
Robust Learning from Untrusted Sources

Nikola Konstantinov 1 Christoph H. Lampert 1

Abstract

Modern machine learning methods often require

more data for training than a single expert can

provide. Therefore, it has become a standard

procedure to collect data from multiple external

sources, e.g. via crowdsourcing. Unfortunately,

the quality of these sources is not always guaran-

teed. As further complications, the data might be

stored in a distributed way, or might even have to

remain private. In this work, we address the ques-

tion of how to learn robustly in such scenarios.

Studying the problem through the lens of statis-

tical learning theory, we derive a procedure that

allows for learning from all available sources, yet

automatically suppresses irrelevant or corrupted

data. We show by extensive experiments that our

method provides significant improvements over

alternative approaches from robust statistics and

distributed optimization.

1. Introduction

Due to the outstanding performance of modern machine

learning algorithms on various real-world tasks, there is an

increasing amount of interest by practitioners in producing

predictive models, specific to their purposes. In many appli-

cation domains, however, it may be prohibitively expensive

for a single expert to produce a high-quality labeled dataset,

that is large enough for training a good model. Therefore,

it has become a common practice to obtain data from vari-

ous external data sources. Examples range from the use of

crowdsourcing platforms, through collecting data from dif-

ferent websites and social networks profiles, to collaborating

with other parties working in similar domains.

Naturally, datasets obtained from such sources vary greatly

in quality, reliability and relevance for the learning task.

For instance, genetic data from multiple laboratories may

have been obtained via different measurement devices or
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data preprocessing techniques (Wahlsten et al., 2003). In

the case of crowdsourcing, a typical problem is label bias

and label noise, due to incompetent or malicious workers

(Wais et al., 2010). More generally, statistical and machine

learning models are known to suffer in performance due to

gross errors, contaminations and adversarial modifications

of the data (Tukey, 1960; Biggio et al., 2012). The variety of

possible deviations from the target data distribution, as well

as the large volume and dimensionality of the data in real-

world applications, make the assessment of the quality of the

provided data a difficult task. An additional complication is

that the data might have to remain decentralized, because

of high communication costs, or it might not be directly

available for inspection, due to privacy constraints.

In this paper we study the problem of how to learn from

multiple untrusted sources, while being robust to any cor-

ruptions of the data provided from each of them. As an

alternative to the naive approaches of simply training on

all data or only on a trusted subset, we propose a method

that automatically assigns weights to the sources. To this

end, we build up on techniques from the domain adapta-

tion literature and prove an upper bound on the expected

loss of a predictor, learned by minimizing any weighted

version of the empirical loss. Based on these theoretical

insights, our algorithm selects the weights for the sources

by approximately minimizing this upper bound.

Intuitively, the weights are assigned to the sources accord-

ing to the quality and reliability of the data they provide,

quantified by an appropriate measure of trust we introduce.

This is achieved by comparing the data from each source to

a small reference dataset, obtained or trusted by the learner.

The measure can also be computed locally at every source

or by a gradient-based optimization procedure, which al-

lows for the implementation of the algorithm under privacy

constraints, as well as its integration into any standard dis-

tributed learning framework.

We perform an extensive experimental evaluation 1 of our

algorithm and demonstrate its ability to learn from all avail-

able data, while successfully suppressing the effect of cor-

rupted or irrelevant sources. It consistently outperforms both

naive approaches of learning on all available data directly or

1Code is available at https://github.com/NikolaKon1994/Robust-
Learning-from-Untrusted-Sources
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learning on the reference dataset only, for any amount and

any type of data contamination considered. We also observe

its performance to be superior to multiple baseline methods

from robust statistics and robust distributed learning.

2. Related work

Learning from multiple sources is a topic relevant for many

applications of machine learning and data corruption is a

problem acknowledged in some of these areas. In particular,

(Bi et al., 2014; Kajino et al., 2012; Awasthi et al., 2017)

and references therein consider the problem of label noise

in crowdsourced data. The non-i.i.d. split of the data on

local devices is one of the main characteristics of federated

learning and the pioneering work of (McMahan et al., 2017)

addresses this by occasionally averaging local models to

ensure global consistency. Fault tolerance and prevention of

sybil attacks in federated learning have been considered by

(Smith et al., 2017) and (Fung et al., 2018) respectively. Ro-

bustness has also been explored in the context of multi-view

learning, where data arrives from various feature extractors

(Zhao et al., 2017; Xie, 2017; Zhang et al., 2017).

