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Abstract

Light field depth estimation is an essential part of many

light field applications. Numerous algorithms have been de-

veloped using various light field characteristics. However,

conventional methods fail when handling noisy scene with

occlusion. To remedy this problem, we present a light field

depth estimation method which is more robust to occlusion

and less sensitive to noise. Novel data costs using angu-

lar entropy metric and adaptive defocus response are intro-

duced. Integration of both data costs improves the occlusion

and noise invariant capability significantly. Cost volume

filtering and graph cut optimization are utilized to improve

the accuracy of the depth map. Experimental results con-

firm that the proposed method is robust and achieves high

quality depth maps in various scenes. The proposed method

outperforms the state-of-the-art light field depth estimation

methods in qualitative and quantitative evaluation.

1. Introduction

4D light field camera has become a potential technol-

ogy in image acquisition due to its rich information cap-

tured at once. It does not capture the accumulated inten-

sity of a pixel but captures the intensity for each light di-

rection. Commercial light field cameras, such as Lytro [16]

and Raytrix [18], trigger the consumer and researcher inter-

ests on light field because of its practicability compared to

the conventional light field camera arrays [26]. A light field

image allows wider application to explore than a conven-

tional 2D image. Various applications have been presented

in the recent literatures, such as refocusing [17], depth es-

timation [4, 15, 11, 19, 20, 22, 23], saliency detection [14],

matting [5], calibration [2, 6, 7], editing [10], etc.

Depth estimation from a light field image has become

a challenging and active problem for the last few years.

Many researchers utilize various characteristics of light

field (e.g. epipolar plane image, angular patch, and focal

stack) to develop the algorithms. However, the state-of-the-

art techniques mostly fail on occlusion because it breaks the

photo consistency assumption. Chen et al. [4] introduced a

(a) (b) (c)

Figure 1: Comparison of disparity maps of various algo-

rithms on a noisy light field image (σ = 10). (First row)

Data cost only. (Second row) Data cost + global optimiza-

tion. (a) Proposed data cost with less fattening effect; (b)

Jeon’s data cost [11]; (c) Chen’s data cost [4].

method that is robust to occlusion but their method is sensi-

tive to noise. Wang et al. [22] proposed an occlusion-aware

depth estimation method but it is limited to a single occluder

and highly depends on the edge detection result. It remains

difficult for a depth estimation method to perform well on

real data because of the occlusion and noise presence. Note

that recent works mostly evaluate the results after the global

optimization method is applied. Thus, the discrimination

power of each data cost is not evaluated deeply since the

final results depend on the individual optimization method.

In this paper, we introduce novel data costs based on our

observation on the light field. Following the idea of [19],

we utilize two different cues: correspondence and defocus

cues. An angular entropy metric is proposed as the corre-

spondence cue, which measures the pixel color randomness

of the angular patch quantitatively. Adaptive defocus re-

sponse is the modified version of the conventional defocus

response [20] that is robust to occlusion. We perform cost

volume filtering and graph cut for optimization. An exten-

sive comparison between the proposed and the conventional

data costs is done to measure the discrimination power of

each data cost. In addition, to evaluate the proposed method
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in a fair manner, we optimize the state-of-the-art data costs

with the identical method. As seen in Figure 1, the pro-

posed method achieves more accurate results in challeng-

ing scenes (with both occlusion and noise). Experimental

results show that the proposed data costs significantly out-

perform the conventional approaches. The contribution of

this paper is summarized as follows.

- Keen observation on the light field angular patch and

the refocus image.

- Novel angular entropy metric and adaptive defocus

response for occlusion and noise invariant light field

depth estimation.

- Intensive evaluation of the existing cost functions for

light field depth estimation.

