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SUMMARY

Fixed order anti-windup augmentation is addressed by considering the dynamics of the mismatch between
the constrained and unconstrained responses. The method utilizes LMIs, and the result parallels other
recent LMI-based anti-windup synthesis methods. Robustness is directly addressed}which is not done in
previous LMI work on anti-windup. An optimal LMI-based synthesis procedure is provided for static and
plant-order linear anti-windup augmentation and the performance of the resulting design strategy is shown
via a simulation example. Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Linear control synthesis and analysis tools have been long used for industrial applications and
are very consolidated nowadays. Nevertheless, already in the 1950s, input saturation constituted
one of the main obstacles to the applicability of linear designs [1], especially in high precision,
high performance environments, where typically, high gains are involved in the linear designs.
During the 1960s and in later years, a new control engineering problem, called ‘windup’, was
identified and defined, arising from practical industrial needs, where linear designs would
perform desirably during normal operation, but occasional situations would lead the actuators
into saturation, thus ‘winding up’ the linear controller and causing performance and, possibly,
stability loss. According to this nomenclature, the goal of ‘anti-windup’ designs was formulated

Published online 27 May 2004
Copyright # 2004 John Wiley & Sons, Ltd.

yE-mail: grimm@raytheon.com

nCorrespondence to: Gene Grimm, Raytheon Company, Space and Airborne Systems, 2000 E. El Segundo Blvd.,
El Segundo, CA 90245, U.S.A.

zE-mail: teel@ece.ucsb.edu
}E-mail: zack@disp.uniroma2.it
}Center for Control Engineering and Computation, University of California at Santa Barbara

Contract/grant sponsor: NSF; contract/grant number: ECS-9988813 and ECS-0324679
Contract/grant sponsor: AFOSR; contract/grant number: F49620-00-1-0106 and F49620-03-l-0203



as the objective of preserving locally a prescribed linear behavior (at least, as long as saturation
is not activated) and of reducing as much as possible the performance loss after saturation
occurrence (see, e.g. Reference [2]).

Since those early years, many interesting results were accomplished in this research field.
Early anti-windup schemes (see References [3–5] for interesting surveys) were very effective at
solving certain instances of the anti-windup problem but, as pointed out in Reference [6], still
unsuitable for generalization to a wide class of systems. During the 1990s, anti-windup research
became a fully theoretical research field and many interesting solutions to the problem have
been formally proven to induce desirable stability properties, in addition to some performance
guarantees (see, e.g. References [7–16]). Within these modern approaches, an important
paradigm is that of the so-called ‘linear anti-windup design’ where, as in Figure 1, a windup
prone linear closed-loop system is augmented with a linear filter, called an anti-windup
compensator, which (in the most general setting) has full authority toward injecting
modifications on the controller state and output equations. An important result within the
linear anti-windup field was stated in Reference [11], where a convex LMI-based formulation
that optimizes the global (finite) L2 gain from w to z in Figure 1 provides a useful synthesis tool
when the anti-windup compensator is chosen among all possible linear gains (namely, the anti-
windup compensator is chosen as a static linear system). (See also Reference [14] where the same
approach is used with relaxed sector bounds on the saturation nonlinearity.) The main
limitation of this synthesis technique is that the LMI constraints are not always feasible, thus
leaving the linear anti-windup design problem not completely solved. Later, in Reference [13],
the set of all linear (possibly dynamic) selections of the anti-windup compensator was
characterized by matrix inequalities that, in some notable cases, allowed convex minimization of
the same global L2 gain. Moreover, in Reference [13], a nice system theoretic interpretation of
the cases where static linear anti-windup design is feasible is given and it is proven that dynamic
linear compensation of order equal to that of the plant is sufficient to induce the best possible
performance level and is always feasible if the plant is Hurwitz (this condition is also necessary
to achieve global finite L2 gain with bounded inputs). LMIs were also employed in References
[15, 16] to solve the local anti-windup problem maximizing the operating region in the case
where the plant is non-exponentially stable.

In this paper, following the ideas in Reference [17], we revisit the linear anti-windup paradigm
of References [11, 13] by recovering the original goal of anti-windup designs (which consists in
recovering as fast as possible the unconstrained response) and characterizing the performance of
the anti-windup augmentation by the L2 norm of the deviation between the actual response of
the augmented closed-loop system and the ideal response of the asymptotically stable
unconstrained system. In particular, this L2 norm is related to the energy of the unconstrained

Figure 1. The linear anti-windup design paradigm.
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(linear) plant input outside the saturation limits, so that unconstrained trajectories that are not
reproducible at the steady-state by the saturated system are implicitly ruled out from our
optimization problem. To account for modelling uncertainties, we also introduce robustness in
our synthesis scheme. As expected, the feasibility conditions coincide with those of Reference
[13], because they are not dependent on the performance characterization. Since we will require
global quadratic stability, necessarily the plant must be asymptotically stable. Moreover,
plant-order augmentation is shown to induce globally optimal performance level coinciding
with the L2 gain from u to z of the open-loop plant (see Figure 1). Additional interesting
properties, also related to the robustness of the anti-windup augmentation, are listed in
Theorem 3 in Section 4.

The paper is organized as follows: In Section 2, we give some preliminaries. In Section 3, we
define the anti-windup construction problem and formalize the properties that the augmented
closed-loop system needs to accomplish. In Section 4, we formulate the anti-windup synthesis
via matrix inequalities and prove important properties of this formulation. Then, we provide
constructive LMI techniques for optimal construction in the static and plant-order case. In
Section 5, we provide LMIs for determining the performance level induced by an existing anti-
windup compensator. In Section 6, we compare our method to existing ones, also via a
simulation example.

2. PRELIMINARIES

To assist in the system theoretic interpretation of the matrix inequalities in this paper, recall the
well-known LMI formulation of the bounded real lemma for continuous time systems (for a
complete proof see, e.g. Reference [18, p. 82]).

Lemma 1 (Bounded real lemma)
The following statements are equivalent:

(1) jjDþ CðsI � AÞ�1Bjj15g and A is Hurwitz;
(2) there exists a symmetric positive definite solution X ¼ XT > 0 to the LMI:

XAT þ AX B XCT

$ �gI DT

$ $ �gI

2
664

3
77550

(where the symbol ‘$’ represents the appropriate entry resulting in an overall symmetric
matrix).

Definition 1
Let u 2 Rnu ; U � Rnu ; M1; M2 2 Rnu�r; and a W 2 Rnu�nu : Define smaxðWÞ and sminðWÞ to be the
maximum and minimum singular value of W ; respectively. Suppose W is a symmetric positive
definite matrix. Define the W-product of M1 and M2 as

hM1;M2iW :¼ MT
1 WM2
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Define the W-norm as jujW :¼ hu; ui1=2w : We will use juj :¼ jujI : Define

distðu;UÞ :¼ inf
wU 2U

ju� wUjI

A function f : Rnu ! Rnu is said to belong to the sector ½0; I �W if hf ðwÞ;w� f ðwÞiW50 for all
w 2 Rnu : A function f : Rnu ! Rnu is said1 to belong to the incremental sector ½0; I �W if f is locally
Lipschitz and hJf ðyÞ; I � Jf ðyÞiW50 for almost all y 2 Rnu ; where Jf ðyÞ denotes the Jacobian of
f evaluated at y:

Definition 2
A function f : Rnu ! Rnu is said to belong to FW ðf 2 FW Þ if the function f is locally Lipschitz,
belongs to the incremental sector ½0; I �W ; and fð0Þ ¼ 0: Furthermore, f 2 FW is said to be
bounded if there exists b 2 R such that jfðsÞjW4b for all s 2 Rnu :

Remark 1
If f 2 FW then fð�Þ belongs to the sector ½0; I �W : Furthermore, when W ¼ I the sector ½0; I �W
property coincides with the definition in Reference [21, p. 403].

LetM be such thatMTM ¼ W : The matrixM can be seen as a transformation that makes the
function fð�Þ belong the FI : In particular, fð�Þ belongs to FW if and only if the function
s/MfðM�1sÞ belongs to FI :

Definition 3
The function f is said to be a standard decentralized saturation function if

satðuÞ :¼ ½sat1ðu1Þsat2ðu2Þ � � � satnuðunu Þ�
T where satiðuiÞ :¼

ui

maxf1; juij=Mig

Mi 2 R; Mi > 0 for i ¼ 1; . . . ; nu:
Any standard decentralized saturation function belongs to FW if W is diagonal positive

definite. Furthermore, if fð�Þ is a standard decentralized saturation function then ju� fðuÞjI ¼
distðu;UÞ:

Lemma 2
Let f 2 FW and U � fu 2 Rnu : fðuÞ ¼ ug be compact. Then ju� fðuÞjI4smaxðWÞ=smin

ðWÞ distðu;UÞ:

Proof
Since U is compact there is some element u1 2 U such that distðu;UÞ ¼ distðu; fu1gÞ: Define the
function f ðu2Þ :¼ fðu2 þ u1Þ � fðu1Þ: Then f 2 FW because f ð0Þ ¼ 0 and

hJf ðyÞ; I � Jf ðyÞiW ¼ hJfðyþ u1Þ; I � Jfðyþ u1ÞiW50

for all y; u1: Define u2 :¼ u� u1: Then u1 2 U implies ju� fðuÞjW ¼ ju2 þ u1 � fðu1Þ � f
ðu2ÞjW ¼ ju2 � f ðu2ÞjW since u1 � frðu1Þ ¼ 0: Since f belongs to the sector ½0; I �W then

04hf ðu2Þ; u2 � f ðu2ÞiW ¼ hu2 � f ðu2Þ; u2 � ðu2 � f ðu2ÞÞiW

1See also References [19, 20] for an analogous characterization of incremental sector bound.
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which implies ju2 � f ðu2Þj2W ¼ hu2 � f ðu2Þ; u2 � f ðu2ÞiW4hu2 � f ðu2Þ; u2iW4ju2 � f ðu2ÞjW ju2jW :
Hence, sminðWÞju� fðuÞj4ju� fðuÞjW ¼ ju2� f ðu2ÞjW4ju2jW4smaxðWÞju2j ¼ smaxðWÞdistðu;UÞ:

&

Definition 4
Let Cp;m and Dp;mu be given. The dynamic system y is said to have finite incremental gain g (from
m :¼ Cp;mxþDp;muu to y) if

jjyðs0; x1; u1;wÞ � yðs0; x2; u2;wÞjj24g
Cp;mðx1 � x2Þ

Dp;muðu1 � u2Þ

" #�����
�����

�����
�����
2

ð1Þ

for all s0 and signals x1; x2; u1; u2 and w:

3. PROBLEM DEFINITION

3.1. The desirable unconstrained closed-loop behaviour

In this section, we will characterize the desirable behaviour of the closed-loop system when the
control input is unconstrained. The performance of the system with control input constraints
and anti-windup compensation will be measured in terms of the deviation from the
unconstrained trajectory generated by this unconstrained closed-loop system. Consider an
unconstrained plant, with dynamic nonlinear perturbation y included to investigate robustness
properties, described by

P

’%xx%xxp ¼ Ap %xxp þ Bp;u %uuþ Bp;wwþ Bp;yyðs0; %xxp; %uu;wÞ

%yy ¼ Cp;y %xxp þDp;yu %uuþDp;ywwþDp;yyyðs0; %xxp; %uu;wÞ

%zz ¼ Cp;z %xxp þDp;zu %uuþDp;zwwþDp;zyyðs0; %xxp; %uu;wÞ

%mm ¼ Cp;m %xxp þDp;mu %uu

8>>>>><
>>>>>:

ð2Þ

where the dynamical system y is finite dimensional, forward complete, stable, its output
belongs to Rny and it has continuous right-hand side and initial state s0: The variable %xxp 2 Rnp

is the unconstrained plant state, %uu 2 Rnu is the control input, w 2 Rnw is the exogenous input
(possibly containing disturbances, references and measurement noise), %yy 2 Rny is the plant output
available for measurement, %zz 2 Rnz is the performance output, %mm 2 Rnm and Ap; Bp;u; Bp;w; Bp;y;
Cp;y; Dp;yu; Dp;yw; Dp;yy; Cp;z; Dp;zu; Dp;zw; Dp;zy; Cp;m and Dp;mu are matrices of suitable dimensions.