The work closest in spirit to ours is the one of (Qiao &

Valiant, 2018), who provide efficient algorithms for learning

from batches of data, an ǫ-fraction of which can be mali-

cious. Their focus is different though, as they only study

algorithms for learning discrete distributions and explore the

regime where each data source provides a small amount of

samples. In contrast, we are interested in general supervised

learning problems and work in a setting where more data

is available per source. (Charikar et al., 2017; Hendrycks

et al., 2018) also study learning with a reference dataset as

a protection against data corruption, but focus on a single

untrusted dataset only and on convex objectives and label

noise respectively. There is a vast body of literature focusing

on robustness of learning algorithms to corruptions within a

dataset, e.g. (Tukey, 1960; Huber, 2011; Diakonikolas et al.,

2016; Prasad et al., 2018), and on identifying data corrup-

tions at prediction time, e.g. (Hendrycks & Gimpel, 2017;

Sun & Lampert, 2018). These lines of work are orthogonal

to ours, since we consider multiple training datasets, some

of which are corrupted, and hence a literature review in this

direction is beyond the scope of this paper.

Another related area is the one of robust distributed learning

and optimization. The work of (Feng et al., 2014) develops

a method for implementing any robust supervised learning

algorithm in a distributed manner. (Feng, 2017) provide

lower bounds for the communication complexity of PAC

learning in a distributed environment, in the presence of ma-

licious outliers. Fault tolerance and resistance to adversarial

behavior of individual nodes in a distributed system have

been studied from the point of view of Byzantine-robust

distributed optimization, e.g. (Blanchard et al., 2017; Yin

et al., 2018; Alistarh et al., 2018a). These works consider

arbitrary (even adversarial) behavior of the nodes, however

they study the convergence of gradient-based optimization

procedures and typically have to assume that at least half of

the nodes behave normally. In contrast, we are interested in

the generalization performance of empirical risk minimizers

and make no assumptions about the number of corrupted

sources. The worst-case performance of distributed SGD

has also been studied in the context of asynchronous training

(De Sa et al., 2015; Alistarh et al., 2018b).

On the methodological level, we borrow techniques from

the field of domain adaptation. To measure the difference

between data distributions, we use the same integral proba-

bility metric as (Mohri & Medina, 2012; Zimin & Lampert,

2017). The problem we study is related to multi-source

domain adaptation, e.g. (Crammer et al., 2008; Ben-David

et al., 2010), and to multi-task learning with unlabeled data

(Pentina & Lampert, 2017). In particular, our Theorem 1 is

similar to a result in (Zhang et al., 2013). We refer to the

paragraph after Theorem 1 for a more detailed comparison.

However, all these works focus on sharing information be-

tween similar domains, in order to obtain better predictors

for a target task, while we are interested in applying such

techniques for detecting untrustworthy sources of data and

improving the robustness of the learning procedure.

A relation between robustness and domain adaptation has

been explored in the work of (Mansour & Schain, 2014),

who use a property called algorithmic robustness to de-

rive generalization bounds for domain adaptation. Another

related line of work is the one of (Mansour et al., 2009; Hoff-

man et al., 2018), who provide guarantees for a classifier

learned on data from N domains on any target distribution

that is a mixture of the distributions of the sources. Domain

adaptation techniques were also used by (Song et al., 2019),

for improving the test-time robustness of predictive models

to adversarial examples.

3. Robust learning from untrusted sources

Given a small reference dataset, we want to leverage addi-

tional training data from multiple untrusted sources in an

optimal way, so that the obtained predictor performs well

on a target distribution. A naive approach will be to trust all

data, merge it into one dataset and train end-to-end to obtain

a predictive model. Such an approach will intuitively be vul-

nerable to irrelevant or low-quality data provided by some

sources. In this section, we design a more robust algorithm

that instead minimizes a weighted empirical loss.

3.1. Theory

Setup. Let X be an input space and Y be an output space.

