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Abstract

In this paper, we propose a rank minimization method

to fuse the predicted confidence scores of multiple models,

each of which is obtained based on a certain kind of fea-

ture. Specifically, we convert each confidence score vector

obtained from one model into a pairwise relationship ma-

trix, in which each entry characterizes the comparative re-

lationship of scores of two test samples. Our hypothesis is

that the relative score relations are consistent among com-

ponent models up to certain sparse deviations, despite the

large variations that may exist in the absolute values of the

raw scores. Then we formulate the score fusion problem as

seeking a shared rank-2 pairwise relationship matrix based

on which each original score matrix from individual mod-

el can be decomposed into the common rank-2 matrix and

sparse deviation errors. A robust score vector is then ex-

tracted to fit the recovered low rank score relation matrix.

We formulate the problem as a nuclear norm and ℓ1 norm

optimization objective function and employ the Augment-

ed Lagrange Multiplier (ALM) method for the optimization.

Our method is isotonic (i.e., scale invariant) to the numer-

ic scales of the scores originated from different models. We

experimentally show that the proposed method achieves sig-

nificant performance gains on various tasks including ob-

ject categorization and video event detection.

1. Introduction

Image and video classification is a challenging task, e-

specially in the presence of occlusion, background clutter,

lighting changes, etc. Multiple features are often considered

since a single feature cannot provide sufficient information.

Systems that combine multiple features have been proved

to improve the classification performance in various visual

classification tasks [2, 5, 10].

There are two popular strategies to fuse features: early

fusion and late fusion. Early fusion, also known as feature

level fusion, has been widely used in the computer vision

and multimedia communities [2, 5, 10]. One representa-

tive method is to represent the features as multiple kernel
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Figure 1. An illustration of our proposed method. Given n con-

fidence score vectors s1, s2, . . . , sn obtained from n models, we

convert each si into a comparative relationship matrix Ti that en-

codes the pairwise comparative relation of scores of every two test-

ing images under the ith model. Then we seek a shared rank-2 ma-

trix T̂ , through which each original matrix Ti can be reconstructed

by an additive sparse residue matrix Ei. Finally, we recover from

the matrix T̂ a confidence score vector ŝ that can more precisely

perform the final prediction.

matrices and then combine them in the kernel space. One

of the most successful feature fusion methods is Multiple

Kernel Learning (MKL) [2], which learns a linear or non-

linear kernel combination and the associated classifier si-

multaneously. However, MKL may not produce better per-

formance in the real world applications. In [5], the authors

prove that even simple feature combination strategies that

are much faster than MKL, can achieve highly comparable

results with MKL.

The other strategy is late fusion. It aims at combining the

confidence scores of the models constructed from different

features, in which each confidence score measures the pos-

sibility of classifying a test sample into the positive class by

one specific model. Compared with early fusion, late fusion

is easier to implement and often shown effective in practice.

However, one problem with this strategy comes from the

possible heterogeneity among the confidence scores provid-



ed by different models. In practice, such heterogeneity re-

sults from the variation of the discriminative capability of

each model in a certain feature space, producing incompa-

rable confidence scores at different numeric scales. This

makes the direct combination of confidence scores from d-

ifferent models inappropriate, posing a great challenging to

the late fusion task.

Existing solutions to this problem typically assume that

the confidence scores of the individual models are the pos-

terior probabilities that the samples belong to the positive

class. Since this assumption is not generally true, a normal-

ization step is required to normalize the scores to a com-

mon scale such that the combination can be performed [8].

However, the main issues with these existing methods are

twofold. First, the choice of normalization schemes is data-

dependent and requires extensive efforts in empirical vali-

dation [8]. Second, they blindly combine all confidence s-

cores including considerable noises caused by the incorrect

predictions made by the models, which may deteriorate the

fusion performance.