Assume that an unconstrained controller has been designed:

C
’%xx%xxc ¼ Ac %xxc þ Bc;y %yyþ Bc;ww

%uu ¼ Cc %xxc þDc;y %yyþDc;ww

(
ð3Þ

(where %xxc 2 Rnc is the unconstrained controller state and Ac; Bc;y; Bc;w; Cc; Dc;y and Dc;w

are matrices of suitable dimensions) in such a way that its interconnection to the uncons-
trained plant with dynamic perturbation is well-posed and guarantees internal stability of the
resulting unconstrained closed-loop system. This unconstrained closed-loop system is depicted on
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the left-hand side of Figure 22 and can be concisely written with state %xx 2 Rnx ; nx :¼ np þ nc; %xx :
¼ ½ %xxTp %xxTc �

T as

%’xx’xx ¼ACL
%xxþ BCL;wwþ BCL;yyðs0; ½I 0�%xx; %uu;wÞ

%uu ¼CCL;u
%xxþDCL;uwwþDCL;uyyðs0; ½I 0�%xx; %uu;wÞ

%zz ¼CCL;z
%xxþDCL;zwwþDCL;zyyðs0; ½I 0�%xx; %uu;wÞ

%mm ¼CCL;u
%xxþDCL;mwwþDCL;myyðs0; ½I 0�%xx; %uu;wÞ

ð4Þ

where ACL; BCL;w; BCL;y; CCL;u; DCL;uw; DCL;uy; CCL;z; DCL;zw; DCL;zy; CCL;m; DCL;mw; and DCL;my

are matrices of suitable dimensions. For explicit expressions, see Appendix A; in particular, see
(A3).

3.2. Input saturation and anti-windup augmentation

Paralleling Reference [l3], instead of considering a particular plant input nonlinearity, we
consider a class of input nonlinearities FW (see Definition 2) in order to state necessary and
sufficient conditions for stability and performance.

Suppose the plant actually has a nonlinearity f 2 FW at the control input; in particular
suppose the saturated plant is given by

’xxp ¼Apxp þ Bp;ufðuÞ þ Bp;wwþ Bp;yyðs0;xp;fðuÞ;wÞ

y ¼Cp;yxp þDp;yufðuÞ þDp;ywwþDp;yyyðs0;xp;fðuÞ;wÞ

z ¼Cp;zxp þDp;zufðuÞ þDp;zwwþDp;zyyðs0; xp;fðuÞ;wÞ

m ¼Cp;mxp þDp;mufðuÞ

ð5Þ

In general, fðuÞ=u and the unconstrained controller no longer selects the control input for
which it was designed. Thus we suppose that the unconstrained controller is allowed to be
modified to cope with the input nonlinearity of the plant. In particular, we introduce a modified
controller

CM

’xxc ¼ Acxc þ Bc;yyþ Bc;wwþ v1

u ¼ Ccxc þDc;yyþDc;wwþ v2

(
ð6Þ

where the signal vT ¼ ½vT1 vT2 � is allowed to modify the controller state and output equations. By
introducing the function c : Rnu ! Rnu ; defined as

cðsÞ :¼ s� fðsÞ; 8s 2 Rnu ð7Þ

2 In Figure 2, the line pointing from the unconstrained plant to the dynamical system y is dashed to emphasize the
following: The output %mm is not the input to y; but the finite incremental gain assumed on the system y can be used to
relate incremental changes in %mm to incremental changes in y: (When introduced in the following section, the dashed line
associated with the output m is understood in the same fashion.)
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and the state x :¼ ½xTp xTc � 2 Rnx ; we can concisely write the interconnection of (5), (6) using (7) as

’xx ¼ACLxþ BCL;wwþ BCL;ccðuÞ þ BCL;vvþ BCL;yyðs0; ½I 0�x;fðuÞ;wÞ

u ¼CCL;uxþDCL;uwwþDCL;uccðuÞ þDCL;uvvþDCL;uyyðs0; ½I 0�x;fðuÞ;wÞ

z ¼CCL;zxþDCL;zwwþDCL;zccðuÞ þDCL;zvvþDCL;zyyðs0; ½I 0�x;fðuÞ;wÞ

m ¼CCL;mxþDCL;mwwþDCL;mccðuÞ þDCL;mvvþDCL;myyðs0; ½I 0�x;fðuÞ;wÞ

ð8Þ

where ACL; BCL;w; BCL;c; BCL;v; BCL;y; CCL;u; DCL;uw; DCL;uc; DCL;uv; DCL;uy; CCL;z; DCL;zw; DCL;zc;
DCL;zv; DCL;zy; CCL;m; DCL;mw; DCL;mc; DCL;mv and DCL;my are matrices of suitable dimensions.
Note, many of these matrices appeared in (4). For explicit expressions, see Appendix A; in
particular, see (A3).

Given an integer naw50; in this paper we address the problem of designing an order naw linear
anti-windup compensator

AW

’xxaw ¼ Aawxaw þ BawcðuÞ ¼ Aawxaw þ Bawðu� fðuÞÞ

v ¼
v1

v2

" #
¼ Cawxaw þDawcðuÞ ¼ Cawxaw þDawðu� fðuÞÞ

8>><
>>: ð9Þ

where xaw 2 Rnaw is the anti-windup state, v 2 Rnv (with nv :¼ nc þ nuÞ is the anti-windup output,
and the matrices Aaw; Baw; Caw and Daw are of suitable dimensions. The interconnection of (5),
(6), (9) will be called the anti-windup closed-loop system and is depicted on the right-hand side of
Figure 2.3 Occasionally, we will also consider the realization the anti-windup closed-loop system
described by interconnection (8), (9).

3.3. Optimizing the unconstrained response recovery

The scope of this section is to formalize the requirement that the output response z of the anti-
windup closed-loop system (5), (6), (9) (equivalently (8), (9)) be as close as possible to the
response %zz of the unconstrained closed-loop system (2), (3) (equivalently (4)). (Note that the
deviation between the two outputs is characterized in Figure 2 and therein denoted by *zz). To this
aim, we recall the L2 anti-windup problem definition given in Reference [17]:4

Figure 2. The unconstrained and anti-windup closed-loop systems.

3Recall the meaning of the dotted lines in Figure 2, which was previously discussed in Footnote 2:
4The anti-windup problem defined in Reference [17] also allowed for nonlinear anti-windup compensation schemes and
nonlinear L2 gain.
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Definition 5
Given a bounded function f 2 FW and a compact set U � fu 2 Rnu : fðuÞ ¼ ug; an anti-windup
compensator is said to solve the robust global L2 anti-windup problem for U if the
interconnection of (5), (6), (9) compared to the interconnection of (2), (3) is such that if y has
sufficiently small finite incremental gain, then

1. assuming the initial conditions xawð0Þ ¼ 0; xpð0Þ ¼ %xxpð0Þ; and xcð0Þ ¼ %xxcð0Þ; if %uuð�Þ � fð %uuð�ÞÞ
then zð�Þ � %zzð�Þ;

2. if distð %uuð�Þ;UÞ 2 L2 then ðz� %zzÞð�Þ 2 L2:
The anti-windup compensator is said to solve the problem with performance recovery level
g if the inter-connection is such that if y has sufficiently small finite incremental gain, then
items 1 and 2 are satisfied and

3. with initial conditions xawð0Þ ¼ 0; xpð0Þ ¼ %xxpð0Þ; and xcð0Þ ¼ %xxcð0Þ; then

jjðz� %zzÞð�Þjj24gjjdistð %uuð�Þ;UÞjj2

Furthermore, the anti-windup compensator is said to solve the problem with performance
recovery level g and guaranteed robustness level g if the compensator solves the robust global L2

anti-windup problem for U with performance recovery level g for all y with finite incremental
gain smaller than g:

If an anti-windup compensator solves the robust global L2 anti-windup problem for U; then
implicitly the anti-windup compensator is such that the anti-windup closed-loop system is well-
posed (since all signals within the anti-windup closed-loop must be well-defined). With the aim
to guarantee the properties in Definition 5, a key representation of the unconstrained closed-
loop system with state variable ð %xxp; %xxcÞ and of the anti-windup closed-loop system with state
variable ðxp; xc; xawÞ can be expressed in terms of the unconstrained closed-loop system, whose
state variable is ð %xxp; %xxcÞ and of the ‘mismatch system’ whose state variable is given by

x :¼

xp � %xxp

xc � %xxc

xaw

2
664

3
775

Note that the idea of defining a mismatch system which captures the difference between the
actual and unconstrained responses can be found in previous work on anti-windup design (see,
e.g. References [17, 22–24]). To simplify the subsequent notation, consider the introduction of
the following definitions:

jðu� %uu; %uuÞ :¼ cðuÞ � cð %uuÞ ð10aÞ

*uu :¼ u� %uu ð10bÞ

*zz :¼ z� %zz ð10cÞ

*mm :¼ m� %mm ð10dÞ

*yyðs0;xp; *uu; %xxp; %uu;wÞ :¼ yðs0; xp; *uuþ %uu� cð *uuþ %uuÞ;wÞ � yðs0; %xxp; %uu;wÞ ð10eÞ

Then, by way of (10) and using the identity fðuÞ � %uu ¼ *uu� ðcð %uuÞ þ jð *uu; %uuÞÞ (derived from (7) and
(10)), the overall dynamics can be written as the cascade connection of two systems, the first one
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being the unconstrained closed-loop (4) and the second one being the following mismatch
system:

W

’xx ¼ Axþ Bcðcð %uuÞ þ jð *uu; %uuÞÞ þ By
*yy

*uu ¼ CuxþDucðcð %uuÞ þ jð *uu; %uuÞÞ þDuy
*yy

*zz ¼ CzxþDzcðcð %uuÞ þ jð *uu; %uuÞÞ þDzy
*yy

*mm ¼ CmxþDmcðcð %uuÞ þ jð *uu; %uuÞÞ þDmy
*yy

8>>>>>><
>>>>>>:

ð11Þ

This cascade representation is shown in Figure 3 with the unconstrained closed-loop shown once
again on the left-hand side and the mismatch system shown on the right-hand side.5 Note that,
as compared to the equivalent representation of Figure 2, the performance output *zz now
corresponds to an output of the mismatch system. As we will further discuss, any and all of the
properties of Definition 5 (including the implicitly required well-posedness property) can be
guaranteed by the properties of the mismatch system. One such property is given in the
following Definition 6 and much of the rest of the paper is dedicated to showing that it is
computationally useful.

