ρl = 1. In addition, the invertibility and mutual incoherence properties
are automatically satisfied. The theorem implies that when the number of errors s is close to n,
the number of samples n needed to recover exact signed supports satisfies n

logn = Ω(k log(p −
k)). Furthermore, Theorem 2 guarantees consistency in element-wise `∞-norm of the estimated

regression at the rate
∥∥∥β̂ − β?∥∥∥

∞
= O

(√
σ2 log p

√
k log(p−k)

γ2n

)
.

As γ is chosen to be 1/
√

32 log n (equivalent to establish s close to n), the `∞ error rate is an order
of O(σ

√
log p), which is known to be the same as that of the standard Lasso.
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3) Corollary 1, though interesting, is not able to guarantee stable recovery when the fraction of
corruption converges to one. We show in Theorem 2 that this fraction can come arbitrarily close
to one by sacrificing a factor of log n for the number of samples. Theorem 2 also implies that
there is a significant difference between recovery to obtain small parameter estimation error versus
recovery to obtain correct variable selection. When the amount of corrupted observations is linearly
proportional with n, recovering the exact signed supports require an increase from Ω(k log p) (in
Corollary 1) to Ω(k log p log n) samples (in Theorem 2). This behavior is captured similarly by the
standard Lasso, as pointed out in [17], Corollary 2.

Our next theorem show that the number of samples needed to recover accurate signed support is
optimal. That is, whenever the rescaled sample size satisfies (20), then for whatever regularization
parameters λβ and λe are selected, no solution of the extended Lasso correctly identifies the signed
supports with high probability.
Theorem 3. (Inachievability) Given the linear model (3) with random Gaussian design and the
covariance matrix Σ satisfy invertibility and incoherence properties for any γ ∈ (0, 1). Let η =

1
32γ2 log(n−s) and the sequence (n, p, k, s) satisfies s ≥ ηn and

n ≤ min

C3
1

(1− η)

ρu
Cmin

k log(p− k), C4
η

(1− η)2

min{ρl, D+
max}

Cmax
k log(p− k) log(1− η)n

(
1 +

√
σ2 log n

λe

)−1
 ,

(20)
where C3 and C4 are some small universal constants. Then with probability tending to one, no
solution pair of the extended Lasso (5) has the correct signed support.

3 Illustrative simulations

In this section, we provide some simulations to illustrate the possibility of the extended Lasso in
recovering the exact regression signed support when a significant fraction of observations is cor-
rupted by large error. Simulations are performed for a range of parameters (n, p, k, s) where the
design matrix X is uniform Gaussian random whose rows are i.i.dN (0, Ip×p). For each fixed set of
(n, p, k, s), we generate sparse vectors β? and e? where locations of nonzero entries are uniformly
random and magnitudes are Gaussian distributed.

In our experiments, we consider varying problem sizes p = {128, 256, 512} and three types of
regression sparsity indices: sublinear sparsity (k = 0.2p/ log(0.2p)), linear sparsity (k = 0.1p) and
fractional power sparsity (k = 0.5p0.75). In all cases, we fixed the error support size s = n/2.
This means half of the observations is corrupted. By this selection, Theorem 2 suggests that number
of samples n ≥ 2Ck log(p − k) log n to guarantee exact signed support recovery. We choose
n

logn = 4θk log(p − k) where parameter θ is the rescaled sample size. This parameter control the
success/failure of the extended Lasso.

In the algorithm, we select λβ = 2
√
σ2 log p log n and λe = 2

√
σ2 log n as suggested by Theorem

2, where the noise level σ = 0.1 is fixed. The algorithm reports a success if the solution pair has
the same signed support as (β?, e?). In Fig. 1, each point on the curve represents the average of 100
trials.

As demonstrated by simulations, our extended Lasso is cable to recover the exact signed support
of both β? and e? even 50% of the observations are contaminated. Furthermore, up to unknown
constants, our theorem 2 and 3 match with simulation results. As the sample size n

logn ≤ 2k log(p−
k), the probability of success starts going to zero, implying the failure of the extended Lasso.
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