In this paper, we propose a robust late fusion method,

which not only achieves isotonicity (i.e., scale invariance)

among the numeric scores of different models, but also re-

covers a robust prediction score for the individual test sam-

ple via removing the prediction error. Given a confidence

score vector s = [s1, s2, . . . , sm] of a model, where each si
denotes the score of the ith test sample, and m is the sample

number. We first convert s into a pairwise relationship ma-

trix T such that Tjk = 1 if sj > sk, Tjk = −1 if sj < sk,

Tjk = 0 if sj = sk. The matrix T is a skew-symmetric ma-

trix which encodes the comparative relationship of every t-

wo test samples under the given model. We apply the above

conversion on the score vector of each model, and obtain

multiple relationship matrices. In this way, the real-valued

confidence scores are converted into the integer-valued iso-

tonic pairwise relations, which addresses the scale variance

problem. Moreover, although the ideal score fusion vec-

tor ŝ = [ŝ1, . . . , ŝm] is unknown, suppose we have a real-

valued matrix T̂ where T̂jk = ŝj − ŝk, we can find a rank-2

factorization of T̂ such that T̂ = ŝe
⊤ − eŝ

⊤. By doing so,

we can recover the unknown score fusion vector.

Based on the above assumptions, our late fusion method

tries to find a rank-2 relationship matrix from the multiple

pairwise relationship matrices. Specifically, it infers a com-

mon low rank pairwise relationship matrix by novel joint

decompositions of the original pairwise relationship matri-

ces into combinations of the shared rank-2 and sparse matri-

ces. We hypothesize that such common rank-2 matrix can

robustly recover the true comparative relations among the

test samples. The joint decomposition process is valuable

since each pairwise comparative relation in the original ma-

trix might be incorrect, yet the joint relations from multiple

matrices may be complementary with each other and can

be used to collectively refine the results. Moreover, the in-

dividual sparse residue essentially contains the prediction

errors for each pair of test samples made by one model.

The fusion procedure is formulated as a constrained

nuclear norm and ℓ1 norm minimization problem, which

is convex and can be solved efficiently with ALM [13]

method. In addition, we also develop a Graph Laplacian

regularized robust late fusion method to incorporate the in-

formation from different kinds of low level features, which

further enhances the performance. Figure 1 illustrates the

framework of our proposed method. Extensive experiments

confirm the effectiveness of the proposed method, achiev-

ing a relative performance gain of about 8% over the state

of the arts.

2. Related Work

Combining multiple diverse and complementary features

is a recent trend in visual classification. A popular feature

combination strategy in computer vision is MKL [2], which

learns an optimized kernel combination and the associated

classifier simultaneously. Varma et al. [22] used MKL to

combine multiple features and achieved good results on im-

age classification. A recent work in [5] fully investigated

the performance of MKL and proved that MKL may not be

more effective than the average kernel combination. Differ-

ent from this line of research, we focus on late fusion which

works by combining the confidence scores of the models

obtained from different features.

There are numerous score late fusion methods in the lit-

erature. For example, Jain et al. [8] transformed the confi-

dence scores of multiple models into a normalized domain,

and then combined the scores through a linear weighted

combination. In [15], the authors used the Gaussian mixture

model to estimate the distributions of the confidence scores,

and then fused the scores based on likelihood ratio test. The

discriminative model fusion method [20] treated the confi-

dence scores from multiple models as a feature vector and

then constructed a classifier for different classes. Terrades

et al. [21] formulated the late fusion as a supervised linear

combination problem that minimized the misclassification

rates under the ℓ1 constraint on the combination weights. In

contrast, we focus on a novel late fusion method which not

only achieves isotonicity but also removes the predictions

errors made by the individual models.

Methodologically, our work is motivated by the recent

advances in low rank matrix recovery [6, 23]. One repre-

sentative is Robust PCA introduced in [23], which decom-

posed a corrupted matrix into a low rank component and a

sparse component. Differently, our work tries to discover

a shared low rank matrix from the joint decomposition of

multiple matrices into combinations of the shared low rank

and sparse components. In [6], the authors used rank mini-

mization method to complete the missing values of the user-



item matrix, and then used these values to extract the rank

for each item. This is essentially different from our work,

which deals with multiple complete score matrices for the

purpose of robust late fusion.