Definition 6
Given the plant P in (2) and the unconstrained controller C in (3), a linear anti-windup
compensator (9) of order naw is said to guarantee quadratic robust performance recovery ðg; gÞ if
the mismatch system (11) is such that

1. for all f 2 FW the mismatch system is well-posed, and
2. there exist real scalars e > 0 and r50 and a quadratic function x/VðxÞ :¼ xTPx (with

P ¼ PT > 0) such that

@V

@x
ðAxþ Bcðc0 þ j0Þ þ By

*yyÞ5� exTx�
1

g
*zzT *zzþ gcT

0c0 þ rð*yyT *yy� g2 *mmT *mmÞ ð12Þ

Figure 3. The cascade interconnection of the unconstrained closed-loop system
and of the mismatch system.

5Although *mm a not an Input to *yy; the finite incremental gain of y essentially leads to a finite gain from *mm to *yy: Thus *mm is a
pseudo-input to *yy and represented as a dashed line in Figure 3 (the same argument was previously used in Figure 2 and
discussed in Footnote 2).
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for all ðx;c0;j0; *yyÞ=0 such that hj0; *uu� j0iW50 where

*uu ¼ CuxþDucðc0 þ j0Þ þDuy
*yy

*zz ¼ CzxþDzcðc0 þ j0Þ þDzy
*yy

*mm ¼ CmxþDmcðc0 þ j0Þ þDmy
*yy

Theorem 1
Given f 2 FW and a compact set U � fu 2 Rnu : fðuÞ ¼ ug; if a linear anti-windup compensator
guarantees quadratic robust performance recovery ðg; gÞ; then it solves the L2 anti-windup
problem for U with performance recovery level smaxðWÞ=sminðWÞg and guaranteed robustness
level g: Moreover, if f is a standard decentralized saturation function, then the linear anti-
windup compensator solves the L2 anti-windup problem for U with performance recovery level
g and guaranteed robustness level g:

Proof
Assume a linear anti-windup compensator guarantees quadratic robust performance recovery
ðg; gÞ: Then item 1 guarantees well-posedness of the mismatch system and (since the desirable
closed-loop system is well-posed by assumption) the anti-windup closed-loop system is also well-
posed. Assume the function f 2 FW : Then for any %uu 2 Rnu the function jð�; %uuÞ defined via (7),
(10a) belongs to FW because for fixed %uu we have jð0; %uuÞ ¼ 0; jð�; %uuÞ is locally Lipschitz and

hJjð *uu; %uuÞ; I � Jjð *uu; %uuÞiW ¼ hJcðuÞ; I � JcðuÞiW ¼ hI � JfðuÞ; JfðuÞiW50 ð13Þ

almost everywhere implies jð�; %uuÞ belongs to the incremental sector ½0; I �W : Let c0 ¼ cð %uuÞ and
j0 ¼ fð *uu; %uuÞ: Since jð�; %uuÞ 2 FW then hj0; *uu� j0iW50 for any input to and trajectory of the
mismatch system. Since the left-hand side of (12) corresponds to @V=@x ’xx; it follows that
integration of (12) with respect to time shows that item 2 guarantees

Vðxð1ÞÞ � Vðxð0ÞÞ4� ejjxjj22 �
1

g
jj *zzjj22 þ gjjcð %uuÞjj22 þ rðjj*yyjj22 � g2jj *mmjj22Þ

Since for any y that has finite incremental gain g the inequality ðjj*yyj22 � g2jj *mmjj22Þ40 holds and
Vðxð1ÞÞ50; this implies

jj *zzjj224g2jjcð %uuÞjj22 þ gVðxð0ÞÞ

whenever y has finite incremental gain g: Hence if xð0Þ ¼ 0 and %uuð�Þ � fð %uuð�ÞÞ then cð %uuð�ÞÞ � 0
and *zzð�Þ � 0 for any y with finite incremental gain g: Additionally, Lemma 2 guarantees jcð %uuÞj
4smaxðWÞ=sminðWÞ distð %uu;UÞ; thus if distð %uuð�Þ;UÞ 2 L2 then cð %uuð�ÞÞ 2 L2 which implies *zzð�Þ 2
L2 for any y with finite incremental gain g: Again using Lemma 2, if xð0Þ ¼ 0 then jj *zzjj24gjjc
ð %uuÞjj24smaxðWÞ=sminðWÞgjjdistð %uuð�Þ;UÞjj2 for any y with finite incremental gain g: Thus the
compensator solves the L2 anti-windup problem for U with performance recovery level
smaxðWÞ=sminðWÞg and guaranteed robustness level g: Moreover, if fð�Þ is a standard
decentralized saturation function jjcð %uuÞjj2 ¼ jjdistð %uuð�Þ;UÞjj2 which is used to imply the L2 gain
from distð %uu;UÞ to *zz is less than g: &
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4. LMI-BASED ANTI-WINDUP SYNTHESIS

4.1. Feasibility of the anti-windup synthesis problem

If an anti-windup compensator guarantees quadratic robust performance recovery ðg; gÞ then
performance and robustness are guaranteed for all input nonlinearities f 2 FW : There are two
special extreme input nonlinearities within this set FW that we may wish to consider.

1. Choose the particular input nonlinearity fð�Þ � 0: Then cð %uuÞ � %uu and for any anti-windup
compensator and any desired controller. From (2) and (5) with *xxp :¼ xp � %xxp it can be
shown that

’*xx*xxp ¼Ap *xxp � Bp;u %uuþ Bp;y
*yy

*zz ¼Cp;z *xxp �Dp;zu %uuþDp;zy
*yy

*mm ¼Cp;m *xxp �Dp;mu %uu

ð14Þ

2. Choose the particular input nonlinearity fð�Þ � Idð�Þ; the identity operator. Then cð %uuÞ � 0:
Moreover, for any anti-windup compensator if xawð0Þ ¼ 0 then xaw � 0: From (4) and (8),
with *xx :¼ x� %xx it can be shown that

’*xx*xx ¼ACL
*xxþ BCL;y

*yy

*zz ¼CCL;z
*xxþDCL;zy

*yy

*uu ¼CCL;u
*xxþDCL;uy

*yy

*mm ¼CCL;m
*xxþDCL;my

*yy

ð15Þ

Systems (14) and (15) are interesting because a necessary and sufficient condition for the
existence of a suitable anti-windup compensator, in the sense of Definition 6, can be given
in terms of these two systems.

Definition 7
Given the plant P in (2), the controller C in (3), an integer naw50 and the scalars *gg > 0; and
*gg50; define the matrix condition MCRrðP;C; naw; *gg; *ggÞ in the unknown variables ðR;S; g; p; tÞ 2
ðRnx�nx ;Rnx�nx ;R;R;RÞ as

R11A
T
p þ ApR11 Bp;u R11C

T
p;z tBp;y *ggR11C

T
p;m

$ �gInu DT
p;zu 0 *ggDT

p;mu

$ $ �gInz tDp;zy 0

$ $ $ �tIny 0

$ $ $ $ �tInm

2
6666666664

3
7777777775
50 ð16aÞ
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ACLS þ SAT
CL SCT

CL;u SCT
CL;z tBCL;y *ggSCT

CL;m

$ �pInu 0 tDCL;uy 0

$ $ �gInz tDCL;zy 0

$ $ $ �tIny t *ggDCL;my

$ $ $ $ �tInm

2
666666664

3
777777775
50 ð16bÞ

g4*gg ð16cÞ

R ¼ RT ¼
R11 R12

$ R22

" #
> 0 ð16dÞ

S ¼ ST > 0 ð16eÞ

R� S50 ð16fÞ

rankðR� SÞ4naw ð16gÞ

Moreover, MCRrðP;C; naw; *gg; *ggÞ is said to be feasible if there exists a solution ðR;S; g;p; tÞ that
satisfies (16).

Theorem 2
Given the plantP in (2), the unconstrained controller C in (3), an integer naw50; and real scalars
*gg50 and *gg > 0; there exists a linear anti-windup compensator of order naw that guarantees
quadratic robust performance recovery ð*gg; *ggÞ if and only if MCRrðP;C; naw; *gg; *ggÞ is feasible.

Proof
The technique is very similar to the proof used in Reference [13] and relies on the S-procedure
and the projection lemma. For a complete proof see Section 7. &

By way of Theorem 2, through the matrix conditions MCRrðP;C; naw; *gg; *ggÞ of Definition 7, the
following theorem establishes important properties of the optimal anti-windup construction
proposed in this paper.

Theorem 3
The following properties hold:

1. There exist real scalars *gg50 and *gg > 0 such that MCRrðP;C; 0; *gg; *ggÞ is feasible if and only if
there exists a matrix R such that

R11A
T
p þ ApR11 50

RAT
CL þ ACLR 50

R ¼ RT ¼
R11 R12

$ R22

" #
> 0

ð17Þ
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2. The matrix condition MCRrðP;C; np; 0; *ggÞ is feasible if and only if the matrices Ap and ACL

are Hurwitz and *gg > jjDp;zu þ Cp;zðsI � ApÞ
�1Bp;ujj1:

3. If there exists a *gg such that MCRrðP;C; np; *gg; *ggÞ is feasible, then the matrices Ap and ACL are
Hurwitz, *ggjjCp;mðsI � ApÞ

�1Bp;yjj151 and *ggjjDCL;my þ CCL;mðsI � ACLÞ
�1BCL;yjj151:

4. If MCRrðP;C; n1; *gg; *ggÞ is feasible and n14n2 then MCRrðP;C; n2; *gg; *ggÞ is feasible.
5. If MCRrðP;C; n1; *gg; *ggÞ is feasible and n15np then MCRrðP;C; np; *gg; *ggÞ is feasible.
6. If MCRrðP;C; naw; 0; *ggÞ has a feasible solution ðR;S; g;p; tÞ then there exists a scalar *gg > 0

such that ðR;S; g;p; tÞ is also a feasible solution to MCRrðP;C; naw; *gg; *ggÞ:

Proof
Item 1: If MCRrðP;C; 0; *gg; *ggÞ is feasible then (16g) implies R ¼ S; thus (16a), (16b), and (16d)

(with R ¼ S) imply (17).
Assume there exists a symmetric positive definite matrix R that satisfies (17). Since (17)

corresponds to the top left block diagonal entries of conditions (16a) and (16b), then with *gg ¼ 0
there exists a large enough g ¼ %gg > 0; large enough p ¼ %pp; and small enough t ¼ %tt such that (16a)
and (16b) are satisfied. Thus, MCRrðP;C; 0; *gg; %ggÞ is feasible.

Item 2: If MCRrðP;C; np; 0; *ggÞ is feasible then the intersection of the first three columns and
rows in (16a) are seen to imply Ap is Hurwitz and *gg > jjDp;zu þ Cp;zðsI � ApÞ

�1Bp;ujj1 by Lemma
1. Also the top left block entry in (16b) is negative definite, hence ACL is also Hurwitz.