2. Related Works

Depth estimation using light field images has been inves-

tigated for last a few years. Wanner and Goldluecke [23]

measured the local line orientation in the epipolar plane im-

age (EPI) to estimate the depth. They utilized the structure

tensor to calculate the orientation with its reliability and in-

troduced the variational method to optimize the depth infor-

mation. However, their method was not robust because of

the dependency on the angular line. Tao et al. [19] com-

bined correspondence and defocus cues to obtain accurate

depth. They utilized the variance in the angular patch as

the correspondence data cost and the sharpness value in the

generated refocus image as the defocus data cost. It was ex-

tended by Tao et al. [20] by adding a shading constraint

as the regularization term and by modifying the original

correspondence and defocus measure. Instead of variance

based correspondence data cost, they employed the standard

multi-view stereo data costs (sum of absolute differences).

In addition, the defocus data cost was designed as the av-

erage of intensity difference between patches in the refocus

and center pinhole images. Jeon et al. [11] proposed the

method based on the phase shift theorem to deal with nar-

row baseline multi-view images. They utilized both the sum

of absolute differences and gradient differences as the data

costs. Although those methods could obtain accurate depth

information, they would fail in the presence of occlusion.

Chen et al. [4] adopted the bilateral consistency metric

on the angular patch as the data cost. It was shown that the

data cost was robust to handle occlusion but it is sensitive to

noise. Recently, Wang et al. [22] assumed that the edge ori-

entation in angular and spatial patches were invariant. They

separated the angular patch into two regions based on the

edge orientation and utilized conventional correspondence

and defocus data costs on each region to find the minimum

cost. In addition, occlusion aware regularization term was

introduced in [22]. However, their method is limited to a

single large occluder in an angular patch and the perfor-

mance is affected by how well the angular patch is divided.

Lin et al. [15] analyzed the color symmetry in light field

focal stack. Their work introduced the novel infocus and

consistency measure that were integrated with traditional

depth estimation data costs. However, there was no exten-

sive comparison for each data cost independently without

global optimization.

Several works in multi-view stereo matching have al-

ready addressed the occlusion problem. Kolmogorov and

Zabih [13] utilized the visibility constraint to model the

occlusion which was optimized by graph cut. Instead of

adding new term, Wei and Quan [25] handled the occlu-

sion cost in the smoothness term. Bleyer et al. [1] proposed

a soft segmentation method to apply the occlusion model

in [25]. Those methods observed the visibility of a pixel in

corresponding images to design the occlusion cost. How-

ever, it remains difficult to address the method in a huge

number of views, such as light field. Kang et al. [12] uti-

lized a shiftable windows to refine the data cost in occluded

pixels. The method could be applied for the conventional

defocus cost [20] but it might have ambiguity between oc-

cluder and occluded pixels. Vaish et al. [21] proposed the

binned entropy data cost to reconstruct occluded surface.

They measured the entropy value of a binned 3D color his-

togram that could lead to incorrect depth estimation, espe-

cially in smooth surfaces.

In this paper, we propose a novel depth estimation algo-

rithm that is robust to occlusion by modelling the occlusion

in the data costs directly. None of visibility constraint or

edge orientation is required in the proposed data costs. In

addition, the data costs are less sensitive to noise compared

to the conventional ones.

3. Light Field Depth Estimation for Noisy

Scene with Occlusion

3.1. Light Field Images

We observe new characteristics from light field images
which are useful for designing the data cost. To measure
the data cost for each depth candidate, we need to gener-
ate the angular patch for each pixel and the refocus image.
Thus, each pixel in light field L(x, y, u, v) is remapped to
sheared light field image Lα(x, y, u, v) based on the depth
label candidate α as follows.

