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Robust Linear Model Selection Based on

Least Angle Regression

Jafar A. Khan, Stefan Van Aelst, and Ruben H. Zamar ∗

June 13, 2007

Abstract

In this paper we consider the problem of building a linear prediction model

when the number of candidate predictors is large and the data possibly contains

anomalies that are difficult to visualize and clean. We aim at predicting the non-

outlying cases. Therefore, we need a method that is robust and scalable at the

same time. We consider the stepwise algorithm LARS which is computationally

very efficient but sensitive to outliers. We introduce two different approaches

to robustify LARS. The plug-in approach replaces the classical correlations in

LARS by robust correlation estimates. The cleaning approach first transforms

the dataset by shrinking the outliers toward the bulk of the data (which we

call multivariate Winsorization) and then applies LARS to the transformed

data. We show that the plug-in approach is time-efficient and scalable and
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that the bootstrap can be used to stabilize its results. We recommend the use

of bootstrapped robustified LARS to sequence a number of candidate predictors

to form a reduced set from which a more refined model can be selected.

KEY WORDS: Stepwise algorithm; Robust prediction; Computational com-

plexity; Winsorization; Bootstrap.

1 INTRODUCTION

Robust model selection has not received much attention in the robustness literature.

Most of the papers related to robust model selection in regression have focused on

the development of robust selection criteria that can be used to compare models.

Seminal papers that address this issue include Ronchetti (1985) and Ronchetti and

Staudte (1994) which introduced robust versions of the selection criteria AIC and Cp,

respectively. Maronna, Martin and Yohai (2006) proposed a robust Final Prediction

Error (FPE) criterion (see also Splus documentation) while Müller and Welsh (2005)

proposed a robust selection criterion based on a stratified bootstrap procedure. Ro-

bust selection criteria for more general models have been developed by Cantoni and

Ronchetti (2001) for generalized linear models and Ronchetti and Trojani (2001) for

generalized method of moments. In the latter context model selection can make

use of indirect inference (see Genton and Ronchetti 2003; Jiang and Turnbull 2004).

Atkinson and Riani (2002) proposed an added-variable t-test for variable selection

in the context of regression based on the forward search procedure. Morgenthaler,

Welsch, and Zenide (2003) constructed a selection technique to simultaneously iden-

tify the correct model structure as well as unusual observations. Ronchetti, Field,

and Blanchard (1997) proposed robust model selection by cross-validation.

A major drawback of most robust model selection methods is that they are very
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time consuming, as they require the robust fitting of a large number of submodels.

One exception is a model selection procedure based on the Wald test (Sommer and

Huggins 1996) which requires the computation of estimates only from the full model.

However, our purpose is to develop a procedure that can handle a large number d of

possible predictors - e.g. several hundreds or even thousands of candidate predictors.

In such cases a robust fit of the ‘full model’ may not be feasible due to the numerical

complexity of robust estimates when d is very large (e.g. d ≥ 200) or simply because

d exceeds the number of cases, n.

Our model selection strategy proceeds in two steps. The first step - which we call

sequencing - quickly screens out unimportant variables to form a “reduced set” for

further consideration. Thus, the goal of the first step is a drastic reduction of the

number of candidate predictors. The input variables are sequenced to form a list such

that the good predictors appear in the beginning. The first m variables of the list

then form the reduced set from which the prediction model will be obtained. The

second step - which we call segmentation - carefully examines the predictors in the

reduced set for possible inclusion in the prediction model. For the segmentation in

the second step, the aforementioned robust selection techniques can be used because

the set of candidate predictors has been reduced to a feasible size.

In this paper we focus on sequencing the candidate predictors in order of im-

portance. One strategy for sequencing the candidate predictors is to use one of the

several available stepwise or stagewise procedures such as forward selection (see, e.g.

Weisberg 1985, chap. 8) or stagewise forward selection (SFS) (see Hastie, Tibshirani,

and Friedman 2001, chap. 10). We focus on a powerful technique recently proposed by

Efron, Hastie, Johnstone, and Tibshirani (2004) called least angle regression (LARS)

which is computationally very efficient. We show that LARS is based on sample

means, variances and correlations. Therefore, it is very fast to compute but yields
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poor results when the data is contaminated. This is a potentially serious deficiency.