Assume the matrices Ap and ACL are Hurwitz, and *gg > jjDp;zu þ Cp;zðsI � ApÞ
�1Bp;ujj1: Then

Lemma 1 guarantees the existence of a matrix R11 ¼ RT
11 > 0 such that the upper left three by

three block matrix in (16a) is negative definite with g ¼ *gg: Since ACL is Hurwitz, there exists a
matrix

%SS ¼ %SST ¼
%SS11

%SS12

$ %SS22

" #
> 0

such that ACL
%SS þ %SSAT

CL50: Then there exists a small enough e > 0 are large enough p such that
with S ¼ e %SS the upper left three by three block matrix in (16b) is negative definite and R11 �
S1150: Since g ¼ 0; there exists t such that both (16a) and (16b) is negative definite. Then

R11 S12

$ S22

" #
;S; g;p; t

 !

is a solution to MCRrðP;C; np; 0; *ggÞ:
Item 3: The proof parallels the first part of the proof of item 2.
Item 4: The result follows from Definition 7 since if the rank condition (16g) holds for

naw ¼ n1 then it also holds for naw ¼ n25n1:
Item 5: If there exists a solution ð %RR; %SS; %gg; %pp; %ttÞ to MCRrðP;C; n1; *gg; *ggÞ and n15np; partition %SS as

%SS ¼
%SS11

%SS12

$ %SS22

" #
; then

%RR11
%SS12

$ %SS22

" #
; %SS; %gg; %pp; %tt

 !

is a solution to MCRrðP;C; np; *gg; *ggÞ:
Item 6: Since both (16a) and (16b) are negative definite, there exists a sufficiently small g > 0

such that both constraints remain negative definite. &
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Remark 2
Note that item 2 of Theorem 3 implies that the L2 gain of the plant constitutes the optimal
performance level achievable by dynamic anti-windup compensation. This was already noted in
Reference [25, Remark 2], where it is also stressed that IMC anti-windup is a possible selection
among the many optimal solutions to this anti-windup construction problem. On the other
hand, the IMC construction leads in some cases to unsatisfactory solutions to the anti-windup
problem, while optimal solutions resulting from our construction typically performed very
desirably in simulation studies. This observation suggests that further investigation is worth
pursuing, about a selection criterion among the anti-windup compensators that induce an
optimal (or almost optimal) performance level. To this aim, the LMIs reported in this paper
provide a useful parametrization of a family of such compensators that may be augmented with
additional LMIs that characterize such a selection criterion. Note that using the notation of this
paper, the IMC solution would correspond to selecting the compensator (9) with Aaw ¼ Ap;

Baw ¼ Bp;u; Caw ¼ Bc;y

Dc;y

� �
Cp;y and Daw ¼ Bc;y

Dc;y

� �
Dp;yu:

4.2. LMI formulations of the feasibility condition

Theorem 2 shows that a necessary and sufficient condition for the existence of a linear anti-
windup compensator of order naw that guarantees quadratic robust performance recovery ð*gg; *ggÞ
is a non-convex coupling of LMIs due to a rank constraint. In this section, we will show that the
nonlinear matrix condition MCRrðP;C; naw; *gg; *ggÞ can be transformed into a linear one, when the
anti-windup compensator of interest is static ðnaw ¼ 0Þ or has order at least as large as the plant
order ðnaw5npÞ:

Proposition 1 (naw ¼ 0)
Given the plant P in (2), the unconstrained controller C in (3), and real scalars *gg50 and *gg > 0;
MCRrðP;C; 0; *gg; *ggÞ is feasible if and only if there exists a solution ðR; g;p; tÞ to the LMI
(16a)–(16d) with S ¼ R: Moreover, given a solution ð %RR; %gg; %pp; %ttÞ to this LMI, then ðR;S; g;p; tÞ ¼
ð %RR; %SS; %gg; %pp; %ttÞ is a feasible solution to MCRrðP;C; 0; *gg; *ggÞ:

Proof
If naw ¼ 0 then for MCRrðP;C; 0; *gg; *ggÞ to be feasible, by (16g), we must have S ¼ R: Thus (16f) is
satisfied and (16e) is redundant. Hence, the proof follows by rewriting the remaining inequalities
in (16) with S ¼ R: &

Proposition 2 (naw5np)
Given the plant P in (2), the unconstrained controller C in (3), an integer naw5np; and real
scalars *gg50 and *gg > 0; MCRrðP;C; naw; *gg; *ggÞ is feasible if and only if there exists a solution
ðR;S; g;p; g; tÞ to the LMI (16a)–(16f).

Moreover, given a solution

ð %RR; %SS; %gg; %pp; %ttÞ ¼
%RR11

%RR12

$ %RR22

" #
;

%SS11
%SS12

$ %SS22

" #
; %gg; %pp; %tt

 !
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to the LMI (16a)–(16f), then

ðR;S; g;p; tÞ ¼
%RR11

%SS12

$ %SS22

" #
; %SS; %gg; %pp; %tt

 !

is a feasible solution to MCRrðP;C; naw; *gg; *ggÞ:

Proof
Items 4 and 5 of Theorem 3 combine to guarantee that MCRrðP;C; np; *gg; *ggÞ is feasible if and only
if MCRrðP;C; np þ nc; *gg; *ggÞ is feasible. Since R; S 2 RðnpþncÞ�ðnpþncÞ; MCRrðP;C; np þ nc; *gg; *ggÞ is
feasible if and only if (16a)–(16f) has a feasible solution ð %RR; %SS; %gg; %pp; %ttÞ: Moreover, the proof of
item 5 of Theorem 3 shows that

ðR;S; g;p; tÞ ¼
%RR11

%SS12

$ %SS22

" #
; %SS; %gg; %pp; %tt

 !

is a feasible solution to MCRrðP;C; naw; *gg; *ggÞ: &

4.3. LMI-based anti-windup synthesis

Although the results in Section 4.1 provide a condition for the existence of an anti-windup
compensator achieving a certain robust quadratic performance recovery level ð*gg; *ggÞ for the anti-
windup closed-loop system, they do not provide tools for the construction of such a
compensator. In this section, based on a solution ðR;S; g; p; tÞ to MCRrðP;C; naw; *gg; *ggÞ arising
from Theorem 2 or Propositions 1 or 2, we give a procedure to construct a state-space
representation of an anti-windup compensator that guarantees robust quadratic performance
recovery level ð*gg; *ggÞ: The effectiveness of the procedure is then formally stated in Theorem 4.

Based on the matrices of system (8), we can formalize a procedure for the construction of the
anti-windup compensator.

Procedure 1 (Construction of the anti-windup compensator)
Step 1: Solve the feasibility condition.
Given the plant P; the controller C; an integer naw50 and real scalars *gg50 and *gg > 0;

determine a solution ðR;S; g;p; tÞ that satisfies the condition MCRrðP;C; naw; *gg; *ggÞ:
Step 2: Construct the matrix Q:
Using R and S from the solution ðR;S; g;p; tÞ found in Step 1, define the matrix N 2 Rnx�naw as

a solution of the following equation:

RS�1R� R ¼ NNT ð18Þ

Since R and S are non-singular and conditions (16f) and (16g) of Definition 7 are satisfied, then
RS�1R� R is positive semidefinite and of rank naw; so there always exists a matrix N satisfying
Equation (18). Define the matrix M 2 Rnaw�naw as

M :¼ I þNTR�1N ð19Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:1133–1168

ANTI-WINDUP SYNTHESIS 1147



Finally, let n :¼ nx þ naw and define the matrix Q 2 Rn�n as

Q :¼
R N

$ M

" #
ð20Þ

Step 3: Construct the matrix U:
Using p and g from the solution ðR;S; g; p; tÞ found in Step 1, find a solution d 2 R to the LMI

�2W�1 � gdW�2 I

$ �dp�1I

" #
50; d > 0 ð21Þ

and define U :¼ dW�1:
Step 4: Construct other required matrices.
Construct the matrices A0 2 Rn�n; Bc0 2 Rn�nu ; Cu0 2 Rnu�n; Duc0 2 Rnu�nu ; Cz0 2 Rnz�n; Dzc0 2

Rnz�nu ; Cm0 2 Rnm�n; Dmc0 2 Rnm�nu ; HT
1 2 Rn�ðnawþnvÞ; G1 2 RðnawþnuÞ�n; G2 2 RðnawþnuÞ�nu ; HT

2 2
Rnu�ðnawþnvÞ; HT

3 2 Rnz�ðnawþnvÞ; HT
4 2 Rnm�ðnawþnvÞ; By 2 Rn�ny ; Duy 2 Rnu�ny ; Dzy 2 Rnz�ny and Dmy 2

Rnm�ny as follows:

A0 ¼
ACL 0

0 0

" #
; Bc0 ¼

BCL;c

0

" #
; Cu0 ¼ ½CCL;u 0�

Duc0 ¼DCL;uc; Cz0 ¼ ½CCL;z 0�; Dzc0 ¼ DCL;zc

Cm0 ¼ ½CCL;m 0�; Dmc0 ¼ DCL;mc

ð22aÞ

HT
1 ¼

0 BCL;v

Inaw 0

" #
; G1 ¼

0 Inaw

0 0

" #
; G2 ¼

0

Inu

" #

HT
2 ¼ ½0 DCL;uv�; HT

3 ¼ ½0 DCL;zv�; HT
4 ¼ ½0 DCL;mv�

ð22bÞ

By ¼
BCL;y

0

" #
; Duy ¼ DCL;uy; Dzy ¼ DCL;zy; Dmy ¼ DCL;my ð22cÞ

Step 5: Construct and solve the anti-windup compensator LMI.
Stack the matrices of the anti-windup compensator (9) in a single matrix L 2 RðnawþnvÞ�ðnawþnuÞ

as follows:

L :¼
Aaw Baw

Caw Daw

" #
ð23Þ
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Based on the matrices determined in Steps 2–4 of this procedure, construct the matrices C 2
RðnþnuþnwþnzÞ�ðnþnuþnwþnzÞ; H 2 RðnawþnvÞ�ðnþnuþnwþnzÞ and G 2 RðnawþnuÞ�ðnþnuþnwþnzÞ as follows:

C ¼

QAT
0 þ A0Q Bc0U þQCT

u0 Bc0 QCT
z0 tBy *ggQCT

m0

$ Duc0U þUDT
uc0 � 2U Duc0 UDT

zc0 tDuy *ggUDT
mc0

$ $ �gI DT
zc0 0 *ggDT

mc0

$ $ $ �gI tDzy 0

$ $ $ $ �tI t *ggDT
my

$ $ $ $ $ �tI

2
6666666666664

3
7777777777775

ð24aÞ

H ¼ ½H1 H2 0 H3 0 *ggH4� ð24bÞ

G ¼ ½G1Q G2U G2 0 0 0� ð24cÞ

Finally, compute the matrix L associated with the desired anti-windup compensator by solving
the LMI

Cþ GTLTH þHTLG50 ð25Þ

Theorem 4
Given the plant P; the unconstrained controller C; an integer naw; real scalars *gg50 and *gg > 0
and a solution ðR;S; g;p; tÞ to MCRrðP;C; naw; *gg; *ggÞ; LMI (25) constructed according to
Procedure 1 is guaranteed to be solvable for L: Furthermore, the solution L defines the matrices
of a linear anti-windup compensator (9) of order naw that guarantees quadratic robust
performance recovery of level ð *gg; *ggÞ:

Proof
See Section 7. &

5. LMI-BASED ANTI-WINDUP PERFORMANCE ANALYSIS

Assume that the plant, controller and anti-windup compensator are given. Then, for analysis
purposes, the performance recovery level can be determined by solving an LMI eigenvalue
problem.