3. Robust Late Fusion with Rank Minimization

In this section, we will introduce our Robust Late Fusion

(RLF) method. We first explain how to construct the rela-

tionship matrix, and then describe the problem formulation.

3.1. Pairwise Relationship Matrix Construction

Given the confidence score vector of a model s =
[s1, s2, . . . , sm], where each si denotes the confidence score

of the ith test sample and m is the number of test samples,

we can construct a m×m pairwise comparative relationship

matrix T in which the (j, k)th entry is defined as

Tjk = sign(sj − sk), (1)

Obviously, the obtained matrix T encodes the compara-

tive relation of every two test samples under the given mod-

el. Specifically, Tjk = 1 denotes that the jth test sample is

more confident to be classified as positive than the kth test

sample, while Tjk = −1 denotes the opposite comparative

relation. Meanwhile, when Tjk = 0 , we believe that the

jth sample and the kth sample have the same confidence to

be positive.

Compared with confidence scores, the pairwise compar-

ative relationship matrix is a relative measurement which

quantizes the real-valued scores into three integers. By con-

verting the absolute values of the raw scores into the pair-

wise comparative relations, we naturally arrive at an isoton-

ic data representation which can be used as the input of our

late fusion method.

In this paper, we will also consider the reverse problem:

Given a relative score relation matrix T , how to reconstruct

the original ranks or scores? If T is consistent, namely all

the transitive relations are satisfied (if si > sj and sj > sk,

then si > sk), then a compatible rank list can be easily de-

rived. If T is continuous valued (as the case of the recovered

matrix T̂ described in the next section), we assume there ex-

ist compatible score vectors ŝ which can be used to explain

the relations encoded in T̂ , i.e., T̂ = ŝe
⊤ − eŝ

⊤. This for-

mulation naturally leads to a nice property rank(T̂ ) = 2,

which provides a strong rationale to justify the use of the

low rank optimization method in discovering a common ro-

bust T̂ when fusing scores from multiple models.

3.2. Problem Formulation

Suppose we have a pairwise comparative relationship

matrix T that is constructed from the confidence score vec-

tor produced by a model. The entries in T summarize the

prediction ability of the given model, in which some entries

correctly characterize the comparative relations of the test

samples while other entries are incorrect due to the wrong

prediction made by the model. Intuitively, the correct en-

tries in T are consistent among the test sample pairs, and

hence tend to form a global structure. Moreover, the incor-

rect entries in T often appear irregularly within the matrix,

which can be seen as the sparse errors.

In this paper, to capture the underlying structure infor-

mation of the correct entries while removing the error en-

tries degrading the performance of prediction, we consider

a matrix decomposition problem as follows:

min
T̂ ,E

‖E‖1,

s.t. T = T̂ + E, T̂ = −T̂⊤, rank(T̂ ) = 2,
(2)

where rank(T̂ ) denotes the rank of matrix T̂ and ‖E‖1 is

the ℓ1 norm of a matrix. By minimizing the objective func-

tion, we actually decompose the original matrix T into a

rank-2 component T̂ and a sparse component E, which not

only recovers the true rank relations among the test sam-

ples, but also removes the incorrect predictions as noises.

Finally, the skew-symmetric constraint T̂ = −T̂⊤enforces

the decomposed T̂ to still be a pairwise comparative matrix.

The above optimization problem is difficult to solve due

to the discrete nature of the rank function. Instead, we con-

sider a tractable convex optimization that provides a good

surrogate for the problem:

min
T̂ ,E

‖T̂‖∗ + λ‖E‖1,

s.t. T = T̂ + E, T̂ = −T̂⊤,
(3)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, i.e., the

sum of the singular values of the matrix, and λ is a posi-

tive tradeoff parameter. As our implementation for nuclear

norm minimization is based on Singular Value Threshold-

ing (SVT), we can keep truncating the singular values until

the rank-2 constraint is satisfied (See section 4). Therefore,

we can still obtain an exact rank-2 T̂ based on the above

objective function.