To remedy this, we propose several approaches to strengthen the robustness proper-

ties of LARS without affecting its computational efficiency too much and compare

their behavior.

Note that affine equivariance and regression equivariance are generally considered

to be important properties for (robust) regression estimators. However, these proper-

ties are not required in the context of variable selection, because we do not consider

general linear transformations of the given covariates. The only transformations that

should not affect the selection result are linear transformations of individual vari-

ables, i.e., shifts and scale changes. Hence, variable selection methods (e.g. LARS)

are often based on correlations among the variables. Therefore, robust variable selec-

tion procedures need to be robust against correlation outliers, that is, outliers that

affect the classical correlation estimates but can not be detected by looking at the

individual variables separately. Our approaches are based on robust correlations esti-

mates. Hence, they are robust against correlation outliers and thus suitable for robust

variable selection.

The rest of the paper is organized as follows. In Section 2 we show that LARS

can be expressed in terms of the correlation matrix of the data. In Section 3, we

illustrate LARS’ sensitivity to outliers and introduce two different approaches to

robustify LARS. Section 4 presents the results of a simulation study that compares

the performance (and computing efficiency) of LARS and its robust alternatives.

In this section we also compare the sequences produced by our robust proposals

with the sequences produced by random forests (Breiman 2001). In Section 5 we

propose to use bootstrap to improve and stabilize the results obtained by robust

LARS. In Section 6 we give two real-data applications and compare the results of

robust LARS with those of random forests and multiple support vector machine
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recursive feature elimination (MSVM-RFE), proposed by Duan and Rajapakse (2005)

in the context of classification. Section 7 concludes and the Appendix contains some

technical derivations.

2 LEAST ANGLE REGRESSION

Efron et al. (2004) proposed Least Angle Regression which is closely related to SFS

and LASSO (Tibshirani 1996) procedures. LARS provides an ordering in which the

covariates enter a regression model. This sequence is usually the same as in LASSO

or SFS but obtained in a computationally efficient way.

The SFS procedure enters variables in small steps in the regression model to pre-

vent correlated predictors from being excluded from the top of the sequence. However,

this method often becomes time consuming due to the fact that often a large num-

ber of small steps are taken in the direction of the same variable. LARS solves this

problem by analytically determining the optimal step size for each variable.

Another convenient feature of LARS is that the resulting sequence of the covariates

can be derived from the correlation matrix of the data (without the observations

themselves). Let Y,X1, . . . ,Xd be the variables, standardized using their mean and

standard deviation. Let rj denote the correlation between Xj and Y, and let RX

be the correlation matrix of the covariates X1, . . . ,Xd. Suppose that Xm has the

maximum absolute correlation r with Y and denote sm = sign(rm). Then, Xm

becomes the first active variable and the initial fit Ŷ = 0 should be modified by

moving along the direction of smXm a certain distance γ that can be expressed in

terms of the correlations between the variables (see Appendix A for details). By

determining γ, LARS simultaneously identifies the new covariate that enters the

model, that is, the second active variable.
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As soon as we have more than one active variable, LARS modifies the current

fit Ŷ along the equiangular direction which is the direction that has equal angle

(correlation) with all active covariates. Moving along this direction ensures that the

correlation of each active covariate with the residual decreases equally. Let A be the

set of subscripts corresponding to the active variables. In Appendix B the standard-

ized equiangular vector BA is derived. Note that we do not need the direction BA

itself to decide which covariate enters the model next. We only need the correlation

of all variables (active and inactive) with BA. These correlations can be expressed

in terms of the correlation matrix of the variables as shown in Appendix B. LARS

modifies the current fit by moving along BA up to a certain distance γA which, again,

can be determined from the correlations of the variables (see Appendix C).