Our theoretical setup covers both the case of classification
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(Y = {1, 2, . . . ,K}) and regression (Y = R). We assume

that the learner has access to a small reference dataset ST :=
{(xT,1, yT,1) , . . . , (xT,mT

, yT,mT
)} of mT samples drawn

i.i.d. from a target distribution DT over X × Y . In addition,

training data is available from N untrusted data sources,

each of them characterized by its own distribution, Di, over

X × Y , possibly different from DT . We denote the number

of samples from source i by mi. Let the corresponding i.i.d.

datasets be Si := {(xi,1, yi,1) , . . . , (xi,mi
, yi,mi

)}
i.i.d.
∼ Di

for each i = 1, . . . , N .

Let L : Y × Y → R+ be a loss function, bounded by some

M > 0. For any distribution P on X × Y and any function

h : X → Y , denote by

ǫP (h) = E(x,y)∼P (L (h(x), y))

the expected loss of the predictor h with respect to the

distribution P. Let ǫi (h) = ǫDi
(h) be the expected loss of

a predictor h on the distribution of the i-th source. Denote

by ǫ̂i the corresponding empirical counterparts.

Given a hypothesis class H ⊂ {h : X → Y}, our goal is to

use all samples from the sources to construct a hypothesis

with low expected loss on the target distribution DT . Note

that if we also want to use the reference data at training time,

we can simply include it as one of the data sources.

Source-specific weights. For a vector of weights α =
(α1, . . . , αN ), such that

∑N
i=1 αi = 1 and αi ≥ 0 for all i,

we define the α-weighted expected risk of a predictor h as:

ǫα(h) =

N
∑

i=1

αiǫi(h) =

N
∑

i=1

αiE(x,y)∼Di
(L(h(x), y)) (1)

and its empirical counterpart as:

ǫ̂α(h) =
N
∑

i=1

αiǫ̂i(h) =
N
∑

i=1

αi

mi

mi
∑

j=1

L (h(xi,j), yi,j) . (2)

With H as our hypothesis class, let ĥα = argminh∈H
ǫ̂α (h).

We aim to find weights α, such that the predictor ĥα per-

forms well on the target task, i.e. such that ǫT (ĥα) is small.

Evaluating the quality of a source. Intuitively, a good

learning algorithm will assign more weight to sources,

whose distribution is similar to the target one, and less

weight to those that provide different or low-quality data.

Although any standard distance measure on the space of

distributions could in theory be used to measure such differ-

ences, most of them would not provide any guarantees on

the performance of the learned classifier. Furthermore, most

similarity measures between distributions, e.g. the Kullback-

Leibler divergence, are hard to estimate from finite data and

overly strict, as they are independent of the learning setup.

We therefore adopt a specific notion of distance that depends

on the hypothesis class and allows us to reason about the

change in performance of a predictor from H learned on

one distribution, but applied to the other. Following (Mohri

& Medina, 2012), we define the discrepancy between the

distributions Di and DT with respect to the hypothesis class

H as:

dH (Di,DT ) = sup
h∈H

(|ǫi(h)− ǫT (h)|) . (3)

Intuitively, the discrepancy between the two distributions is

large, if there exists a predictor that performs well on one

of them and badly on the other. On the other hand, if all

functions in the hypothesis class perform similarly on both,

then Di and DT have low discrepancy.

The following theorem provides a bound on the expected

loss on the target distribution of the predictor ĥα, i.e. the

minimizer of the α-weighted sum of the empirical losses

over the source data.

Theorem 1. Given the setup above, let ĥα =
argminh∈Hǫ̂α(h) and h∗

T = argminh∈HǫT (h). For any

δ > 0, with probability at least 1− δ over the data:

ǫT (ĥα) ≤ ǫT (h
∗
T ) + 4

N
∑

i=1

αiRi (H) + 2
N
∑

i=1

αidH (Di,DT )

+ 6

√

log
(

4
δ

)

M2

2

√

√

√

√

N
∑

i=1

α2
i

mi

, (4)

where, for each source i = 1, . . . , N ,

Ri (H) = Eσ



sup
f∈H





1

mi

mi
∑

j=1

σi,jL(f(xi,j), yi,j)









and σi,j are independent Rademacher random variables.

A proof is provided in the supplementary material.