Until now, our formulation only considers one pairwise

comparative relationship matrix and hence cannot be used

for the fusion purpose. Suppose we have a set of n pairwise

comparative relationship matrices T1, . . . , Tn, where each

Ti is constructed from the score vector si of the ith model.

Our robust late fusion is formulated as follows:

min
T̂ ,Ei

‖T̂‖∗ + λ

n
∑

i=1

‖Ei‖1,

s.t. Ti = T̂ + Ei, i = 1, . . . , n,

T̂ = −T̂⊤.

(4)

Compared with the single matrix decomposition in E-

q. (3), the above objective function tries to find a shared



low rank pairwise comparative relationship matrix through

the joint decompositions of multiple pairwise matrices in-

to pairs of low rank and sparse matrices. As a result, the T̂
matrix will recover the true consistent comparative relation-

s across multiple relationship matrices. Moreover, each Ei

encodes the prediction errors made by one specific model.

With the proposed framework, we can robustly recover the

comparative relations among the test samples.

4. Optimization and Score Recovery

Low rank matrix recovery is well studied in the liter-

ature [3, 23]. However, our optimization problem differ-

s from these existing methods in that we have a skew-

symmetric constraint. Fortunately, the following theorem

shows that if SVT is used as the solver for rank minimiza-

tion, this additional constraint can be neglected [6].

Theorem 1. Given a set of n skew-symmetric matrices Ti,

the solution of problem in Eq. (4) from the SVT solver (as

shown in Algorithm 1) is a skew-symmetric matrix T̂ if the

spectrums between the dominant singular values are sepa-

rated.

The theorem can be proved based on the property of the

SVD of a skew-symmetric matrix, which can be found in

the supplementary material. Therefore, we can directly em-

ploy the existing SVT based rank minimization methods to

solve our problem. It is well known that ALM uses SVT

for rank minimization, and shows excellent performance in

terms of both speed and accuracy. Therefore, we choose the

ALM method for the optimization. We first convert Eq. (4)

into the following equivalent problem:

min
T̂ ,Ei

‖T̂‖∗ + λ
n
∑

i=1

‖Ei‖1 +
n
∑

i=1

〈Yi, Ti − T̂ − Ei〉

+
µ

2

n
∑

i=1

‖Ti − T̂ − Ei‖
2
F ,

(5)

where Yi’s are Lagrange multipliers for the constraints Ti =
T̂ +Ei , µ > 0 is a penalty parameter and 〈·, ·〉 denotes the

inner-product operator. Then the optimization problem can

be solved by the inexact ALM algorithm as shown in Algo-

rithm 1. Step 4 is solved via the singular value thresholding

operator [3], while step 5 is solved via the solution in [7].

Note that after the singular value truncating in step 4, even

number of singular values will be truncated (See the proof

of Theorem 1) and thus the rank of T̂ will be reduced. Dur-

ing the iterations, we repeat the above truncating operation

until the rank-2 constraint in step 8 is satisfied. (i.e., on-

ly two non-zero singular values are retained after the pro-

gressive truncating). In this way, we will obtain a rank-2
skew-symmetric matrix.

Algorithm 1 Solving Problem of Eq. (4) by Inexact ALM

1: Input: Comparative relationship matrix Ti, i =
1, 2, . . . , n, parameter λ, number of samples m.

2: Initialize: T̂ = 0, Ei = 0, Yi = 0, i = 1, . . . , n,

µ = 10−6, maxµ = 1010, ρ = 1.1, ε = 10−8.
3: repeat

4: Fix the other term and update T̂ by

(U,Λ, V ) = SV D( 1
nµ

∑n

i=1 Yi + 1
n

∑n

i=1 Ti −
1
n

∑n

i=1 Ei)), T̂ = US 1
µ
[Λ]V ⊤, where S is a shrink-

age operator for singular value truncating defined as:

Sε[x] =

⎧

⎨

⎩

x− ε, if x > ε,
x+ ε, if x < −ε,
0, otherwise.