We now summarize the LARS algorithm in terms of correlations rj between Xj

and Y, and the correlation matrix RX of the covariates:

1. Set the active set, A = ∅, and the sign vector sA = ∅.

2. Determine m = argmax
j
|rj|, and sm = sign{rm}. Let r = smrm.

3. Put A← A ∪ {m}, and sA ← sA ∪ {sm}.

4. Let RA be the submatrix of RX corresponding to the active variables. If

detRA = 0 then stop. Otherwise, calculate a = [1′

A(DARADA)−11A]−1/2, where

1A is a vector of 1’s and DA = diag(sA). Calculate wA = a (DARADA)−11A,

and aj = (DArjA)′wA, for j ∈ Ac, where rjA is the vector of correlations be-

tween Xj and the active variables. (Note that, when there is only one active

covariate Xm, the above quantities simplify to a = 1, w = 1, and aj = rjm.)

5. For j ∈ Ac, calculate γ+
j = (r − rj)/(a − aj), and γ−j = (r + rj)/(a + aj),

and let γj = min(γ+
j , γ

−

j ). Determine γ = min{γj, j ∈ Ac}, and m, the index
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corresponding to the minimum γ = γm. If γm = γ+
m, set sm = +1. Otherwise,

set sm = −1. Update r ← r − γa, and rj ← rj − γaj, for j ∈ Ac.

6. Repeat steps 3, 4 and 5.

3 ROBUST LARS

From the results in Section 2, it is not surprising to see that LARS is sensitive to

contamination in the data. To illustrate this, we use a dataset on executives obtained

from Mendenhall and Sincich (2003). The annual salary of 100 executives is recorded

as well as 10 potential predictors (7 quantitative and 3 qualitative) such as education,

experience etc. We label the candidate predictors from 1 to 10. LARS sequences

the covariates in the following order: (1, 3, 4, 2, 5, 6, 9, 8, 10, 7). We contaminate the

data by replacing one small value of predictor 1 (less than 5) by the large value

100. When LARS is applied to the contaminated data, we obtain the following

completely different sequence of predictors: (7, 3,2,4, 5,1,10,6,8,9). Predictor 7,

which was selected last (10th) in the clean data, now enters the model first. The

position of predictor 1 changes from first to sixth. Predictors 2 and 4 interchange

their places. Thus, changing a single number in the data set completely changes

the predictor sequence. As one can expect, a nonrobust follow up analysis (similar

as for the examples in Section 6) based on the LARS sequence of the contaminated

data would lead to an inferior model (in terms of prediction error) that excludes the

important first predictor. This example thus illustrates the sensitivity of LARS to

contamination.

We now introduce two approaches to robustify LARS which we call plug-in robust

LARS and cleaning robust LARS.
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3.1 Plug-in Robust LARS

The plug-in robust LARS approach consists of replacing the non-robust building

blocks of LARS (mean, variance and correlation) by robust counterparts. The choices

of fast computable robust center and scale measures are straightforward: median

(med) and median absolute deviation (mad) which are used to robustly standardize

the data. Unfortunately, good available robust correlation matrix estimators are

computed from the d-dimensional data and therefore are very time consuming (see

e.g. Rousseeuw and Leroy 1987). Therefore, we resort to robust approaches that

first calculate pairwise correlations one at the time and assemble them to form the

correlation matrix (see Huber 1981).

To obtain robustness against two-dimensional structural outliers we can use ro-

bust correlations derived from a pairwise affine equivariant covariance estimator. A

computationally efficient choice is the bivariate M-estimator defined by Maronna

(1976). Alternatively, the robust correlation estimator of Gnanadesikan and Ket-

tenring (1972) or the related OGK estimator (Maronna and Zamar 2002) can be

used. For very large, high-dimensional data we need an even faster robust corre-

lation estimator. Huber (1981) introduced the idea of univariate Winsorization of

the data, and suggested that classical correlation coefficients be calculated from the

Winsorized data. Alqallaf, Konis, Martin, and Zamar (2002) re-examined this ap-

proach for the estimation of individual elements of a high-dimensional correlation

matrix. For n univariate observations x1, x2 . . . , xn, the transformation is given by

ui = ψc((xi − med(xi))/mad(xi)), i = 1, 2, . . . , n, where the Huber score function

ψc (x) is defined as ψc (x) = min{max{−c, x}, c}, with c a tuning constant chosen by

the user, e.g., c = 2 or c = 2.5. Note that in our case med(xi) = 0 and mad(xi) = 1

because we used med and mad to robustly standardize the data.
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Figure 1: Illustration of the limitations of separate univariate Winsorizations (c =
2) when computing robust correlation estimates. The correlation outliers are only
shrunken to the boundary of the square.