Theorem 5
Given the mismatch system (11) (derived from the plant, controller and anti-windup compen-
sator), and real scalars *gg50 and *gg > 0; the anti-windup closed-loop system guarantees quad-
ratic robust performance recovery ð*gg; *ggÞ if and only if there exists a solution ðQ; g; d; tÞ 2Rn�n;
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R;R;RÞ where n :¼ nx þ naw to the LMI

QAT þ AQ BcU þQCT
u Bc QCT

z tBy *ggQCT
m

$ DucU þUDT
uc � 2U Duc UDT

zc tDuy *ggUDT
mc

$ $ �gInu DT
zc 0 *ggDT

mc

$ $ $ �gInz tDzy 0

$ $ $ $ �tIny t *ggDT
my

$ $ $ $ $ �tInm

2
6666666666664

3
7777777777775
50 ð26aÞ

t > 0 ð26bÞ

Q ¼ QT > 0 ð26cÞ

U ¼ dW�1 > 0 ð26dÞ

g4*gg ð26eÞ

Proof
See Section 7.1. &

Corollary 1
Given the mismatch system (11) and a scalar *gg > 0; if the anti-windup closed-loop system
guarantees quadratic robust performance recovery ð*gg; 0Þ then there exists *gg > 0 such that
quadratic robust performance recovery ð*gg; *ggÞ is guaranteed.

Proof
If there exists a solution ðQ; g; d; tÞ to (26) with *gg ¼ 0; then by taking the Schur compliment of
(26a) with respect to the last column and row, there exists *gg > 0 sufficiently small such that (26)
is still satisfied for some *gg > 0: &

6. COMPARISON TO OTHER LMI-BASED METHODS

In this section, we will first make connections to previous results and then illustrate the
proposed anti-windup construction and compare it with some similar architectures on a simple
example.

An important connection should be stated between our approach and that of References
[11, 13]. Indeed, the two constructions are characterized by the same architecture, although the
performance goal and, consequently, the arising LMI formulation is extremely different.
Nevertheless, the architecture of the two schemes being the same, we expect (as it is confirmed
by the results in Theorem 3) that the feasibility of the two constructions share the same system
theoretic conditions. On the other hand, the optimal anti-windup constructions resulting from
the two different performance characterizations, are very different. Indeed, in References
[11, 13], the performance is chosen as theL2 gain gwz from w to z in the anti-windup closed-loop
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system of Figure 1. Although there are examples that exhibit very satisfactory responses when
using an anti-windup compensator constructed with such methods, other examples show that
the performance index may not capture the essence of what is most desirable to optimize. For
instance, the example reported in the following section shows that the response with the optimal
anti-windup compensation designed according to References [11, 13] is very sluggish. On the
other hand, the construction proposed here captures within our performance index (that will be
referred to as gTK in the following) the goal of recovery of the unconstrained response and leads
to a highly improved anti-windup action.

Interesting connections can be also made with the IMC approach introduced in Reference [26]
(see also References [3, 8]), and the solution proposed in Reference [17], which can be seen as a
(nonlinear, in general) generalization of the IMC approach (IMC is recovered in Reference [17]
by choosing kð�Þ � 0). For comparison purposes, the responses and performance level achieved
by using IMC will also be computed for the example of the following section.6 Note that the
necessary condition of asymptotic stability of the plant derived in this paper (see item 2 in
Theorem 3) is confirmed by the results in Reference [17], where it is shown that this same
condition is necessary to guarantee any level of robustness.

6.1. Simulation example

Consider a damped mass-spring system whose equations of motion are given by

’xx ¼
0 1

�k=m �f =m

" #
xþ

0

1=m

" #
u

y ¼ ½1 0� x

z ¼ y� r

ð27Þ

where x :¼ ½q ’qq�T represents position and speed of the body connected to the spring,
m is the mass of the body, k is the elastic constant of the spring, f is the damping
coefficient, and u represents a force exerted on the mass. We choose the following values for the
parameters:

m ¼ 0:1 kg; k ¼ 1
kg

s2
; f ¼ 0:005

kg

s
ð28Þ

Assume that r 2 R is a reference input corresponding to the desired mass position, and consider
the following linear controller:

u ¼ CfbðsÞðCff ðsÞr� yÞ ð29aÞ

with

CfbðsÞ :¼ 200
ðsþ 5Þ2

sðsþ 80Þ
; Cff ðsÞ :¼

5

sþ 5
ð29bÞ

This controller, has been determined with the aim of guaranteeing a fast response with zero
steady state error to step reference changes, robust to parameter uncertainties. The state space

6Note however, that IMC anti-windup is aimed at guaranteeing stability of the closed-loop, without any concern for the
resulting performance.
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realization that we will use is given by (3) with matrices

Ac ¼

�5 0 0

320 �80 0

0 1 0

2
664

3
775; Bc;y ¼

0

�128

0

2
664

3
775; Bc;w ¼

2

0

0

2
664
3
775

Cc ¼ ½500 � 109:3750 39:0625�; Dc;y ¼ �200; Dc;w ¼ 0:

The response of the unconstrained closed-loop system (27), (29), starting from the rest
position and with the reference switching between �0:9 m every 10 s and going back to zero
permanently after 30 s; is shown by the solid curve in Figure 4. If the force exerted at the plant’s
input u is limited between�1 kg m=s2; the closed-loop response corresponds to the dotted curve
in Figure 4, which converges to a limit cycle where the output persistently oscillates between
positive and negative peaks qPEAK � 35:7: The windup effect shown by this saturated response
is associated with a complicated compensation problem. Indeed, the following attempts for anti-
windup design all lead to unacceptable results:

1. IMC/model-based anti-windup leads to very large oscillations decaying at a very slow rate
(corresponding to the slow modes of the open-loop plant dynamics) and is represented by
the dash–dotted curve in the Figure 4; the corresponding values of the performance indexes
gwz and gTK ; determined using the techniques described in Reference [13] and in Section 5,
respectively, are reported in Table I;

Figure 4. Time responses of the saturated (dotted), unconstrained (solid), and anti-windup closed-loop
systems using the IMC construction (dash–dotted), the dynamic construction of Reference [13] (dashed)

and our technique (bold).
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2. linear static anti-windup compensation, is not feasible (namely, the LMI conditions (17) are
unfeasible) for this example;

3. optimal dynamic linear anti-windup compensation, which minimizes the gain gwz; following
the construction in Reference [13] gives the sluggish response represented by the dashed
curve in Figure 4. This response has been determined using the following gains

Aaw wz ¼
�1:0337 �18:6516

�23:2234 �439:0613

" #
; Baw wz ¼

�22:5096

�0:6577

" #

Caw wz ¼

0:0241 0:4512

11:1751 0:2642

�0:1904 �3:5996

17:3118 �4:0514

2
666664

3
777775; Daw wz ¼

�0:1545

�1:0668

0:7789

0:9847

2
666664

3
777775

the corresponding values of the performance indexes gwz and gTK are reported in Table I.

When applying our construction to this example, since static anti-windup compensation is not
feasible, we employ plant-order dynamic compensation and following Procedure 1 we obtain the
following gains:

AawTK ¼
�0:6511 1:1922

0:9420 �1:7249

" #
108; BawTK ¼

428:8273

�620:4231

" #

CawTK ¼

�0:0573 0:1049

�0:2445 0:4477

0:3912 �0:7164

2:0416 �3:7384

2
666664

3
77777510

7; DawTK ¼

3:7746

16:1051

�25:7677

�133:4671

2
666664

3
777775 ð30Þ

which induce the performance levels listed in Table I. As already noted in Remark 2, IMC anti-
windup induces globally optimal performance level, as seen from the performance index gTK :

The response corresponding to gains (30) is represented in Figure 4 by the bold curve. This
response performs satisfactorily in recovering the unconstrained response (which corresponds to
the solid curve in Figure 4), thus confirming the effectiveness of the proposed anti-windup
construction.

Table I. Performance levels induced by the different anti-windup constructions

IMC [13] This paper

gwz 476.46 21.00 97.90
gTK 63.25 64.57 63.25
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7. PROOF OF THE MAIN RESULTS

A key step in the proof of Theorems 2, 4, and 5 is to establish the connection between the
matrix condition MCRrðP;C; naw; *gg; *ggÞ in Definition 7, the LMIs for analysis (26) in Theorem 5,
and the LMI (25) in the final step of Procedure 1. The LMIs (26a) and (25) coincide
but are in different unknowns; the LMI (26a) is in the unknowns ðQ; g; d; tÞ whereas the
LMI (25) is in the unknown L: To verify this, it is easy to check that the matrices By; Duy; Dzy

and Dmy in (11) coincide with the definitions in Equations (22c) and the remaining matrices
in (11) satisfy

A ¼A0 þHT
1 LG1; Cu ¼ Cu0 þHT

2 LG1; Cz ¼ Cz0 þHT
3 LG1

Bc ¼Bc0 þHT
1 LG2; Duc ¼ Duc0 þHT

2 LG2; Dzc ¼ Dzc0 þHT
3 LG2

Cm ¼Cm0 þHT
4 LG1; Dmc ¼ Dmc0 þHT

4 LG2

ð31Þ

For a detailed computation of the matrices in Equations (31), the reader is referred to Appendix
A.

The following theorem establishes the equivalence between the feasibility of the matrix
condition MCRrðP;C; naw; *gg; *ggÞ in Definition 7 and the feasibility of the matrix constraints (26)
(equivalently (25)), which constitute a key result used to prove Theorems 2, 4 and 5.

Theorem 6

(1) Given the plant P in (2), the unconstrained controller C in (3), an integer naw50 and
real scalars *gg50 and *gg > 0; there exist matrices Q; L and real scalars g; d; t satisfying (26)
(with the definitions (22), (31)) if and only if the matrix condition MCRrðP;C; naw; *gg; *ggÞ is
feasible.

(2) Given a feasible solution ðR;S; g;p; tÞ to MCRrðP;C; naw; *gg; *ggÞ; the matrix Q constructed in
(18)–(20) and the matrix U and scalar d selected according to (21) guarantees that LMI
(25) in the unknown L is solvable. Moreover, given such Q; g; d; t and a feasible solution L
to LMI (25), we have that ðQ; g; d; tÞ is a feasible solution to the matrix inequalities (26)
(with definitions (22), (31)).

Proof
The proof of Theorem 6 requires quite cumbersome notation and a few preliminary
lemmas. Since the proof technique is very similar to the parallel technical result of Reference
[13, Theorem 4], we do not consider this proof central for this paper and defer it to the later
Section 7.2. &

Proof of Theorem 2
The composition of Theorem 5 and item 1 in Theorem 6 imply Theorem 2. &

Proof of Theorem 4
Step 1 of Procedure 1 is assumed to be solvable. Steps 2–4 are constructive. As far as Step 5 is
concerned, matrices (24) can always be constructed based on the matrices computed at the
preceding steps. Moreover, by item 2 in Theorem 6, the matrix Q constructed in Step 2
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guarantees that LMI (25) is solvable for L and any feasible solution L to LMI (25) is such that
ðQ;L; d; g; tÞ satisfies (26). Hence, by Theorem 5, the anti-windup closed-loop system (8), (9)
corresponding to L guarantees quadratic robust performance recovery ð*gg; *ggÞ: &

7.1. Proof of Theorem 5

To prove Theorem 5, the following lemmas will be useful. (The first of these lemmas was proven
in Reference [24].)