5: Fix the other term and update Ei by Ei = Sλ
µ
[Ti +

Yi

µ
− T̂ ].

6: Update the multipliers Yi = Yi + µ(Ti − T̂ − Ei).
7: Update the parameter µ by µ = min(ρµ,maxµ).

8: until maxi ‖Ti − T̂ − Ei‖∞ < ε and rank(T̂ ) = 2.

9: Output: T̂ .

We implement Algorithm 1 on the 64-bit MATLAB plat-

form of an Intel XeonX5660 workstation with 2.8 GHz

CPU and 8 GB memory, and observe that the iterative opti-

mization converges fast. For example, in the Oxford Flower

17 classification experiment (see section 6.1), one iteration

between step 4 and step 7 in Algorithm 1 can be finished

within 0.8 seconds. Furthermore, as each optimization sub-

problem in Algorithm 1 monotonically decreases the objec-

tive function, the algorithm will converge.

After getting the optimized matrix T̂ , we want to recover

an m-dimensional confidence score vector ŝ that can bet-

ter estimate the prediction results. Based on our rank-2 as-

sumption mentioned before, we expect that T̂ is generated

from ŝ as T̂ = ŝe
⊤ − eŝ

⊤. The authors in [9] prove that

(1/m)T̂e will provide the best least-square approximation

of ŝ which can be formally described as follows:

(1/m)T̂e = argmin
ŝ

‖T̂⊤ − (ŝe⊤ − eŝ
⊤)‖2F . (6)

Therefore, we can treat (1/m)T̂e as the recovered ŝ after

the late fusion. Note that the vector ŝ is no longer the origi-

nal confidence score vector generated by the model, but in-

stead the true consistent confident patterns across different

models.

5. Extension with Graph Laplacian

So far, the proposed late fusion only relies on the confi-

dence scores of multiple models without utilizing any low

level feature information. In this section, we will show that



our RLF method can be easily extended to incorporate the

information of multiple low level features, which further

improves the fusion performance.

Suppose we have n kinds of low level features asso-

ciated with the m test samples. For the ith feature type,

i ∈ {1, 2, ...n}, the graph Laplacian regularizer Ψi(T̂ ) can

be defined as follows [4]:

Ψi(T̂ ) =
1

2

m
∑

j,k=1

P i
jk‖t̂j − t̂k‖

2
2 = tr(T̂⊤LiT̂ ), (7)

where P i = (Qi)−
1
2W i(Qi)−

1
2 is a normalized weight ma-

trix of W i. W i denotes the pairwise similarity between the

test samples calculated based on the ith feature. Qi is a di-

agonal matrix whose (l, l)-entry is the sum of the lth row

of W i. Li = I − P i is the graph Laplacian matrix with I
denoting an identity matrix. t̂j and t̂k denote the jth row

and the kth row of the low rank matrix T̂ , each of which

actually measures the pairwise comparative relations of the

given test sample w.r.t the other test samples.

The intuition behind the graph regularizer is that highly

similar test samples in the feature space should have similar

comparative relations w.r.t the other test samples (and hence

similar prediction scores). Such a regularizer is helpful for

robust learning and let our model not only inherit the dis-

criminative capability from each model, but also utilize the

complementary information of multiple features.

In this work, we choose the nearest neighbor graph for

the multi-feature graph regularizer. Given m test samples

represented as the ith feature type {xi
1, x

i
2, ...x

i
m} . For each

test sample xi
j , we find its K nearest neighbors and put an

edge between xi
j and its neighbors. The entry W i

jk in the

weight matrix W i associated with the graph is defined as

W i
jk =

{

exp(−
d
χ2 (x

i
j ,x

i
k)

σ
), if j ∈ NK(k) or k ∈ NK(j),

0, otherwise,
(8)

where NK(j) denotes the index set for the K nearest neigh-

bors of sample xi
j (we set K = 6 in this work), dχ2(xi

j , x
i
k)

is the χ2 distance between two samples, and σ is the radius

parameter of the Gaussian function, which is set as the mean

value of all pairwise χ2 distances between the samples.