The univariate Winsorization approach is very fast to compute but unfortunately

it does not take into account the orientation of the bivariate data. It brings the

outlying observations to the boundary of a 2c × 2c square, as shown in Figure 1.

This plot clearly shows that the univariate approach does not resolve the effect of

the obvious correlation outliers at the bottom right which are shrunken to the corner

(2, −2), and thus are left almost unchanged.

Bivariate Winsorization. To remedy this problem, we propose a bivariate

Winsorization of the data based on an initial robust bivariate correlation matrix R0

and corresponding tolerance ellipse. Outliers are shrunken to the border of this ellipse

by using the bivariate transformation u = min(
√

c/D(x), 1) x with x = (x1, x2)
t.

Here D(x) is the Mahalanobis distance based on some initial bivariate correlation

matrix R0. For the tuning constant c we used c = 5.99, the 95% quantile of the χ2
2

distribution. The choice of R0 is discussed below.

The initial correlation estimate. Choosing an appropriate initial correlation

matrix R0 is an essential part of bivariate Winsorization. In principle, we could use

any robust bivariate scatter estimate but for computational convenience we propose a
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new method called adjusted Winsorization. This method considers quadrants relative

to the coordinatewise medians (which in our case are zero due to the robust standard-

ization of the data) and uses two tuning constants to perform univariate Winsorization

of the data. A larger tuning constant c1 is used to Winsorize the points lying in the

two diagonally opposed quadrants that contain the majority of the standardized data

(called the “major quadrants”). A smaller tuning constant c2 is used to Winsorize

the remaining data. In this paper we use c1 = 2 and c2 =
√
hc1, where h = n2/n1, n1

is the number of observations in the major quadrants and n2 = n − n1. The initial

correlation matrix R0 is obtained by computing the classical correlation matrix of

the adjusted Winsorized data.
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Figure 2: Adjusted Winsorization for computing the initial robust correlation estimate
R0 (with c1 = 2 and c2 =

√
hc1). The outlying points are shrunken to the edges or

corners of the squares.

Figure 2 shows how adjusted Winsorization deals with bivariate outliers, which

are now shrunken to the boundary of the smaller square. Thus, adjusted Winsoriza-

tion handles correlation outliers much better than univariate Winsorization. Figure 3

shows the tolerance ellipses used for bivariate Winsorization of both the complete

10



data set of Figure 1 and the data set excluding the outliers. The ellipse for the con-

taminated data is only slightly larger than that for the clean data. By using bivariate

Winsorization the outliers are shrunken to the boundary of the larger ellipsoid, and

thus appropriately downweighted so that a robust correlation estimate is obtained.

Although the initial adjusted Winsorization and the resulting bivariate Winsorization

are not affine equivariant, they are very fast to compute and appropriately handle

correlation outliers as illustrated in Figures 2 and 3.
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Figure 3: Bivariate Winsorization tolerance ellipses for clean (smaller ellipse) and
contaminated (larger ellipse) data. The ellipses connect points of equal Mahalanobis
distance (2.45), which is based on the coordinatewise median as robust center and
the adjusted Winsorized correlation matrix R0. To calculate the bivariate Winsorized
correlation estimate of the contaminated data, the points outside the largest ellipse
are shrunken towards the boundary of that ellipse.

Note that the correlations based on univariate Winsorization and adjusted Win-

sorization both can be computed in O(n log n) time. The bivariate Winsorized es-

timate and Maronna’s M-estimate also require O(n log n) time, but Maronna’s M-

estimate has a larger multiplication factor depending on the number of iterations

required. Thus for large n, the bivariate Winsorized estimate is much faster to com-

pute than Maronna’s M-estimate.
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We conducted a small numerical experiment to compare the computation times of

the univariate and adjusted Winsorized correlation estimates which are the two candi-

dates to serve as initial estimators for the bivariate Winsorized correlation estimator.