Lα(x, y, u, v) = L(x+∇x(u, α), y +∇y(v, α), u, v) (1)

∇x(u, α) = (u− uc)αk ; ∇y(v, α) = (v − vc)αk (2)

where (x, y) and (u, v) are the spatial and angular coordi-

nates, respectively. The center pinhole image position is

denoted as (uc, vc). ∇x and ∇y are the shift value in x

and y direction with the unit disparity label k. The shift

value increases as the distance between light field subaper-

ture image and the center pinhole image increases. We can
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Figure 2: Angular patch analysis. (a) The center pinhole im-

age with a spatial patch; (b) Angular patch and its histogram

(α = 1); (c) Angular patch and its histogram (α = 21); (d)

Angular patch and its histogram (α = 41); (First column)

Non-occluded pixel (Entropy costs are 3.09, 0.99, 3.15, re-

spectively) ; (Second column) Multi-occluded pixel (En-

tropy costs are 3.42, 2.34, 3.05, respectively). Ground truth

α is 21

generate an angular patch for each pixel (x, y) by extracting

the pixels in the angular images from the sheared light field.

Refocus image L̄α is generated by averaging the angular

patch for all pixels.

3.2. Light Field Stereo Matching

The proposed light field depth estimation is modeled on

MAP-MRF framework [3] as follows.

E =
∑

p

Eunary(p, α(p))+

λ
∑

p

∑

q∈N(p)

Ebinary(p, q, α(p), α(q))
(3)

where α(p) and N(p) are the depth label and the neighbor-

hood pixels of pixel p, respectively. Eunary(p, α(p)) is the

data cost that measures how proper the label α of a given

pixel p is. Ebinary(p, q, α(p), α(q)) is the smoothness cost

that forces the consistency between neighborhood pixels. λ

is the weighting factor.

We propose two novel data costs for correspondence and

defocus cues. For the correspondence response C(p, α(p)),
we measure the pixel color randomness in the angular patch

by calculating the angular entropy metric. Then, we calcu-

late the adaptive defocus response D(p, α(p)) to obtain ro-

bust performance in the presence of occlusion. Each data

cost is normalized and integrated to become a final data

cost. The final data and smoothness costs are defined as

follows.

Eunary(p, α(p)) = C(p, α(p)) +D(p, α(p)) (4)

Ebinary(p, q, α(p), α(q)) =

∇I(p, q)min(|α(p) − α(q)|, τ)
(5)

where ∇I(p, q) is the intensity difference between pixel p

and q. τ is the threshold value. Every slice in the final data

cost volume is filtered with edge-preserving filter [8, 9].

Then, we perform graph cut to optimize the energy func-

tion [3]. The detail of each data cost is described in the

following subsections.

3.3. Angular Entropy

Conventional correspondence data costs are designed to

measure the similarity between pixels in the angular patch,

but without considering the occlusion. When an occluder

affects the angular patch, the photo consistency assumption

is not satisfied for the pixels in the angular patch. However,

a majority of pixels are still photo consistent. Therefore, we

design a novel occlusion-aware correspondence data cost to

capture this property by utilizing the intensity probability of

the dominant pixels.

The first column in Figure 2 shows the angular patch of

a pixel and its intensity histograms for several depth candi-

dates. Without occlusion, the angular patch with the correct

depth value (α = 21) has uniform color and the intensity

histogram has sharper and higher peaks as shown in Fig-

ure 2(b). Based on the observation, we measure the entropy

in the angular patch, which is called angular entropy metric,

to evaluate the randomness of photo consistency. Since light

field has much more views than the conventional multi-view

stereo setup, the angular patch has enough pixels to com-

pute the entropy reliably. The angular entropy metric H is

formulated as follows.

H(p, α) = −
∑

i

h(i) log(h(i)) (6)

where h(i) is the probability of intensity i in the angular

patch A(p, α). In our approach, the entropy metric is com-

puted for each color channel independently. To integrate the

costs from three channels, we cooperate two methods, max

pooling Cmax and averaging Cavg , which are formulated as

follows.

Cmax(p, α) = max(HR(p, α), HG(p, α), HB(p, α)) (7)
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Figure 3: Data cost curve comparison. (a) Non-occluded

pixel in the first column of Figure 2; (b) Occluded pixel in

the second column of Figure 2.