Based on the above definition, we arrive at the follow-

ing objective function with a multi-feature graph Laplacian

regularizer (λ, γ are two positive tradeoff parameters):

min
T̂ ,Ei

‖T̂‖∗ + λ
n
∑

i=1

‖Ei‖1 + γ
n
∑

i=1

Ψi(T̂ ),

s.t. Ti = T̂ + Ei, i = 1, . . . , n,

T̂ = −T̂⊤,

(9)

Since the multi-feature graph Laplacian regularizer is a

differentiable function of T̂ , the above objective can be eas-

ily solved by the ALM method. This can be realized by

replacing the updating of T̂ in step 4 of Algorithm 1 with

the following updating rule.

(U,Λ, V )

= SV D
(

(nI +
2γ

µ

n
∑

i=1

Li)−1(
1

µ

n
∑

i=1

Ui +
n
∑

i=1

Ti −
n
∑

i=1

Ei)
)

,

T̂ = US 1
µ
[Λ]V ⊤, T̂ = (T̂ − T̂⊤)/2,

(10)

where I is an identity matrix. Since the input matrix

for SVD is no more skew-symmetric, to ensure the skew-

symmetric constraint, we use T̂ = (T̂ − T̂⊤)/2 to project T̂
into a skew-symmetric matrix [6]. After obtaining the opti-

mized T̂ , we can recover a score vector ŝ by Eq. (6) which

can be used for the final prediction.

6. Experiment

In this section, we evaluate our proposed method on var-

ious visual classification tasks including object categoriza-

tion and video event detection. The following early and

late fusion methods will be compared in our experiments:

(1) Kernel Average. This method is in fact an early fusion

method, which averages multiple kernel matrices into a s-

ingle kernel matrix for model learning. (2) MKL. We use

the Simple MKL [19] to train SVM classifier and determine

the optimal weight for each kernel matrix simultaneously.

(3) Average Late Fusion. After getting the normalized con-

fidence score from each model, we average them as the fu-

sion score for classification. (4) Our proposed Robust Late

Fusion (RLF) method. (5) Our proposed Graph-regularized

Robust Late Fusion (GRLF) method.

Without loss of generality, we use the one-vs-all SVM

as the model for generating the confidence scores. Since

the one-vs-all SVM is a binary classifier that works on un-

balanced numbers of the positive and negative training sam-

ples, we employ the Average Precision (AP) that is popular-

ly applied in the binary visual classification task as the eval-

uation metric. Then we calculate the Mean Average Preci-

sion (MAP) across all the categories of the dataset as the

final evaluation metric.

We use cross validation to determine the appropriate

parameter values for each method. Specifically, we vary

the values of the regularization parameters λ and γ in

our method on the grid of {10−3, 10−2, ..., 103}, and then

choose the best values based on validation performance.

Regarding the parameter setting for MKL, we follow the

suggested parameter setting strategies as in [5]. For the

SVM classifier, we apply χ2 kernel as the kernel matrix

for each method, which is calculated as exp (− 1
σ
dχ2(x, y))

where σ is set as the mean value of all pairwise distances



Figure 2. Visualization of the low rank and sparse matrices obtained by our RLF method from seven different confidence score vectors of

Oxford Flower 17 dataset, each of which is generated by training a binary classifier based on one feature. To ease visualization, we sample

a 30× 30 sub-matrix from each 340× 340 matrix. Blue cells denote the values above 0, purple cells denote the values below 0, and white

cells denote 0 values. The obtained matrix T̂ is skew-symmetric. This figure is best viewed in color.

on the training set. The tradeoff parameter C of SVM is se-

lected from {10−1, 100, ..., 103} through cross validation.