We also report the computing times for the bivariate Winsorized correlation estimate

(using adjusted Winsorization for the initial correlation estimate R0) and Maronna’s

bivariate correlation M-estimate. Figure 4 shows for each of the four correlation esti-

mates the mean cpu times in seconds (based on 100 replicates) for 5 different sample

sizes: 10000, 20000, 30000, 40000 and 50000. From this plot we see that calculating

the adjusted Winsorized correlation estimate for a particular sample size n requires

slightly more time than the univariate Winsorized estimate. However, the adjusted

Winsorized correlation estimate is much more accurate in the presence of bivariate

outliers as illustrated above. Hence, by using the adjusted Winsorized correlation

estimate as initial estimate for the bivariate Winsorized estimate we gain much ro-

bustness for a very small increase in computation time. The results in Figure 4 also

confirm that the bivariate Winsorized estimate is faster to compute than Maronna’s

M-estimate and the time difference increases with sample size. Numerical results (not

presented here) showed that the bivariate Winsorized estimate is almost as accurate

as Maronna’s M-estimate in the presence of contamination.

3.2 Data Cleaning Robust LARS

If the dimension d is not too large and the relative sample size is not too small (d ≤ 50

and n/d ≥ 3, say), an alternative approach to robustify LARS is to apply it on cleaned

data. For example, each standardized d-dimensional data point x = (x1, . . . , xd)
t

can be replaced by its Winsorized counterpart u = min(
√

c/D(x), 1) x in the d-

dimensional space. Here D(x) = x
tV−1

x, is the Mahalanobis distance of x based on

V, a fast computable, robust initial correlation matrix. A reasonable choice for the
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Figure 4: Average computing times for four different correlation estimators. The cor-
relation estimators are the univariate Winsorized (Uni-Winsor), adjusted Winsorized
(Adj-Winsor) and bivariate Winsorized (Bi-Winsor) correlation estimators as well as
Maronna’s correlation M-estimator (Maronna).

tuning distance c is c = χ2
d(0.95), the 95% quantile of the χ2

d distribution.

The initial correlation matrix V. The choice of the initial correlation matrix

V is an essential part of the Winsorization procedure. Most available high-breakdown,

affine-equivariant methods are inappropriate for our purposes because they are too

computationally intensive. Therefore, we again resort to pairwise approaches, that

is, methods in which each entry of the correlation matrix is estimated separately

(see Alqallaf et al. 2002). As before we will use bivariate Winsorization to compute

the entries of V and positive-definiteness of the resulting matrix can be restored, if

needed, using the approach in Maronna and Zamar (2002).
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4 SIMULATIONS

To investigate the behavior of our robust LARS proposals we consider a simulation

setting similar to that in Frank and Friedman (1993). We first create a linear model

y = L1 + L2 + · · ·+ Lk + σε, (1)

with k latent variables, where L1, L2, . . . , Lk and ε are independent standard normal

variables. The value of σ is chosen so that the signal to noise ratio is equal to 3. A set

of d candidate predictors is created as follows. Let e1, ..., ed be independent standard

normal variables and let

Xi = Li + τei, i = 1, ..., k

Xk+1 = L1 + δek+1

Xk+2 = L1 + δek+2

Xk+3 = L2 + δek+3

Xk+4 = L2 + δek+3

...

X3k−1 = Lk + δe3k−1

X3k = Lk + δe3k

and Xi = ei i = 3k + 1, ..., d

The constants δ = 5 and τ = 0.3 are chosen so that corr (X1, Xk+1) = corr (X1, Xk+2) =

corr (X2, Xk+3) = · · · = corr (Xk, X3k) = 0.5. Note that covariates X1, ..., Xk are “low

noise” perturbations of the latent variables and constitute our “target covariates”.

Variables X3k+1, ..., Xd are independent noise covariates and variables Xk+1, ..., X3k

14



are noise covariates which are correlated with the target covariates.

To allow for a fraction ǫ of outliers we considered the following sampling distribu-

tions, listed in increasing order of difficulty:

(1) ε ∼ N (0, 1), no contamination;

(2) ε ∼ (1− ǫ)N (0, 1) + ǫ N (0, 1) /Uniform(0, 1), symmetric, slash contamination;

(3) ε ∼ (1− ǫ)N (0, 1) + ǫ N (20, 1), asymmetric, shifted normal contamination;

(4) same as (2), except that contaminated cases come along with high leverage X–

values (normal random variables with mean 50 and variance 1 in our simulation);

(5) same as (3), but with high leverage outliers, as described in (4).