Cavg(p, α) =
HR(p, α) +HG(p, α) +HB(p, α)

3
(8)

where {R,G,B} denotes the color channels. The max

pooling Cmax achieves better result when there is an object

with a dominant color channel (e.g. red object has high in-

tensity in the red channel and approximately zero intensity

in the green and blue channels). Otherwise, the averaging

Cavg performs better. To deal with various imaging condi-

tions, the final data cost C(p, α) is designed as follows.

C(p, α) = βCmax(p, α) + (1− β)Cavg(p, α) (9)

where β ∈ [0 ∼ 1] is the weight parameter. Figure 3 (a)

shows the comparison of the data cost curves for the angular

patch in the first column of Figure 2.

The angular entropy metric is also robust to the occlusion

because it relies on the intensity probability of the domi-

nant pixels. As long as the non-occluded pixels prevail in

the angular patch, the metric gives low response. The sec-

ond column in Figure 2 shows the angular patches when

the occluders exist. Note that the proposed data cost yields

the minimum response although there are multi-occluders

in the angular patch.

Figure 3 (b) shows the comparison of the data cost curves

of the proposed angular entropy metric and the state-of-the-

art correspondence data costs. It is shown that the proposed

data cost achieves the minimum cost together with Chen’s

bilateral data cost [4]. However, Chen’s data cost is highly

sensitive to noise. We compare both data costs on noisy

data, which is shown in Figure 4 that Chen’s data cost does

not produce any meaningful disparity. On the contrary, the

angular metric produces fairly promising disparity map on

the noisy occluded regions.

3.4. Adaptive Defocus Response

Conventional defocus responses for the light field depth

estimation are robust to noisy scene but fail on the occluded

region [19, 20]. To solve the problem, we propose the adap-

tive defocus response that is robust to not only noise but

(a) (b)

Figure 4: Disparity maps of noisy light field image gener-

ated from the local data cost (σ = 10). (a) Proposed angular

entropy metric; (b) Chen et al. [4].

also occlusion. We observe that the blurry artifact from the

occluder in the refocus image causes the ambiguity in the

conventional data costs. Figure 5 (a) and (c)∼(f) show the

spatial patches in the center pinhole image and refocus im-

ages, respectively. Conventional defocus data costs fail to

produce optimal response on the patches. We compute the

difference maps between the patches in the center image

and refocus images to show clearer observation, as exem-

plified in Figure 5 (g)∼(j). It is shown that the large patch

in non-ground truth label (α = 35) obtains smaller differ-

ence than the ground truth (α = 21).

Based on the difference map observation, the idea of the

adaptive defocus response is developed to find the minimum

response among the neighborhood regions. Instead of mea-

suring the response in the whole region (15 × 15) which

is affected by the blurry artifact, we look for a subregion

without blur, i.e. a subregion which is not affected by the

occluder. To find the clear subregion, the original patch

(15 × 15) is divided into 9 subpatches (5 × 5). Then, we

measure the defocus response Dc(p, α) of each subpatch

Nc(p) independently as follows.

Dc(p, α) =
1

|Nc(p)|

∑

q∈Nc(p)

|L̄α(q)− P (q)| (10)

where c is the index of subpatch and P is the center pin-

hole image. The adaptive defocus response is computed

as the minimum patch response at the subpatch c⋆ (i.e.

c⋆ = minc Dc(p, α)).
However, the initial cost still leads to the ambiguity

between occluder and occluded regions as shown in Fig-

ure 5 (b). To discriminate the data cost between two cases,

we introduce the additional color similarity constraint Dcol.

The constraint is the difference between the mean color of

the minimum subpatch and the center pixel color, which is

formulated as follows.

Dcol(p, α) = |{
1

|Nc⋆(p)|

∑

q∈N
c
⋆ (p)

L̄α(q)} − P (p)| (11)
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Figure 5: Defocus cost analysis. (a) The center pin-

hole image with a spatial patch; (b) Data cost curve com-

parison; (c)∼(f) Spatial patch from refocus image (α =
1, 21, 35, 41); (g)∼(j) Different map of patches in (c)∼(f)

We multiply the different map by 10 for better visualiza-

tion. Red box shows the minimum small patch. Ground

truth α is 21.