Lemma 3
Consider a locally Lipschitz function F :Rn ! Rn and assume that the Jacobian of F satisfies

JFðxÞ 2 M for almost all x 2 Rn

where the set M is compact, convex, and each matrix in M is non-singular. Then there exists a
(unique) globally Lipschitz function G :Rn ! Rn such that FðGðxÞÞ ¼ x for all x 2 Rn:
Equivalently, F is a homeomorphism with globally Lipschitz inverse.

The following result is a generalization of Lemma 3, whose proof is carried out along the lines of
Reference [27, Remark 7.1.3]. (The proof is included for completeness.)

Lemma 4
Given a locally Lipschitz function H :Rnu � Rnw ! Rnu ; assume that there exists a compact
set Mw � Rnu�nw and a compact convex set Mu � Rnu�nw of non-singular matrices,
such that

JuHðu;wÞ 2 Mu

JwHðu;wÞ 2 Mw

wherever they exist

where JuHðu;wÞ and JwHðu;wÞ denote the Jacobian of H with respect to u and w;
respectively. Then there exists a (unique) globally Lipschitz function z :Rnw ! Rnu such that
HðzðwÞ;wÞ ¼ 0:

Proof
Define the function

FðZÞ :¼
Hðu;wÞ

w

" #
ð32Þ

(where Z :¼ ðu;wÞÞ; and note that, wherever the Jacobian of F exists, it is of the form:

JFðZÞ ¼
Mu Mw

0 I

" #

where, by assumption, Mu 2 Mu and Mw 2 Mw:
By the block triangular structure of the Jacobian of F ; there exists a compact and convex set

M such that JFðZÞ 2 M wherever it exists and all the matrices in M are non-singular. Then,
Lemma 3 guarantees the existence of a unique inverse function G for F ; which is also globally
Lipschitz. Denote by Gðf1; f2Þ ¼: ðg1; g2Þ the partition of G corresponding to the partition of F :
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Based on the structure of F (see Equation (32)), the following relation holds:

f1

f2

" #
¼ FðGðf1; f2ÞÞ ¼

Hðg1ðf1; f2Þ;wÞ

f2

" #

where, by uniqueness, necessarily, f2 ¼ w: Defining zðwÞ :¼ g1ð0;wÞ; we get

HðzðwÞ;wÞ ¼ 0

where zð�Þ is globally Lipschitz. &

Lemma 5
Let

E :¼
I �

Duc

2
0

�
Dmc

2
I

2
664

3
775; D :¼

Duc Duy

Dmc Dmy

" #
; W1 :¼

2sW 0

$ rI

" #
; W2 :¼

sW
2

0

$ rg2I

2
64

3
75

If

L :¼
sðWDuc þDT

ucW � 2WÞ þ rg2DT
mcDmc sWDuy þ rg2DT

mcDmy

$ �rI þ rg2DT
myDmy

2
4

3
550 ð33Þ

then E �DDJ is non-singular for all DJ such that DT
JW1DJ4W2:

Proof
Let

F :¼
I �

Duc

2
�
Duy

2

0 I

2
64

3
75:

Note that with this selection DF ¼ ED: The negative definite upper left entry of inequality (33)
can be rearranged to see that

sðWDuc þDT
ucW � 2WÞ þ rg2DT

mcDmc ¼s �2 I �
Duc

2

� �T

W I �
Duc

2

� �
þ

1

2
DT

ucWDuc

 !

þ rg2DT
mcDmc50

From this expression, we note two useful properties. First the matrix I �Dmc=2 is non-singular
since sðI �Duc=2Þ

TWðI �Duc=2Þ > 0; hence E and F are non-singular. Second, this expression
makes it straightforward to verify L ¼ DTW2D� FTW1F50: This, combined with the fact
E�1D ¼ DF�1; implies that

DTE�TW2E
�1D5W1 ð34Þ

Suppose by contradiction that there exists DJ such that DT
JW1DJ4W2 and E �DDJ is singular.

Then there exists w=0 such that w ¼ E�1DDJw: From this and from (34), it follows
that wTW2w ¼ wTDT

JD
TE�TW2E

�1DDJw5wTDT
JW1DJw4wTW2w: Thus we have a contra-

diction. &
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Lemma 6
Suppose f and h are continuous and the finite dimensional forward complete system

’xxd ¼ f ðxd;x; u;wÞ

y ¼ hðxd;x; u;wÞ

has finite incremental gain g from m :¼ Cp;mxþDp;muu to y: Then

jhðxd; xþ dx; uþ du;wÞ � hðxd;x; u;wÞj4g ½Cp;m Dp;mu�
dx

du

" #�����
�����

for all xd;x; dx; u; du; and w:

Proof
Suppose not. Then there exist xd;x; dx; u; du;w and e > 0 such that

jhðxd; xþ dx; uþ du;wÞ � hðxd; x; u;wÞj5eþ g ½Cp;m Dp;mu�
dx

du

" #�����
�����

Since h is continuous, then there exists d such that for all z1; z2 where jz1 � xdj5d and
jz2 � xdj5d then

jhðz1;xþ dx; uþ du;wÞ � hðxd;xþ dx; uþ du;wÞj4
e
3

and

jhðxd;x; u;wÞ � hðz2;x; u;wÞj4
e
3

Since f is assumed continuous and forward complete, solutions are guaranteed to exist and there
exists a tn > 0 such that the solution of ’zz1 ¼ f ðz1;xþ dxðtÞ; uþ duðtÞ;wÞ; ’zz2 ¼ f ðz2; x; u;wÞ (where
z1ð0Þ ¼ z2ð0Þ ¼ xd) satisfies jz1ðtÞ � xdj5d and jz2ðtÞ � xdj5d for all t 2 ½0; tn� where

dxðtÞ :¼
dx if t 2 ½0; tn�

0 otherwise

(
and duðtÞ :¼

du if t 2 ½0; tn�

0 otherwise

(

Then

jjhðz1ð�Þ; xþ dxð�Þ; uþ duð�Þ;wÞ � hðz2ð�Þ;xþ dx; uþ du;wÞjj2

5 jjhðz1ð�Þ; xþ dx; uþ du;wÞ � hðz2ð�Þ; xþ dx; uþ du;wÞjj2

5 tnjhðxd; xþ dx; uþ du;wÞ � hðxd;x; u;wÞj

� jjhðz1ð�Þ; xþ dx; uþ du;wÞ � hðxd; xþ dx; uþ du;wÞjj2;½0;t n�

� jjhðxd;x; u;wÞ � hðz2ð�Þ;x; u;wÞjj2;½0;t n�

5g
Cp;mdxð�Þ

Dp;muduð�Þ

" #�����
�����

�����
�����
2

þ
etn

3
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Thus,

jjyðxd;xþ dxð�Þ; uþ duð�Þ;wÞ � yðxd;x; u;wÞjj2 > g
Cp;mðxþ dxð�Þ � xÞ

Dp;muðuþ duð�Þ � uÞ

" #�����
�����

�����
�����
2

which contradicts the assumption that y has finite incremental gain g from m to y: &
The following facts will also be useful for the proof of Theorem 5.

Fact 1: By Schur complements [28, p. 7] and rearranging columns and rows, it can be shown
that

2xTPðAxþ Bcðcþ jÞ þ By
*yyÞ5�

1

g
*zzT *zzþ gcTcþ rð*yyT *yy� g2 *mmT *mmÞ � 2sjTWð *uu� jÞ

for all ðx;c;j; *yyÞ=0 if and only if

ATPþ PA PBc þ sCT
uW PBc CT

z PBy rgCT
m

$ sðWDuc þDT
ucW � 2WÞ sWDuc DT

zc sWDuy rgDT
mc

$ $ �gI DT
zc 0 rgDT

mc

$ $ $ �gI Dzy 0

$ $ $ $ �rI rgDT
my

$ $ $ $ $ �rI

2
6666666666664

3
7777777777775
50 ð35Þ

Fact 2: Recall from (11) that *uu; *zz and *mm are functions of x; cð %uuÞ; jð *uu; %uuÞ and *yy: Given any
symmetric positive definite matrix W ; the following statements are equivalent:

1. there exists a scalar s50 such that

2xTPðAxþ Bcðcþ jÞ þ By
*yyÞ5�

1

g
*zzT *zzþ gcTcþ rð*yyT *yy� g2 *mmT *mmÞ � 2sjTWð *uu� jÞ

for all ðx;c;j; *yyÞ=0;
2.

2xTPðAxþ Bcðcþ jÞ þ By
*yyÞ5�

1

g
*zzT *zzþ gcTcþ rð*yyT *yy� g2 *mmT *mmÞ

for all ðx;c;j; *yyÞ=0 such that

jTWð *uu� jÞ ¼ jTWðCuxþ ðDuc � IÞjþDuccþDuy
*yyÞ50

Proof
By the S-procedure [28, p. 24], item 1 implies item 2 and if there exists at least one selection
ðx$;c$;j$; *yy$Þ such that

j$TWðCux
$ þ ðDuc � IÞj$ þDucc

$ þDuy
*yy$Þ > 0 ð36Þ

then item 2 implies item 1. To show that there exists a selection ðx$;c$;j$; *yy$Þ that satisfies
(36), we consider two cases. If ½Cu Duc Duy� ¼ 0 then (11) says *uu ¼ 0; hence u ¼ %uu: Thus the
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anti-windup construction problem is non-existent since the closed-loop response is independent
of L: In the case when ½Cu Duc Duy�=0; there exist x$; c$ and *yy$ such that ½Cux

$ þDucc
$ þ

Duy
*yy$�=0: Then pick j$ ¼ e½Cux

$ þDucc
$ þDuy

*yy$� with e sufficiently small to satisfy
(36). &

Fact 3: Consider a finite dimensional continuous function h such that

jhðxd; xþ dx; uþ du;wÞ � hðxd;x; u;wÞj4g ½Cp;m Dp;mu�
dx

du

" #�����
�����

for all xd; x; dx; u; du; and w: Then there exists a Lipschitz function #hh such that

hðxd;x; u;wÞ ¼ #hhðxd;Cp;mxþDp;muu;wÞ

and jJm #hhðxd;m;wÞj4g for almost all ðxd; m;wÞ:

Proof
Let W1 ¼ ½Cp;m Dp;mu�: Let WT

2 be any full rank matrix that spans the null space of W1: Let
M :¼ W1

W2

h i
: Define %hh according to

%hhðxd;m; m?;wÞ :¼ h xd; ½I 0�My m

m?

" #
; ½0 I �My m

m?

" #
;w

 !

where My is the pseudo-inverse of M and it follows that %hh is continuous and hðxd;x; u;wÞ ¼
%hhðxd;Cp;mxþDp;muu; 0;wÞ: Lemma 6 implies %hhðxd; m;m? þ dm?;wÞ ¼ %hhðxd;m;m?;wÞ for all xd; m;
m?; dm? and w: Hence %hhðxd;m; m?;wÞ ¼ %hhðxd;m; 0;wÞ ¼: #hhðxd; m;wÞ: Moreover, Lemma 6 also
implies

j #hhðxd;mþ dm;wÞ � #hhðxd; m;wÞj4gjdmj

for all xd; m; dm and w: Hence jJm #hhðxd;m;wÞj5g for almost all ðxd;m;wÞ: &

Proof of Theorem 5
Necessity. Assume that for a given plant, controller and anti-windup compensator of order naw;
quadratic robust performance recovery ð*gg; *ggÞ is guaranteed in the sense of Definition 6. Then,
there exist P ¼ PT > 0 and r50 such that item 2 in Fact 2 is satisfied with g ¼ *gg and g ¼ *gg:
Then, Fact 2 implies that there exists a constant s50 that satisfies item 1 of Fact 2. Finally, by
Fact 1, inequality (35) holds (with g ¼ *gg; g ¼ *gg and for some s50). Moreover, since all block
diagonal terms in (35) must be negative definite, then s > 0: Defining Q :¼ P�1; U :¼ s�1W�1

and t :¼ r�1 and premultiplying and postmultiplying (35) by the symmetric block diagonal
matrix diagðQ;U; I ; I ; tI ; tIÞ; it follows that there exists Q ¼ QT > 0; d :¼ s�1 > 0; and t50 that
satisfy (26a), as desired.