To compare classical LARS with our two robust alternatives we generated 500

independent samples of size n = 150 from the five simulation designs described above,

with k = 6 latent variables and d = 50 candidate covariates. For each of these

datasets we sequenced the variables using LARS, plug-in robust LARS and cleaning

robust LARS. We also compare our robust procedures with the sequences generated by

random forests (Breiman 2001). Random forests can sequence the covariates using two

measures of “covariate importance” which are part of the output in the random forest

R package implementation. The first measure is based on “out-of-bag predictions”

(OOB) and the second measure is based on “impurity” (IMP). Variable selection using

random forests is often based on these measures (see e.g. Dı́az-Uriarte and Alvarez

de Andrés 2006; Torkkola and Tuv 2006).

To summarize the simulation results, we determine for each sequence the number

tm of target variables included in the first m sequenced variables, with m ranging

between 1 and 20. Figure 5 shows the average (over the 500 datasets) of tm for each

15



of the methods and sampling situations. We display here the results for the case

ǫ = 0.10. Other levels of contamination have been considered as well and the results

lead to the same conclusions as shown in the accompanying technical report available

at http://www.amstat.org/publications/jasa/supplemental materials.

From Figure 5 (a) we see that the five procedures perform well in the uncon-

taminated case. Figures 5 (b)-(e) show that, as expected, the performance of LARS

considerably deteriorates under contamination. On the other hand, the robustified

LARS procedures are much less affected by contamination. In the designs without

leverage, plug-in robust LARS shows the best performance, while in the high lever-

age designs cleaning robust LARS is better. Random forests shows robust behavior

under symmetric contamination (Figures 5(b) and (d)) while its performance dete-

riorates under asymmetric contamination (Figures 5(c) and (e)). Note that plug-in

robust LARS is also affected, to some extend, by high leverage asymmetric outliers

(Figure 5(e)).

Now, we compare the computational complexity of the different methods. Classi-

cal LARS sequences all d covariates in only O(nd2) time. The plug-in and cleaning

procedures based on M-estimators both require O((n log n)d2) time. Based on Win-

sorization these procedures also require O((n log n)d2) time, but with a much smaller

multiplication factor. Moreover, if we are only interested in sequencing the top frac-

tion of a large number of covariates, then the plug-in approach is much faster than

the cleaning approach, because the plug-in approach only calculates the required

correlations along the way instead of the ‘full’ correlation matrix. In this case, the

complexity for plug-in methods reduces to O((n log n)dm), where m is the number of

sequenced variables.

Figure 6 shows the mean cpu times based on 10 replicates for LARS and plug–

in robust LARS for different dimensions d with a fixed sample size n = 2000. For
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(d) Slash contamination/high leverage (e) Normal contamination/high leverage
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Figure 5: Averages of the number of target variables tm versus m for each of the
methods and sampling situations considered. We generated datasets with d = 50
predictors, k = 6 latent variables, and 10% of contamination (ǫ = 0.1). The lines
shown in all plots follow the legend of figure (a).
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comparison purposes we also show the computing time of plug–in robust LARS when

the robust pairwise correlations are computed using Maronna’s bivariate M-estimator.

The times required by the corresponding cleaning methods are not shown because

they are similar to the plug-in times, since we sequenced all the covariates. The

approach based on Maronna’s M-estimates are clearly more time consuming and the

difference increases fast with dimension. Moreover, simulation results given in the

technical report at http://www.amstat.org/publications/jasa/supplemental materials

show that plug-in robust LARS based on bivariate Winsorization performs better

than plug-in robust LARS based on bivariate correlation M-estimates.

50 100 150 200 250 300

0
50

10
0

15
0

dimension

cp
u 

tim
e

LARS
W plug−in
M plug−in

Figure 6: Average computation times for the nonrobust LARS procedures and its
plug-in robustifications using bivariate Winsorization (W plug-in) or bivariate corre-
lation M-estimates (M plug-in).

The plug-in approach can be considerably less time-consuming when only a part

of the predictors are sequenced. This feature is not shared by the cleaning approach.