Now, the final adaptive defocus response is formed as fol-

lows.

D(p, α) = Dc⋆(p, α) + γ Dcol(p, α) (12)

where γ (= 0.1) is the influence parameter of the constraint.

Figure 5 (b) shows the comparison of the data cost curves of

the proposed adaptive defocus response and Tao’s defocus

data cost [20]. It is shown that the proposed method finds

the correct disparity in the occluded region.

3.5. Data Cost Integration

Both data costs are combined together to accommodate

individual strength. Figure 6 shows the effect of data cost

integration for clean and noisy images. Note that the an-

gular entropy metric is robust to occlusion region and less

sensitive to noise, while the adaptive defocus response is ro-

bust to noise and less sensitive to occlusion. Therefore, the

combination of both data costs yields an improved data cost

that is robust to both occlusion and noise. The integration

leads to smaller error as evaluated in the following section.

(a) (b)

Figure 6: Data cost integration analysis. (a) Clean im-

ages; (b) Noisy images (σ = 10); (First row) Disparity

maps from angular entropy metric; (Second row) Disparity

maps from adaptive defocus response; (Third row) Dispar-

ity maps from integrated data cost.

4. Experimental Results

The proposed algorithm is implemented on an Intel i7

4770 @ 3.4 GHz with 12GB RAM. We compare the per-

formance of the proposed data costs with the recent light

field depth estimation data costs. To this end, we use the

code shared by the authors (Jeon et al. [11], Tao et al. [19],

and Wang et al. [22]) and implement the other methods that

are not available. For fair comparison, we first compare the

depth estimation result without global optimization to iden-

tify the discriminate power of each data cost. Then, globally

optimized depth is compared for a variety of challenging

scenes.

4D light field benchmark is used for the synthetic

dataset [24]. The real light field images are captured us-

ing the original Lytro and Lytro Illum [16]. To extract the

4D real light field image, we utilize the toolbox provided

by Dansereau et al. [7]. We set the parameters as follows:

λ = 0.5, β = 0.5, and τ = 10. For the cost slice filtering,

the parameter setting is r = 5 and ϵ = 0.0001. The depth

search range is 75 for all dataset.

Table 1 shows the comparison of the computational time

for the data cost volume generation. We measure the run-

time for each method with different image size. The pro-

posed method has comparably fast computation. Note that

our work is occlusion and noise aware depth estimation
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Figure 7: Comparison of the disparity maps generated from the local data cost; (a) Center pinhole image; (b) Ground truth;

(c) Proposed angular entropy cost; (d) Proposed adaptive defocus cost; (e) Chen’s bilateral cost [4]; (f) Tao’s correspon-

dence cost [19]; (g) Tao’s defocus cost [19]; (h) Tao’s correspondence cost [20]; (i) Tao’s defocus cost [20]; (j) Jeon’s data

cost [11]; (k) Kang’s shiftable window [12]; (l) Vaish’s binned entropy cost [21]; (m) Lin’s defocus cost [15]; (n) Wang’s

correspondence cost [22]; (o) Wang’s defocus cost [22].

Table 1: Computational time for the cost volume generation

(in seconds).

Data Type
Synthetic Data Original Lytro Lytro Illum

(9× 9× 768× 768) (9× 9× 379× 379) (11× 11× 625× 434)

Chen et al. [4] 892 260 612

Jeon et al. [11] 2,590 689 1,406

Kang et al. [12] 102 31 89

Lin et al. [15] 167 40 93

Tao et al. [19] 878 110 246

Tao et al. [20] 252 68 149

Vaish et al. [21] 598 173 386

Wang et al. [22] 256 76 183

Proposed method 528 115 207

while others are general or only occlusion aware. Further-

more, the proposed method, Tao et al. [19], Tao et al. [20],

and Wang et al. [22] have two data costs in each method.