We note that a similar result appears as Theorem 5.2 in

the arXiv version (Zhang et al., 2013) of the NIPS paper

(Zhang et al., 2012). The authors bound the gap between the

weighted empirical loss on the source data of any classifier

and its expected loss on the target task, with the additional

assumption of a deterministic labeling function for each

source. Based on this, they study the asymptotic conver-

gence of domain adaptation algorithms as the sample sizes at

all sources go to infinity. In contrast, our theorem compares

the performance of the minimizer ĥα of the α-weighted

empirical loss on the target task to the performance of the

optimal (but unknown) h∗
T and does not require determinis-

tic labeling functions. Our target application is also different,

since we use the bound to design learning algorithms that

are robust to corrupted or irrelevant data, given finite amount

of samples from each source.

3.2. From bound to algorithm

Algorithm description. To obtain a good predictor for the

target task, we would like to choose α, such that ǫT (ĥα) is
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Algorithm 1 Robust learning from untrusted sources

Inputs: 1. Loss L, hypothesis set H, parameter λ
2. Reference dataset ST

3. Datasets S1, . . . , SN from the N sources

for i = 1 to N do {Potentially in parallel}

Compute dH (Si, ST )
end for

Select α by solving (6).

Minimize α-weighted loss: ĥα = argminh∈H
ǫ̂α(h)

Return: ĥα

as close as possible to ǫT (h
∗
T ) (the expected loss of the best

hypothesis in H). This suggests selecting the weights by

minimizing the right-hand side of (4).

While the Rademacher complexities are functions of both

the underlying distribution and the hypothesis class, in prac-

tice one usually works with a computable upper bound that

is distribution-independent (e.g. using VC dimension). For

some common examples of such bounds we refer to the

supplementary material, as well as to (Bousquet et al., 2004;

Shalev-Shwartz & Ben-David, 2014). In our setting the hy-

pothesis space H is fixed and therefore these bounds would

be identical for all i. Therefore, we expect the Ri (H) to

be of similar order to each other and the impact of α on

the second term in the bound to be negligible. We thus

concentrate on optimizing the remaining terms.

Because the true discrepancies are unknown, we estimate

them from the data by their empirical counterparts:

dH (Si, ST ) = sup
h∈H

(|ǫ̂i(h)− ǫ̂T (h)|)

= sup
h∈H

(|
1

mi

mi
∑

j=1

L (h (xi,j) , yi,j)

−
1

mT

mT
∑

j=1

L (h (xT,j) , yT,j) |).

(5)

In summary, the bound suggests to choose a weighting for

the sources by minimizing:

min
α

N
∑

i=1

αidH (Si, ST ) + λ

√

√

√

√

N
∑

i=1

α2
i

mi

,

subject to:

N
∑

i=1

αi = 1 and αi ≥ 0 for all i,

(6)

where λ > 0 is a hyperparameter that can be selected by

cross-validation on the reference dataset. The algorithm

then proceeds to minimize the α-weighted empirical risk

over the sources (2), possibly with a regularization term.

Pseudocode of the algorithm is given in Algorithm 1.

Discussion. While derived from our theoretical results, the

minimization procedure for selecting the weights also has an

intuitive interpretation. Note that the first term in (6) is small

whenever large weights are paired with small discrepancies

and hence encourages trusting sources that provide data

similar to the reference target sample. The second term is

small whenever the weights are distributed proportionally

to the number of samples per source. Thus, it acts as a form

of regularization, by encouraging the usage of information

from as many sources as possible.

The hyperparamater λ controls a trade-off between ex-

ploiting similar tasks and leveraging information from all

sources. As λ → ∞, all tasks are assigned weights propor-

tional to the amount of training samples they provide and

the model minimizes the empirical risk over all the data, re-

gardless of the quality of the samples. In contrast, as λ → 0,

the model becomes more sensitive to differences between

the source data and the clean reference set, until all weight

is assigned to the source closest to the target domain. As-

suming that the reference set is included as one of the data

sources, these extremes correspond to the naive approach of

trusting all sources and training on a merged dataset and not

trusting any of them and training on the initial clean data

only. In our experiments in Section 4 we will see that there

is a better operating point between those two extremes. It

naturally depends on the actual quality of the available data

and our algorithm identifies it successfully.