Sufficiency. If there exists a solution ðQ; d; g; tÞ that satisfies (26), define P :¼ Q�1; s :¼ d�1 and
r :¼ t�1 and premultiply and postmultiply (26a) by the symmetric block diagonal matrix diag
ðP;sW ; I ; I ;rI ;rIÞ: The resulting inequality guarantees (35) is satisfied (with g ¼ *gg and g ¼ *gg)
because *gg5g: Then, Facts 1 and 2 guarantee that P satisfies item 2 in Fact 2 with r ¼ t�1: Since
the first inequality in item 2 of Fact 2 is satisfied for all ðx;c;j; *yyÞ=0 with strict inequality, there
exists a small enough e > 0 such that inequality (12) in item 2 of Definition 6 is guaranteed.
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Next, we prove well-posedness of the mismatch system (item 1 of Definition 6). Let a
realization of the finite dimensional, forward complete, stable system yðs0; %xxp; %uu;wÞ with finite
incremental gain g (from %mm :¼ Cp;m %xxp þDp;mu %uu to y) be given by

’%xx%xxd ¼ f ð %xxd; %xxp; %uu;wÞ

y ¼ hð %xxd; %xxp; %uu;wÞ

where f and h are continuous. Then Lemma 6 and Fact 3 imply that a realization of the system
yðs0; %xxp; %uu;wÞ is also

’%xx%xxd ¼ f ð %xxd; %xxp; %uu;wÞ

y ¼ #hhð %xxd; %mm;wÞ

where jJ %mm
#hhðxd; %mm;wÞj4g for almost all ðxd; %mm;wÞ: Based on this realization of the system yðs0; %xxp;

%uu;wÞ; the signal *yyðs0; xp; *uu; %xxp; %uu;wÞ in (10e) is the output of the following system:

’%xx%xxd ¼ f ð %xxd; %xxp; %uu;wÞ

’xxd ¼ f ðxd;xp;fð *uuþ %uuÞ;wÞ

*yy ¼ #hhðxd; *mmþ %mm;wÞ � #hhð %xxd; %mm;wÞ

where #hh is globally Lipschitz and m and %mm (defined by (2), (5), (10b)) are functions of xp; *uu; %xxp and
%uu: Thus the *uu and *mm equations of (11) (using (10)) are equivalent to

Hð *uu; *mm; x; %uu; %mm; %xxd;xd;wÞ

:¼
*uu�Duccð *uuþ %uuÞ �Duyð #hhðxd; *mmþ %mm;wÞ � #hhð %xxd; %mm;wÞÞ � Cux

�Dmccð *uuþ %uuÞ þ *mm�Dmyð #hhðxd; *mmþ %mm;wÞ � #hhð %xxd; %mm;wÞÞ � Cmx

2
4

3
5 ¼ 0

where for given ð %uu; %mm; %xxd;xd;wÞ the function Hð�; �; �; %uu; %mm; %xxd;xd;wÞ is globally Lipschitz. Then the
Jacobian of H with respect to its first two arguments and its third wherever they exist can be
written as

J *uu; %mmH ¼
I �DucJ *uucð *uuþ %uuÞ �DuyJ *mm

#hhðxd; *mmþ %mm;wÞ

�DmcJ *uucð *uuþ %uuÞ I �DmyJ *mm
#hhðxd; *mmþ %mm;wÞ

2
4

3
5; JxH ¼

�Cu

�Cm

" #
ð37Þ

where J *uucð *uuþ %uuÞ denotes the Jacobian of c evaluated at *uuþ %uu and J *mm
#hhðxd; *mmþ %mm;wÞ is the

Jacobian of the second argument of #hh evaluated at ðxd; *mmþ %mm;wÞ: By inequality (13), it follows that
almost everywhere J *uucð *uuþ %uuÞ satisfies hJ *uucð *uuþ %uuÞ; I � J *uucð *uuþ %uuÞiW50: Then it follows that

J *uucð *uuþ %uuÞ 2 fJ : �2JTWJ þWJ þ JTW50g for almost all *uu 2 Rnu ; %uu 2 Rnu

By loop transformation, we can state

J *uu cð *uuþ %uuÞ �
*uu

2

� �
2 J : JTWJ4

1

4
W

� �
for almost all *uu 2 Rnu ; %uu 2 Rnu ð38Þ

Additionally, the incremental sector property and Lemma 6 imply

hJ *mm
#hhðxd; *mmþ %mm;wÞ; J *mm

#hhðxd; *mmþ %mm;wÞiI4g2

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:1133–1168

G. GRIMM, A. R. TEEL AND L. ZACCARIAN1160



almost everywhere, which we also write as

J *mmð #hhðxd; *mmþ %mm;wÞÞ 2 fJ : JTJ4g2Ig almost everywhere ð39Þ

Then, combining (37)–(39), almost everywhere, the Jacobian of H with respect to its first two
arguments satisfies J *uu; %mmH 2 J *uu; *mmH where

J *uu; *mmH :¼
I �

Duc

2
�Duc *DDJ *uu �DuyDJ *mm

�
Dmc

2
�Dmc *DDJ *uu I �DmyDJ *mm

2
664

3
775; *DDJ *uu : *DDT

J *uuW
*DDJ *uu4

1

4
W ;DJ %mm : DT

J *mmDJ *mm4g2I

8>><
>>:

9>>=
>>;

and where the set J *uu; *mmH is compact and convex because it is a linear function of a compact and
convex set. Furthermore, since (26a) is negative definite, then the submatrix composed of the
intersection of the second, fifth and sixth rows and columns is also negative definite. By applying
a Schur complement to this submatrix, it follows that inequality (33) holds. By Lemma 5, each
matrix in the set J *uu; *mmH is non-singular. Thus by applying Lemma 4, for any given ð %uu; %mm; %xxd;xd;wÞ
there exist globally Lipschitz functions (of x) Z *uu;ð %uu; %mm; %xxd;xd;wÞ and Z *mm;ð %uu; %mm; %xxd;xd;wÞ such that *uu ¼
Z *uu;ð %uu; %mm; %xxd;xd;wÞðxÞ and *mm ¼ Z *mm;ð %uu; %mm; %xxd;xd;wÞðxÞ: Finally, the dynamics of the mismatch system (11) are
governed by

’xx ¼ Axþ Bcðcð %uuÞ þ jðZ *uu;ð %uu; %mm; %xxd;xd;wÞðxÞ; %uuÞÞ þ Byð #hhðxd; Z *mm;ð %uu; %mm; %xxd;xd;wÞðxÞ þ %mm;wÞ � #hhð %xxd; %mm;wÞÞ ð40Þ

Since the unconstrained closed-loop system is well-posed and the system y is forward complete,
the signals ð %uu; %mm; %xxd;xd;wÞ are well-defined. Thus, solutions of (40) are guaranteed to exist since
the right-hand side is Lipschitz in x and measurable in ð %uu; %mm; %xxd;xd;wÞ and the signals ð %uu; %mm; %xxd;wÞ
are assumed to be well-defined. Hence, we conclude that the mismatch system is well-posed. &

7.2. Proof of Theorem 6

The following lemmas, proven in References [29–31], respectively, will be useful for the proof of
Theorem 6.

Lemma 7 (Projection lemma [29, Lemma 3.1])
Given a symmetric matrix C 2 Rm�m and two matrices G; H of column dimension m; consider
the problem of finding some matrix L of compatible dimensions such that

Cþ GTLTH þHTLG50 ð41Þ

Denote by WG; WH any matrices whose columns form bases of the null space of G and H;
respectively. Then (41) is solvable for L if and only if

WT
HCWH50 ð42aÞ

WT
GCWG50 ð42bÞ

Lemma 8 (Packard [31])
Let R;Z 2 Rn�n be symmetric positive definite matrices. Then the two conditions

Z � R�15 0

rankðZ � R�1Þ4 naw
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hold if and only if there exist N 2 Rn�naw and M 2 Rnaw�naw ; with M ¼ MT > 0 such that

R N

$ M

" #
> 0;

R N

$ M

" #�1

¼
Z ?

$ ?

" #

where the symbol ‘?’ represents a matrix that we do not care to label.

Proof of Theorem 6
According to definitions (22)–(24) and (31), inequality (26a) coincides with inequality (25). We
will apply Lemma 7 to inequality (25) to show that there exists a feasible solution ðQ;L; d; g; tÞ to
(26) if and only if the condition MCRrðP;C; naw; *gg; *ggÞ in Definition 1 is feasible. In particular, we
will show that (42a) alone is equivalent to (16a) and that (42b) alone is equivalent to (16b).
However, the matrix inequalities (42a) and (42b) are coupled since each has some components
of the Q matrix. This coupling will be shown to be (16d)–(16g).

Condition (16a): According to (22b), (24b), H can be written as

H ¼

0 0 Inaw 0 0 0 0 0

0 Inc 0 0 0 0 0 0

DT
u B

T
p;u DT

p;yuD
T
y B

T
c;y 0 DT

u 0 DT
uD

T
p;zu 0 *ggDT

uD
T
p;mu

2
664

3
775 ð43Þ

According to this special structure, a matrix that spans the null space of H is

WH ¼

Inp 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�BT
p;u 0 �DT

p;zu 0 � *ggDT
p;mu

0 �Inu 0 0 0

0 0 Inz 0 0

0 0 0 Iny 0

0 0 0 0 Inm

2
6666666666666666664

3
7777777777777777775

ð44Þ

Indeed, by the assumption of well-posedness of the desirable closed-loop system, Du is full rank,
hence, according to (43), the dimension of the null space of H is necessarily np þ nu þ nz þ
ny þ nm: Moreover, the rank of WH is np þ nu þ nz þ ny þ nm and it can be verified by
computation that HWH ¼ 0:
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Assume that, according to (20), the matrix Q is partitioned as follows:

R N

$ M

" #
¼ Q;

R11 R12

$ R22

" #
¼ R ð45Þ

then inequality (42a) and be computed explicitly based on Equations (44) and (24a) with (22a),
(22c). After some computations it is seen that

WT
HCWH ¼

R11A
T
p þ ApR11 Bp;u R11C

T
p;z tBp;y *ggR11C

T
p;m

$ �gI DT
p;zu 0 *ggDT

p;mu

$ $ �gI tDp;zy 0

$ $ $ �tI 0

$ $ $ $ �tI

2
6666666664

3
7777777775

ð46Þ

Condition (16b): According to (24c), the matrix G can be factorized as follows:

G ¼ GO
%TT ¼ ½G1Q G2U G2 0 0 0�

¼ ½G1 G2 G2 0 0 0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GO

diagðQ;U; I ; I ; I ; IÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
*TT

where GO 2 RðnawþnuÞ�ðnþnuþnuþnzþnyþnmÞ and %TT 2 RðnþnuþnuþnzþnyþnmÞ�ðnþnuþnuþnzþnyþnmÞ and n ¼ nx þ
naw: Since %TT is non-singular (indeed, Q > 0 and U > 0 by assumption), we can write