6.1. Experiment on Oxford Flower 17

In this section, we present results on the Oxford Flow-

er 17 dataset [16]. This dataset contains flower images of

17 categories with 80 samples per category. The dataset has

three predefined splits with 680 training images (17×40 im-

ages), 340 test images (17× 20 images), and 340 validation

images (17 × 20 images). The author of [17] provides the

pre-computed distance matrices for the three splits. We di-

rectly apply these matrices in our experiment. The matrices

are computed from seven different types of features includ-

ing color, shape, texture, HOG, clustered HSV values, SIFT

feature [14] on the foreground internal region (SIFTint),

and SIFT feature on the foreground boundary (SIFTbdy).

The details of the features can be found in [17]. For each

method, the best parameter is selected via cross validation

on the validation set.

Table 1 shows the performance of different methods in

comparison, in which we also list the best individual fea-

tures (SIFTint). From the results, we can see that: (1) All

fusion methods generate better result than SIFTint, which

clearly verifies the advantages of multi-model fusion; (2)

Our proposed RLF method clearly outperforms the other

baseline methods, since it seeks a robust scale-invariant low

rank fusion matrix from the outputs of multiple classifier-

s; (3) Our proposed GRLF method outperforms the RLF

method, demonstrating that involving multiple features fur-

ther improves the performance. In Figure 2, we visual-

ize the low rank and sparse matrices obtained by apply-

ing our method on one category of the Oxford Flower 17

dataset. As can be seen, our proposed method tends to

find a shared structure while removing the noise informa-

tion as sparse matrices. Note that the obtained matrix T̂ is

skew-symmetric, which well verifies the conclusion in the-

orem 1, i.e., when the input matrices are skew-symmetric,

even without the skew-symmetric constraint, our algorithm

will naturally produce a skew-symmetric matrix.

Method MAP

SIFTint 0.749± 0.013
Kernel Average 0.860± 0.017
MKL 0.863± 0.021
Average Late Fusion 0.869± 0.021
Our RLF Method 0.898± 0.019
Our GRLF Method 0.917± 0.017

Table 1. MAP comparison on Oxford Flower 17 dataset.
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Figure 3. MAP comparison at variant depths on CCV dataset.

6.2. Experiment on Columbia Consumer Video

For the second dataset of the experiments, we use the

large scale Columbia Consumer Video dataset (CCV) [11].

This dataset contains 9, 317 web videos over 20 semantic

categories, where 4, 659 videos are used for training and

the remaining 4, 658 videos are used for testing. In our

experiment, we use the three kinds of the features provid-

ed by the dataset [11], which includes 5, 000 dimension-

al SIFT Bag-Of-Words (BOW) feature, 5, 000 dimensional

spatial-temporal interest points (STIP) [12] BOW feature,

and 4, 000 dimensional Mel-frequency cepstral coefficients

(MFCC) [18] BOW feature.

To get the optimal parameter for each method, we par-

tition the training set into three subsets and then perform

three-fold cross validation. Figure 3 shows the MAP per-

formance at different returned depths (the number of top



Figure 4. AP comparison of different methods on CCV dataset. This figure is best viewed in color.

ranking test samples to be included in the result evalua-

tion). From the results, we can see that our method achieves

significant and consistent MAP improvements over the oth-

er baseline methods at variant returned depths. Figure 4

shows the per-category AP performance comparisons of all

the methods. As shown, the performances of all the baseline

methods are quite similar to each other, which is consistent

with the results in section 6.1. The proposed GRLF method

shows the best performance on most of the events. In par-

ticular, in terms of MAP it outperforms the Kernel Aver-

age, MKL and Average Late Fusion method by 7.2%, 6.6%
and 7.6% relatively. Here the Average Late Fusion result is

directly quoted from [11], which clearly demonstrates that

our method is superior over the state-of-the-art method in

the literature.

6.3. Experiment on TRECVID MED 2011

TRECVID Multimedia Event Detection (MED) is a

challenging task for the detection of complicated high-level

events. We test our proposed method on TRECVID MED

2011 development dataset [1], which includes five events

“Attempting board trick”, “Feeding an animal”, “Landing

a fish”, “Wedding ceremony”, and “Wood working”. The

training and test sets consist of 8, 783 and 2, 021 video shot-

s respectively. For low level features, we extract 5, 000
dimensional SIFT BOW feature, 5, 000 dimensional STIP

BOW feature, and 4, 000 dimensional MFCC BOW feature.