3.3. Learning from private or decentralized data

The described algorithm is straightforward to implement on

top of any standard learning procedure, when the data from

all N sources is directly available to the learner. We now

discuss how we can learn robustly in cases where the sources

cannot fully reveal their data. There are many applications

where such a situation can arise. For example, this can be

due to privacy reasons in the case of medical and biological

data or to communication costs and storage limitations in

the case of distributed learning (McMahan et al., 2017).

Here we focus on ways to compute the discrepancies under

such constraints. Once this is done, the vector α can be

computed easily and then any standard distributed training

procedure, e.g. (Dean et al., 2012; McMahan et al., 2017),

can be used to obtain the α-weighted empirical loss min-

imizer. Standard approaches in distributed learning only

require the exchange of gradients of minibatches with re-

spect to the current state of the model between the data

sources and the central server, so in particular the actual

local datasets are never observed by the learner. In cases

when the gradients may reveal sensitive information about

the data, secure aggregation (Bonawitz et al., 2017) or other

privacy-preserving distributed learning methods (Shokri &

Shmatikov, 2015) can be used on top to ensure privacy.

We distinguish two cases, depending on whether the refer-

ence dataset can be shared with the sources.
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Case 1: the reference dataset is available to all nodes. If

the reference dataset can be shared with the sources without

privacy and communication complications, the discrepan-

cies can be estimated locally on every source, in parallel.

If necessary, the computational protocol can be executed

via a trusted computation method (Chen et al., 2009), for

example by using Software Guard Extensions (SGX exten-

sions) (McKeen et al., 2016), to ensure the correctness of

the procedure. The discrepancies alone can then be sent to

the learner and the algorithm proceeds as described above.

This approach ensures the privacy of the local datasets and

allows for all discrepancies to be computed in parallel.

Case 2: the reference dataset can not be shared. In this

case the learner can still compute the empirical discrepan-

cies without observing the data from the sources directly, by

using a gradient-based optimization procedure. This is be-

cause the function inside the supremum in (5) decomposes

into a term depending only on the reference dataset and a

term depending only on the data of the source. Therefore,

each discrepancy can be estimated by using a sequence of

queries to the source about the gradient of a minibatch from

its data with respect to a current candidate for the predictor

achieving the supremum.

4. Experiments

4.1. Method and baselines

We perform two large sets of experiments, following the

setup considered in our paper. We train our algorithm on

the data from all sources, including the reference dataset.

The hyperparameter λ is selected by 5-fold cross-validation

on the trusted data. The prediction tasks we consider here

are binary classification problems with the 0/1-loss, so we

compute the empirical discrepancies by approximately solv-

ing the optimization problem (5) as follows. Given the two

datasets Si and ST , the binary labels of one of them are

flipped. The optimization can then be reduced to an empiri-

cal risk minimization problem that we solve using a standard

convex relaxation approach. We refer to the supplementary

material for a more formal description.

We compare the performance of our algorithm to the two

naive approaches: training on the reference dataset only

(corresponding to λ = 0 in our algorithm; denoted as "Ref-

erence only" in the plots and tables) and merging the sources

and training on all the data (corresponding to λ → ∞; re-

ferred to as "All data" in the plots and tables). All three

methods use linear predictors and are trained by regularized

logistic regression. The regularization parameter is always

selected by 5-fold cross-validation on the reference data.

The learned models are then evaluated on held out test data.

Our aim is to test whether the proposed algorithm success-

fully leverages information from the sources, while being

robust to various perturbations in the distributions of the

local datasets, and whether exploiting the multi-source struc-

ture of the data gives any improvement over the two standard

learning procedures. We also compare the performance of

our algorithm to the following robust learning baselines.

Robust aggregation of local models. We consider two

recently proposed approaches for robust distributed learning.

Following (Feng et al., 2014), one baseline learns a separate

linear model based on each of the source datasets. The final

linear predictor is then constructed as the geometric median

of these locally learned weight vectors. Another baseline,

inspired by (Yin et al., 2018), takes the component-wise

median instead. Thirdly, based on the locally learned models

all N estimates for the probability that a test point belongs to

a certain class are computed and the final prediction for the

label of that point is obtained by taking the median of these

probabilities and thresholding it (referred to as "Median of

probs" in the plots and tables). All these baselines aim at

learning a robust ensemble of local models.