4.1. Synthetic Clean and Noisy Data

Figure 7 shows the non-optimized depth comparison for

the synthetic dataset from Wanner et al. [24]. Since the pro-

posed data costs consider the occlusion, it is shown that they

outperform the conventional data costs, yielding less fatten-

ing effect in the occluded region (i.e. leaves or branches).

Similar to the proposed method, Wang et al. [22] also model

the occlusion in their data cost, but their method highly de-

Table 2: The mean squared error of various dataset.

Data Type Buddha Noisy Buddha StillLife Noisy StillLife

Chen’s bilateral cost [4] 0.0129 1.0654 0.3918 4.9483

Jeon’s data cost [11] 0.0730 0.2575 0.0759 0.2264

Kang’s shiftable window [12] 0.0139 0.1944 0.0787 0.1818

Lin’s defocus cost [15] 0.2750 0.3374 2.4554 2.4624

Tao’s correspondence cost [19] 0.1198 0.1657 0.2314 0.2490

Tao’s defocus cost [19] 0.2267 0.2220 0.5728 0.5394

Tao’s correspondence cost [20] 0.0186 0.2908 0.0473 0.2422

Tao’s defocus cost [20] 0.0189 0.0713 0.0538 0.0711

Vaish’s binned entropy cost [21] 0.1646 0.1500 0.0377 0.0980

Wang’s correspondence cost [22] 0.0304 0.8980 0.0624 5.3913

Wang’s defocus cost [22] 0.2085 0.7173 0.9148 2.3622

Proposed correspondence cost 0.0058 0.1174 0.0176 0.0608

Proposed defocus cost 0.0266 0.2500 0.0634 0.1961

Proposed integrated cost 0.0047 0.0989 0.0206 0.0532

Chen’s cost + optimization [4] 0.0041 0.1646 0.0126 0.1386

Jeon’s cost + optimization [11] 0.0149 0.0250 0.0283 0.0432

Tao’s cost + optimization [19] 0.0270 0.0300 0.0572 0.0593

Tao’s cost + optimization [20] 0.0154 0.0282 0.0491 0.0587

Proposed cost + optimization 0.0036 0.0170 0.0142 0.0251

pends on the edge detection result.

Furthermore, we also evaluate the optimized results of

the selected methods ([4],[11],[19],[20]) using clean and

noisy light field data, as shown in Figure 8. The noisy

image is generated by adding additive Gaussian noise with

standard deviation σ = 10. For fair comparison, we per-
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(a) (b) (c) (d) (e)

Figure 8: Comparison of the optimized disparity maps (synthetic data); (a) Proposed method; (b) Tao’s method [19]; (c)

Chen’s method [4]; (d) Tao’s method [20]; (e) Jeon’s method [11]; (First row) Clear light field image; (Second row) Noisy

light field image (σ = 10).

Table 3: The mean squared error of results from Mona

dataset with different noise levels.