Again, one-versus-all SVM with χ2 kernel is used to train

the model. Three-fold cross validation on the training set is

used for parameter tuning.

Figure 5 shows the per-event performance for all the

methods in comparison. From the results, we have the fol-

lowing observations: (1) Our proposed RLF method pro-

duces better result than all the baseline methods in terms of

MAP. (2) The GRLF method further outperforms the RLF

method and achieves the better performance on four out of

the five events, which well verifies the advantages of bring-

ing the low level features into the late fusion task. (3) The

MAP of our proposed GRLF method is 0.509, which is rela-

tively 10.4% higher than the best baseline performance (Av-

erage Late Fusion method with MAP: 0.461). This confirms

the superiority of our method. Figure 6 shows the MAP at

different returned depths for all the methods.

6.4. Discussion

Consistency of the recovered matrix. Given a real-

valued rank-2 skew-symmetric matrix T̂ , the score vector

ŝ can be recovered from T̂ = ŝe
⊤ − eŝ

⊤. Based on the

analysis in [9], even if we have inconsistent entries in T̂ ,

optimization results of Eq. (6) can still provide the best ap-

proximation of ŝ, overcoming any remaining inconsistency

issue. This has also been verified by our experiment result-

s, where there is not any inconsistency in the final score

vectors recovered from the rank-2 matrices obtained by our

method over the three datasets.

Tradeoff between low rankness and sparsity. Notably,

our method can achieve a good tradeoff between low rank-

ness and sparsity. If there are many classification errors as-

sociated with the ith model, the decomposed additive term

Ei will be dense with lots of non-zero entries. This can be

illustrated in Figure 2, in which the denser the matrix Ei,

the worse performance the corresponding component mod-

el gets. For example, the classification performance of the

HSV feature is the worst among the seven features, and thus

its additive noise matrix is the densest. This further verifies

the advantage of our method to obtain balanced tradeoff be-

tween low rankness of the score relations and the sparsity

of the score errors.



Figure 5. AP comparison on TRECVID MED 2011 development

dataset. The five events from left to right are “Attempting board

trick”, “Feeding an animal”, “Landing a fish”, “Wedding ceremo-

ny”, and “Wood working”. This figure is best viewed in color.

Out-of-sample extension. We can adopt a sim-

ple nearest-neighbor method to handle the out-of-sample

problem for our robust late fusion model. When a

new test sample xm+1 represented with n feature type-

s {x1
m+1, . . . ,x

n
m+1} comes, we can find its nearest

neighbors {x1, . . . ,xn} where each x
i is the nearest

neighbor of x
i
m+1 in terms of the ith feature type.

Then the fusion score can be obtained by ŝ(xm+1) =
∑n

i=1

W (tim+1,x
i)

∑
n
i=1

W (ti
m+1

,xi)
ŝ(xi), where W (tim+1,x

i) denotes

the feature similarity based on ith feature type, ŝ(xi) is the

fusion score of sample x
i.

7. Conclusion

We have introduced a robust rank minimization method

for fusing the confidence scores of multiple models. We first

convert each confidence score vector of a model into a pair-

wise comparative relationship matrix, so that the confidence

scores of different models can be manipulated in an isoton-

ic manner. Then the late fusion is formulated as a matrix

decomposition problem in which a shared matrix is inferred

from the joint decomposition of multiple pairwise relation-

ship matrices into pairs of low rank and sparse components.

Extensive experiments on various visual classification tasks

show that our method outperforms the state-of-the-art early

and late fusion methods. In the future, we will investigate

the fusion of more complex models to deal with multi-class

or multi-label problem in computer vision and multimedia

applications.
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Figure 6. MAP comparison of different methods at variant depths

on TRECVID MED 2011 development dataset.
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