Robust logistic regression. We use the method of (Preg-

ibon, 1982), based on the minimization of a Huber-type

modification of the logistic loss. Specifically, the method

minimizes the following robust loss function, instead of the

classic logistic loss:

L (w,x, y) =

{

log(1 + e−ywT
x), if log(1 + e−ywT

x) ≤ c

2
√

c log(1 + e−ywT
x)− c, otherwise

In our experiments, we use the recommended threshold

value of c = 1.3452, under which the estimate of the lin-

ear predictor has been shown to achieve a 95% asymptotic

relative efficiency (Pregibon, 1982). We also include a regu-

larization term here and learn the regularization parameter

by 5-fold cross-validation on the reference data. This base-

line is an example of learning robustly on the whole dataset.

Batch normalization. Inspired by the success of batch

normalization in deep learning (Ioffe & Szegedy, 2015),

we compute the mean and standard deviation of the data at

each source separately. We then subtract from each data

point the mean and divide by the standard deviation of its

corresponding dataset. We do the same for the reference

data. We then merge all data together and train a logistic

regression model with a regularization term. Finally, at

test time every input is preprocessed by subtracting the

mean and dividing by the standard deviation of the reference

dataset, before applying the classifier. This approach aims

at increasing robustness to source-specific biases.

4.2. Amazon Products data

Our first set of experiments is on the "Multitask dataset of

product reviews"2 (Pentina & Lampert, 2017), containing

2http://cvml.ist.ac.at/productreviews/

http://cvml.ist.ac.at/productreviews/
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customer reviews for 957 Amazon products from the "Ama-

zon product data" (McAuley et al., 2015a;b), together with

a binary label indicating whether each review is positive or

negative. All reviews in the data set are represented via 25-

dimensional feature vectors, obtained by computing a GloVe

word embedding (Pennington et al., 2014) and applying the

sentence embedding procedure of (Arora et al., 2017). We

treat the classification of a review as positive or negative as

a separate prediction task for each of the products, resulting

in a total of 957 input-output distributions.

As a first, illustrative, experiment, we chose 20 books and 20

other, purposely different, products (e.g. USB drives, mobile

apps, meal replacement products). For simplicity, we refer

to these additional products as "non-books". Intuitively,

when learning to classify book reviews and given access

to reviews from both some books and some non-books,

a good learning algorithm will be able to leverage all this

information, while being robust to the potentially misleading

data coming from the less relevant products.

We randomly sample one of the books and 300 positive and

300 negative reviews for it. Out of those, 100 randomly

selected reviews are made available to the learner as a refer-

ence dataset. The 500 remaining reviews from the product

are used for testing. For a given value of n ∈ {0, 1, . . . , 10}
the learner also has access to 100 labeled reviews from each

of 10−n other randomly selected books and from each of n
randomly selected non-books. Our algorithm, as well as all

baselines, are trained on this available data and the learned

predictors are evaluated on the test set for the target product.

For each n, we repeat this experiment 1000 times.

The results are plotted in Figure 1. The x-axis corresponds

to the number n of non-books and the y-axis gives the av-

erage classification error. The error bars correspond to the

standard errors of the mean estimates. We see that our

method (green) performs uniformly better than the naive ap-

proaches of training on the reference dataset from the target

product only (red) and training by merging all data together

(blue). When reviews from many books are available, our

algorithm is able to use this additional information even

better than the model learned on all data. As the proportion

of non-books increases, the performance of the second ap-

proach degrades, confirming the intuition that the reviews

for the non-books provide less useful information for the

target task. On the other hand, our algorithm successfully

incorporates the information from the useful sources only,

converging to the performance of the model learned on the

reference data as all additional sources become non-books.

Our algorithm also outperforms all baselines. The batch

normalization approach appears to reduce the effect of irrel-

evant sources, but its performance degrades as n → 10. The

median-based approaches perform reasonably when at most

half of the sources are non-books, but eventually become
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Figure 1: Results from the experiments on 20 books and

20 other products from the "Multitask dataset of product

reviews". The x-axis gives the number n of non-books in

an experiment and the y-axis - the mean classification error.

Error bars give the standard error of the estimates.

Table 1: Results from the experiment on all 957 products.