Data Type σ = 0 σ = 5 σ = 10 σ = 15

Chen’s bilateral cost [4] 0.0233 0.6834 0.8754 0.9373

Jeon’s data cost [11] 0.0801 0.1588 0.2665 0.3791

Kang’s shiftable window cost [12] 0.0259 0.0799 0.1772 0.2610

Lin’s defocus cost [15] 0.0626 0.0851 0.1162 0.1453

Tao’s correspondence cost [19] 0.0601 0.0772 0.1191 0.1755

Tao’s defocus cost [19] 0.1350 0.1246 0.1252 0.1395

Tao’s correspondence cost [20] 0.0183 0.1300 0.2752 0.4025

Tao’s defocus cost [20] 0.0244 0.0409 0.0806 0.0350

Vaish’s binned entropy cost [21] 0.0928 0.1170 0.1480 0.2115

Wang’s correspondence cost [22] 0.0207 0.3072 0.5914 0.8130

Wang’s defocus cost [22] 0.1301 0.4357 0.5809 0.6809

Proposed correspondence cost 0.0118 0.0381 0.1152 0.2043

Proposed defocus cost 0.0217 0.0954 0.1962 0.2788

Proposed integrated cost 0.0081 0.0337 0.1011 0.1792

Chen’s cost + optimization [4] 0.0052 0.0308 0.1466 0.8547

Jeon’s cost + optimization [11] 0.0122 0.0179 0.0224 0.0274

Tao’s cost + optimization [19] 0.0238 0.0251 0.0227 0.0226

Tao’s cost + optimization [20] 0.0203 0.0245 0.0301 0.0350

Proposed cost + optimization 0.0045 0.0072 0.0125 0.0185

form the same optimization technique for all methods. As

the initial data costs fail to produce the minimum cost on

the occluded region, the conventional methods produce the

artifacts around the object boundary even after global opti-

mization. Chen et al. [4] achieves comparable performance

on the clean data. However, it produces significant error

on the noisy data. It is shown that the proposed method

achieves stable performance in both environments.

Next, mean squared error is measured to evaluate the

computed depth accuracy. Table 2 and Table 3 show the

comparison of the mean squared error for various data with

multiple noise levels. On the clean data, the proposed

method and Chen’s method [4] achieve comparable perfor-

mance. However, Chen’s method fails on the noisy data

(a) (b)

(c) (d)

(e) (f)

Figure 9: Comparison of the optimized disparity maps

(real data); (a) Center pinhole image; (b) Proposed method;

(c) Tao’s method [19]; (d) Chen’s method [4]; (e) Tao’s

method [20]; (f) Jeon’s method [11].

while the proposed method obtains the minimum error for

most cases. The proposed method obtains the best perfor-

mance among all the conventional data costs.

4.2. Noisy Real Data

Light field image captured by commercial light field

camera contains noise due to its small sensor size. We

evaluate the proposed method with several scenes captured

inside a room with limited lighting, which degrades the

signal-to-noise ratio. The typical light level in the room
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(a) (b) (c) (d) (e) (f)

Figure 10: Additional comparison of the optimized disparity maps (real data);(a) Center pinhole image; (b) Proposed method;

(c) Tao’s method [19]; (d) Chen’s method [4]; (e) Tao’s method [20]; (f) Jeon’s method [11]. The first and second rows are

captured by Lytro Illum camera while the others are captured by original Lytro camera.

(≈ 400 lux) is much lower than the light level of outdoor

under daylight (≈ 10000 lux). Figure 9 and Figure 10 show

the disparity maps generated from the real light field im-

ages. Conventional approaches [4, 11, 19, 20] exhibit blurry

or fattening effect around the object boundaries, as shown

in Figure 9. On the other hand, the proposed method shows

sharp and unfattened boundary. Note that only the proposed

method can estimate the correct shape of the house entrance

and the spokes of the wheel as shown in Figure 10.

4.3. Limitation and Future Work

The angular entropy metric becomes less reliable when

the noise/occluder is more dominant than the clean/non-

occluded pixels in the angular patch. Thus, it performs bet-

ter when there are lots of subaperture images. As an ex-

ample, it performs better on the Lytro Illum images than

the images captured by original Lytro camera, as shown in

Figure 10. This problem might be addressed by using spa-

tial neighborhood information to increase the probability

of the dominant pixels or capturing more angular images.

In addition, it is also useful to find the reliability measure

for the entropy data cost. To extend the current work, we

also plan to perform exhaustive comparison and informa-

tive benchmarking on the state-of-the-art data costs for light

field depth estimation.

5. Conclusion

In this paper, we proposed an occlusion and noise aware

light field depth estimation framework. Two novel data

costs were proposed to obtain robust performance in the oc-

cluded region. Angular entropy metric was introduced to

measure the pixel color randomness in the angular patch. In

addition, adaptive defocus response was determined to gain

robust performance against occlusion. Both data costs were

integrated in the MRF framework and further optimized us-

ing graph cut. Experimental results showed that the pro-

posed method significantly outperformed the conventional

approaches in both occluded and noisy scenes.
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