Moreover the plug-in approach has a wider applicability as it can be used even when

the dimension d exceeds the sample size n. Since plug-in has a reasonable performance
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compared to the other methods, this method is to be preferred, specially for large,

high-dimensional datasets.

The performance of plug-in robust LARS is studied further below. For simplicity

we will call this method robust LARS from now on. In particular, we show that the

performance of robust LARS can be improved using the bootstrap.

5 BOOTSTRAPPED SEQUENCING

To obtain more stable and reliable results we can combine robust LARS (RLARS)

with bootstrap. This idea has been used in random forests and in other settings (see

for example Hastie et al. 2001). We generate B bootstrap samples from the original

dataset, and for each bootstrap sample use RLARS to sequence of covariates. For

each covariate we then calculate the average rank over the B bootstrap samples. The

m covariates with the smallest average ranks form the reduced set.

When dealing with high-dimensional datasets it may not be convenient (or even

possible) to sequence all the covariates for each bootstrap sample. Note that the

original sample would already be singular if the dimension d of the data exceeds the

sample size (e.g. n = 150, d = 200 in our simulation below). We easily overcome this

problem by sequencing only the first m < n covariates for each bootstrap sample.

We then rank the covariates according to the number of times (out of B) they are

actually sequenced. When ties occur, the order of the covariates is determined by

their average rank in the sequences. The resulting procedure is called bootstrap robust

LARS and denoted B-RLARS.

We ran a simulation to compare B-RLARS with the initial RLARS and random

forests. In our simulation, we generated 250 datasets according to the simulation

design described in Section 4, with d = 200 candidate covariates, k = 10 target
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covariates and 10% high leverage outliers (that is, using the sampling distributions in

cases (4) and (5) of the previous section). We generated B = 50 bootstrap samples

from each of the simulated datasets and for each bootstrap sample we sequenced the

first 50 covariates.

(a) Slash contamination/high leverage (b) Normal contamination/high leverage
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Figure 7: Averages (over 250 datasets) of the number of target variables tm versus m
for each of the methods and sampling situations considered. We generated datasets
with d = 200 predictors, k = 10 latent variables, and 10% of contamination (ǫ = 0.1).

Figure 7 shows that applying the bootstrap considerably improves the perfor-

mance of RLARS. Note that the performance of random forests is worse in this

high-dimensional setting. Moreover, it is not clear which of the two measures of

importance (impurity or out-of-bag) should be preferred.

6 EXAMPLES

In this section we use two real datasets to further illustrate the performance of B-

RLARS.
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In practice we often don’t know the number of covariates that are needed in the

model. Hence, a graphical tool to select the size of the reduced set would be useful.

We use the following plot: Starting with the first variable in the sequence we increase

the number of variables (along the sequence) and each time fit a robust regression

model to compute a robust R2 measure such as R2 = 1 − Median(e2)/MAD2(Y),

where e is the vector of residuals from the robust fit (see also Rousseeuw and Leroy

1987). We then plot these robust R2 values against the number of variables in the

model to obtain a learning curve (see also Croux, Filzmoser, Pison, and Rousseeuw

2003). The size of the reduced set, m, can be selected as the point where the learning

curve does not have a considerable slope anymore. Note that since algorithms for

robust regression only provide an approximate solution, it can occur that the robust

R2 does not always increase with the number of covariates. The learning curve could

be extended by computing the robust R2 values for a number of bootstrap samples

to obtain standard error bars around the actual values. Similarly as in Hastie et al.

(2001), these standard errors can be used to select m as the size of the smallest model

that has robust R2 within the one-standard error range of the robust R2 value where

the curve levels off.

Demographic data. This dataset contains demographical information on the

50 states of the United States for 1980. The response variable is the murder rate per

100,000 residents. There are 25 predictors which we number from 1 to 25. Exploration

of the data using robust estimates and graphical tools revealed one clear outlier. To

select an optimal prediction model we used least squares regression on the dataset

without the outlier (called the “clean dataset”). We considered all possible subsets

of predictors and estimated the prediction error by using 5-fold CV. We selected the

“full CV-model” that yielded smallest CV prediction error. This model contains the

following 7 covariates (6, 9, 13, 14, 19, 20, 25).
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Figure 8 shows the learning curve for the Demographic data based on B-RLARS.