Algorithm Mean classification error

Ours 0.289± 0.0016
Reference only 0.301± 0.0019

All data 0.312± 0.0017
Median of probs. 0.325± 0.0021

Geom.median (Feng et al., 2014) 0.329± 0.0021
Comp.median (Yin et al., 2018) 0.329± 0.0021

Robust loss (Pregibon, 1982) 0.353± 0.0021
Batch norm 0.298± 0.0016

worse than the other methods. The component-wise median

and the robust loss baselines were excluded from the plot

for clarity, as they performed uniformly worse than the other

baselines, ranging in average classification error from 0.338

to 0.375 and from 0.348 to 0.372 respectively. Note that

the robust loss function of (Pregibon, 1982) is non-convex,

so the poor performance of this baseline is presumably due

to failure of the gradient descent optimization procedure to

converge to a good local minimum.

Additionally, we performed an experiment on the set of all

957 products. With every product as a prediction task, we

randomly selected 100 reviews from it as a reference dataset,

leaving 500 for testing. An additional set of 100 labeled

reviews were available from every other product. The al-

gorithms were trained on all available data and evaluated

on the test set. The average classification errors achieved

by the algorithms are presented in Table 1, together with

the standard errors of those estimates. We see in particular

that our algorithm successfully uses the information from

multiple sources to achieve the best overall performance.
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(a) Label bias
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(b) Shuffled labels
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(c) Shuffled features
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(d) Blurred images
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(e) Dead pixels
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(f) RGB channels swapped

Figure 2: Results for the attribute "black" from the Animals with Attributes 2 dataset. Each plot corresponds to a different

contamination type. The x-axis gives the number n of corrupted sources and the y-axis gives the average classification error

of the algorithms, achieved over 100 different runs. Error bars correspond to the standard deviation around those means.

4.3. Animals with Attributes 2

The Animals with Attributes 2 dataset (Xian et al., 2018)

contains 37322 images of 50 animal classes. The classes are

aligned to 85 binary attributes, e.g. color, habitat and others,

via a class-attribute binary matrix, indicating whether an

animal possesses each feature. This results in a total of 85
different binary prediction tasks of identifying whether an

animal on a given image possesses a certain attribute or not.

Feature representations of the images are obtained via the

following procedure. We use a ResNet50 network (He et al.,

2016), pretrained 3 on ImageNet (Russakovsky et al., 2015),

to obtain feature representations of the ImageNet data and

reduce their dimension to 100 by PCA. Finally, for each

image in the Animals with Attributes 2 dataset, we compute

the ResNet50 feature representation and apply the PCA

projection pre-learned on ImageNet.

We perform an independent set of experiments for each

attribute and for various types and levels of corruption of

the data sources. In each run, we randomly split the data into

60 groups of 500 images, with the remaining 7322 images

left out for testing. One of the groups is selected at random

as the clean reference dataset available to the learner. The

remaining 59 groups correspond to the data sources, some

3We use a pretrained model from the TensorNets package,
https://github.com/taehoonlee/tensornets.

of which provide low-quality or corrupted data. We consider

six different types of corruptions. Three act on the labels

or the feature representations directly and the next three

are synthetic modifications of the images themselves. In

the second case, the corresponding images are manipulated

before the feature representations are extracted.

• Label bias: The labels of all (corrupted) samples are

switched to class 1.

• Shuffled labels: The labels of all samples are shuffled

randomly, separately in each corrupted source.

• Shuffled features: Given a permutation of the indexes

between 1 and 100, the features of all samples are

shuffled according to it.

• Blurred images: Each image is blurred by filtering with

a Gaussian kernel with standard deviation σ = 6.

• Dead pixels: In each image a random 30% of the pixels

are set to pure black or white.

• RGB channels swapped: The values in the red and the

blue color channels of each image are swapped.

Given an attribute, a type of corruption and a value of

n ∈ {0, 10, 20, 30, 40, 50, 55, 59}, the data is split ran-

domly, as described above, and the samples of n randomly

https://github.com/taehoonlee/tensornets
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Baseline

n
n = 0 n = 10 n = 20 n = 30 n = 40 n = 50 n = 55 n = 59

Reference only 84/1/0 505/5/0 497/13/0 487/23/0 475/35/0 442/68/0 325/185/0 0/510/0

All data 0/85/0 115/395/0 267/243/0 370/140/0 438/72/0 468/42/0 479/31/0 484/26/0