WT
GCWG ¼ WT

G
%TT %TT�1C %TT�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

F

%TTWG|fflffl{zfflffl}
WGO

¼ WT
GO
FWGO

ð47Þ

where WGO
spans the null space of GO and, according to the definitions P ¼ Q�1 and U ¼ W�1;

F ¼

PA0 þ AT
0P PBc0 þ CT

u0W PBc0 CT
z0 tPBy *ggCT

m0

$ WDuc0 þDT
uc0W � 2W WDuc0 DT

zc0 tWDuy *ggDT
mc0

$ $ �gI DT
zc0 0 *ggDT

mc0

$ $ $ �gI tDzy 0

$ $ $ $ �tI t *ggDT
my

$ $ $ $ $ �tI

2
6666666666664

3
7777777777775

ð48Þ

Based on (22b), we can write explicitly the entries of GO as

GO ¼ ½G1jG2 G2 0 0 0� ¼
0 0 Inaw 0 0 0 0 0

0 0 0 Inu Inu 0 0 0

" #
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Hence, a matrix WGO
2 RðnpþncþnawþnuþnuþnzþnyþnmÞ�ðnpþncþnuþnzþnyþnmÞ that spans the null space of

GO is

WGO
:¼

Inp 0 0 0 0 0

0 Inc 0 0 0 0

0 0 0 0 0 0

0 0 Inu 0 0 0

0 0 �Inu 0 0 0

0 0 0 Inz 0 0

0 0 0 0 Iny 0

0 0 0 0 0 Inm

2
666666666666666664

3
777777777777777775

ð49Þ

Based on the following partition of the matrix P:

P ¼
P11 P12

$ P22

" #
ð50Þ

we can compute explicitly inequality (42b) based on (47) and on the definitions (48) and (49),
and substituting (22a) and (22c) into the entries of F: After some computations the following
inequality is obtained:

WT
GCWG ¼

P11ACL þ AT
CLP11 CT

CL;uW CT
CL;z tP11BCL;y *ggCT

CL;m

$ �gI � 2W 0 tWDCL;uy 0

$ $ �gI tDCL;zy 0

$ $ $ �tI t *ggDCL;my

$ $ $ $ �tI

2
666666664

3
777777775

ð51Þ

By premultiplying and postmultiplying by the symmetric matrix diagðS;U; I ; I ; IÞ (where
S ¼ P�1

11 and U ¼ W�1), then WT
GCWG50 if and only if

ACLS þ SAT
CL SCT

CL;u SCT
CL;z tBCL;y *ggSCT

CL;m

$ �gU2 � 2U 0 tDCL;uy 0

$ $ �gI tDCL;zy 0

$ $ $ �tI t *ggDCL;my

$ $ $ $ �tI

2
666666664

3
777777775
50 ð52Þ

Conditions (16f) (16g): Since P ¼ Q�1; and S ¼ P�1
11 ; then from (45) and (50) we have

Q ¼
R N

$ M

" #
> 0; Q�1 ¼ P ¼

S�1 P12

$ P22

" #
ð53Þ
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which can be rewritten as follows:

R N

$ M

" #
> 0;

R N

$ M

" #�1

¼
S�1 P12

$ P22

" #
ð54Þ

By virtue of Lemma 8 expressions (54) are equivalent to

S�1 � R�150 ð55aÞ

rankðS�1 � R�1Þ4naw ð55bÞ

Premultiplying and postmultiplying the matrices in Equation (55b) by S and R; respectively,
and performing a Cholesky factorization (see, e.g. Reference [32, p. 195]) on (55a), we get
conditions (16f) and (16g), thus completing the proof of the necessity part of item 1. To prove
the sufficiency in item 1, the above reasoning can be reversed. In particular, conditions (16f),
(16g) imply (55), which by Lemma 8 imply the existence of M; N satisfying (53). Finally, by
(16a) and (16b) with U constructed according to Step 3 of Procedure 1, inequalities (46) and (52)
hold with g4*gg: Hence, WT

HCWH50 and WT
GCWG50 and by Lemma 7, inequality (41) holds

too. This, in turn, implies that (26) is solvable.
Finally, we prove item 2 of the theorem. Since (25) coincides with (26) with the selection for Q

(18)–(20), then provided the matrix Q satisfies expression (53) the proof of the sufficiency of item
1 can be followed verbatim to show that (25) is solvable with (18)–(20). To show that
construction (18)–(20) for Q satisfies (53), note that by the formulae for the inversion of block
matrices [33, p. 23], the upper left block of P needs to satisfy

P11 ¼ S�1 ¼ R�1 þ R�1NðM �NTR�1NÞ�1NTR�1

which, when premultiplied and postmultiplied by R and substituting selection (19) for M;
becomes

RþNNT ¼ RS�1R

which, by (18), is always satisfied.

8. CONCLUSIONS

In this paper we proposed an LMI-based robust construction for optimal linear anti-windup
compensation for linear systems. We showed that the problem has a solution (of order equal to
that of the plant) if and only if the plant and the unconstrained closed-loop are asymptotically
stable. We also proved other interesting properties of this anti-windup design approach. By
selecting the performance level as the L2 norm of the deviation of the actual response from the
unconstrained response, we provided LMIs that characterize a family of compensators inducing
optimal performance. Future work may include choosing from this family compensators that
also optimize other performance measures. The effectiveness of the proposed construction is
shown via a simulation example, by comparing the results to other existing techniques.

APPENDIX A: EXPLICIT EXPRESSIONS OF THE CLOSED-LOOP MATRICES

For completeness, we compute the explicit matrices appearing in systems (4), (8), (11) and (15).

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2004; 14:1133–1168

ANTI-WINDUP SYNTHESIS 1165



Since the interconnection of the unconstrained closed-loop system is well-posed we know that
Dy :¼ ðI �Dp;yuDc;yÞ

�1 and Du :¼ ðI �Dc;yDp;yuÞ
�1 are well defined (namely the matrices in

parentheses are non-singular). We consider the interconnection between the saturated plant (5)
and the modified controller (6) where the function fðuÞ ¼ u� cðuÞ is replaced by u� q; and now
q; v and w are considered external inputs. Then the y and u output equations in (5) and (6) can be
written as

y ¼DyðCp;yxp þDp;yuCcxc �Dp;yuqþ ðDp;yuDc;w þDp;ywÞwþDp;yyyþDp;yuv2Þ

u ¼DuðDc;yCp;yxp þ Ccxc �Dc;yDp;yuqþ ðDc;yDp;yw þDc;wÞwþDc;yDp;yyyþ v2Þ
ðA1Þ

Equations (A1) can be used to rewrite the remaining equations in (5) and (6) as

’xxp ¼Bp;uDuðCcxc þDc;yCp;yxp �Dc;yDp;yuqþ ðDc;yDp;yw þDc;wÞwþDc;yDp;yyyþ v2Þ

þ Apxp � Bp;uqþ Bp;wwþ Bp;yy

’xxc ¼Bc;yDyðCp;yxp þDp;yuCcxc þDp;yuv2 �Dp;yuqþ ðDp;yuDc;w þDp;ywÞwþDp;yyyÞ

þ Acxc þ Bc;wwþ v1

z ¼Dp;zuDuðCcxc þDc;yCp;yxp �Dc;yDp;yuqþ ðDc;yDp;yw þDc;wÞwþ v2 þDc;yDp;yyyÞ

þ Cp;zxp �Dp;zuqþDp;zwwþDp;zyy

m ¼Dp;muDuðDc;yCp;yxp þ Ccxc �Dc;yDp;yuqþ ðDc;yDp;yw þDc;wÞwþDc;yDp;yyyþ v2Þ

þ Cp;mxp �Dp;muq

ðA2Þ

Based on these equations it becomes clear that the saturated plant and modified controller can
be written as the system in (8) with

ACL ¼
Ap þ Bp;uDuDc;yCp;y Bp;uDuCc

Bc;yDyCp;y Ac þ Bc;yDyDp;yuCc

" #
; BCL;c ¼

�Bp;uDu

�Bc;yDyDp;yu

" #

BCL;w ¼
Bp;w þ Bp;uDuðDc;yDp;yw þDc;wÞ

Bc;w þ Bc;yDyðDp;yuDc;w þDp;ywÞ

" #
; BCL;v ¼

0 Bp;uDu

I Bc;yDyDp;yu

" #

BCL;y ¼
Bp;y þ Bp;uDuDc;yDp;yy

Bc;yDyDp;yy

" #

CCL;z ¼ ½Dp;zuDuDc;yCp;y þ Cp;z Dp;zuDuCc�; DCL;zc ¼ �Dp;zuDu

DCL;zw ¼Dp;zw þDp;zuDuðDc;yDp;yw þDc;wÞ; DCL;zv ¼ ½0 Dp;zuDu�

DCL;zy ¼Dp;zy þDp;zuDuDc;yDp;yy

ðA3Þ

CCL;u ¼ ½DuDc;yCp;y DuCc�; DCL;uc ¼ I � Du

DCL;uw ¼DuðDc;w þDc;yDp;ywÞ; DCL;uv ¼ ½0 Du�

DCL;uy ¼DuDc;yDp;yy
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CCL;m ¼ ½Cp;m þDp;muDuDc;yCp;y Dp;muDuCc�; DCL;mc ¼ �Dp;muDu

DCL;mw ¼Dp;muDuðDc;w þDc;yDp;ywÞ; DCL;mv ¼ ½0 Dp;muDu�

DCL;my ¼Dp;muDuDc;yDp;yy

If f � I and v � 0 and q � 0; then the system in (8) produces the same trajectories as the system
in (4). Thus the matrices in (A3) are also matrices that appear in (4).

As an intermediate step to construct the system in (11) define a system with state *xx :¼ x� %xx;
define *yy according to (10e) and continue to use the definition q :¼ cðuÞ: This system can be
written by taking the difference between the systems in (4) and in (8) resulting in

H

’*xx*xx ¼ ACL
*xxþ BCL;cqþ BCL;vvþ BCL;y

*yy

*uu ¼ CCL;u
*xxþDCL;ucqþDCL;uvvþDCL;uy

*yy

*zz ¼ CCL;z
*xxþDCL;zcqþDCL;zvvþDCL;zy

*yy

*mm ¼ CCL;m
*xxþDCL;mcqþDCL;mvvþDCL;my

*yy

8>>>>>><
>>>>>>:

ðA4Þ

System (A4) can be combined with the anti-windup compensator in (9) to construct the system
in (11) with matrices

A ¼
ACL BCL;vCaw

0 Aaw

" #
; Bc ¼

BCL;c þ BCL;vDaw

Baw

" #
; By ¼

BCL;y

0

" #

Cu ¼ ½CCL;u DCL;uvCaw�; Duc ¼ ðDCL;uc þDCL;uvDawÞ; Duy ¼ DCL;uy

Cz ¼ ½CCL;z DCL;zvCaw�; Dzc ¼ ðDCL;zc þDCL;zvDawÞ; Dzy ¼ DCL;zy

Cm ¼ ½CCL;m DCL;mvCaw�; Dmc ¼ ðDCL;mc þDCL;mvDawÞ; Dmy ¼ DCL;my

ðA5Þ
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