Med of probs. 9/76/0 47/463/0 172/338/0 336/174/0 469/41/0 504/6/0 502/8/0 499/11/0

Geom.med (Feng et al., 2014) 8/77/0 32/478/0 110/400/0 338/172/0 457/53/0 504/6/0 502/8/0 497/13/0

Comp.med (Yin et al., 2018) 14/71/0 179/331/0 390/120/0 432/78/0 472/38/0 502/8/0 503/7/0 497/13/0

Robust loss (Pregibon, 1982) 55/30/0 308/202/0 361/149/0 416/94/0 437/73/0 455/55/0 470/40/0 485/25/0

Batch norm 0/85/0 107/403/0 317/193/0 416/94/0 446/63/1 478/32/0 487/23/0 482/28/0

Table 2: Summary of the results from the Animals with Attributes 2 experiments, over all 85 prediction tasks and all 6 types

of corruption. Given a number of corrupted sources n (columns) and a baseline (rows), we report values in the form A/B/C,

where A is the number of times that our method performed significantly better than the corresponding baseline, B is the

number of times it performed equally well and C is the number of times it performed significantly worse, summed over the

various types of corruptions and all attributes. More details are provided in the main body of the text.

chosen sources are corrupted. Our algorithm, as well as all

baselines, then learn a model based on the resulting data and

the performance of the obtained predictors is evaluated on

the test data. For any combination of target attribute, corrup-

tion strategy and value of n, the experiment is repeated 100

times with a different random seed to obtain error estimates.

The results for the first attribute from the Animals with

Attributes 2 data ("black") are given in Figure 2. Each

plot corresponds to a different type of contamination. The

x-axis gives the number of sources providing corrupted

data and the y-axis corresponds to the average error that

an algorithm achieved on the test set, over the 100 runs for

each experimental setup. The error bars give the standard

deviation around this average.

Our algorithm (green) performs at least as well as or strictly

better than all baselines, for any type of corruption and any

proportion of corrupted sources. When all sources provide

clean data, the performance of our method matches the one

of the classic regularized logistic regression approach on

i.i.d. data (blue). As the number of corrupted sources in-

creases, the performance of all baselines gradually degrades,

while our algorithm is able to leverage the remaining clean

data and suppress the effect of the corruptions. The median-

based baselines perform reasonably when less than half of

the sources are corrupted, but fail for larger proportions. The

robust logistic regression baseline performs poorly, again

likely due to the non-convexity of the loss function. As all

sources become unreliable, our method performs as well

as the approach of learning from the reference dataset only,

which is indeed optimal since all other data is corrupted.

We summarize the results from all attributes in Table 2. For

any number of corrupted sources n (columns), we compare

our method to the performance of each baseline (rows). We

report values in the form A/B/C, where A is the number of

times that our method performed significantly better than

the corresponding baseline, B is the number of times it

performed equally well and C is the number of times it

performed significantly worse, summed over the various

types of corruptions and all attributes. For a fixed type of

corruption and attribute, we say that one method performs

significantly better than another over the set of 100 runs

with this setup, if the difference in the average performance

of the two models is larger than the sum of the standard

deviations around those means (that is, if the error bars, as

in Figure 2, do not intersect).

The results in Table 2 show that our method performs signifi-

cantly better than all baselines for many types of corruption

and many values of n, especially for high levels of con-

tamination, while essentially never performing significantly

worse than any baseline. Tables with a more detailed break-

down, depending on the type of corruption, as well as results

for lower levels of contamination per source, are deferred to

the supplementary material.

5. Conclusion

We introduce an algorithm for learning from data provided

by multiple untrusted sources. It incorporates information

from all of them, while being robust to arbitrary corrup-

tions and manipulations of the data. By making use of

the grouped structure of the task and a reference dataset,

the method is able to successfully learn even if more than

half of the available data is corrupted or uninformative. Our

method is theoretically justified and easy to implement, even

in cases when the data is decentralized and/or private. We

demonstrated its effectiveness through two sets of exten-

sive experiments, showing its superior performance to all

baselines, for various levels and types of corruption.

In our experiments we observed that a relatively small clean

dataset was enough to protect the learning from the effects of

corrupted data. Quantifying the trade-off between the size of

the reference dataset and the gains of our algorithm in terms

of achieved test-time performance is thus an interesting and

promising direction for future work.
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