This plot suggests a reduced set of at most size 12, which includes the following

covariates (25, 18, 17, 20, 13, 12, 24, 10, 23, 11, 6, 21). We applied all subsets selection
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Figure 8: Learning curve for Demographic data.

to these 12 variables using 5-fold CV on the clean dataset. The model selected in this

case, called B-RLARS CV-model, has the following 6 covariates: (6, 13, 18, 20, 24, 25).

For comparison, we also obtained the optimal 5-fold CV-model (again using the

clean dataset) starting with the first 12 predictors sequenced by the standard nonro-

bust LARS. This yielded the model with the following 8 predictors: (4, 11, 13, 14, 17, 19,

20, 25), called the LARS-CV model. This model has only three variables in common

with the B-RLARS CV-model.

Random forests and regression support vector machines are two techniques that

are frequently used in the machine learning and bioinformatics communities because

they can handle high-dimensional data efficiently. Both techniques can perform vari-

able selection and can be used to sequence the variables. For random forests we use
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out of bag (OOB) prediction errors. For support vector machines (SVM), Duan and

Rajapakse (2005) proposed the multiple support vector machine recursive feature

elimination (MSVM-RFE) procedure in the context of classification (we have easily

adapted this procedure for regression support vector machines). Since both methods

are considered to have some degree of robustness, we compared these two techniques

with our robust approach.

To select the reduced set using random forests we first sequenced the variables

according to the out of bag (OOB) importance measure. Then we calculated the

OOB prediction error for each of the 25 possible subsequences formed by the first

m variables (m = 1, 2, ..., 25) in the sequence. Finally, we selected the subsequence

with the smallest OOB prediction error. This yielded the model with covariates

(17, 25, 18, 20, 24), called the RF-SEL model. Applying 5-fold CV to the clean data

using these 5 variables yielded the model with covariates (18, 20, 24, 25), called the

RF-SEL CV-model. For completion, we also selected the best model by 5-fold CV

starting from the reduced set of the first 12 variables according to the OOB importance

measure in random forests. This lead to the model with covariates (4, 18, 20, 24, 25)

which we call the RF-RED CV-model.

MSVM-RFE performs variable selection for SVM with linear kernel by using back-

ward elimination based on the prediction error estimated by multiple runs of 5-fold

CV. At each step, a measure of importance of the predictors is calculated based on

the size of its regression coefficient in each of the SVM fits in the CV procedure. The

least important predictor according to this measure is then eliminated. The MSVM-

RFE procedure based on 20 runs of 5-fold CV selected a model with 8 predictors,

(2, 6, 9, 13, 15, 18, 20, 25), which we call the MSVM-RFE model. We then applied 5-

fold CV to the clean data using this set of size 8. The model selected in this case,

called the MSVM-RFE CV-model, has the following 6 covariates: (6, 9, 13, 18, 20, 25).
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Figure 9: Densities based of 5-fold CV mean squared prediction error of the selected
models for the Demographic data. The densities are based on 1000 estimates of the
5-fold CV error. The densities of the RF-SEL and MSVM-RFE CV-models are not
shown because they are almost indistinguishable from the RF-SEL CV and B-RLARS
CV-models respectively.

To compare the models selected by the different procedures, we estimated the

mean squared prediction error (MSPE) for each of these models 1000 times using

5-fold CV. The density curves are shown in Figure 9. From this plot we clearly see

that the full CV-model is not stable. It yields highly variable CV-MSPEs. In fact,

some of the mean squared prediction errors were so large that we did not include them

in the plot. The LARS CV-model yields only a small improvement on the full CV-

model. The variance of the CV-MSPEs is still high. The models that resulted from

B-RLARS and random forest are far more stable. The B-RLARS CV-model yields

the best solution with the smallest average CV-MSPE as well as a small variance.

The 5-fold CV-MSPEs of the RF-SEL CV-model have the same variance but a larger
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mean and the CV-MSPEs of the RF-RED CV-model have an even larger mean as well

as a larger variance. We also determined the 5-fold CV-MSPEs of the RF-SEL model

with all five predictors selected by the OOB procedure. Although this model has one

predictor more than the RF-SEL CV-model, their CV-MSPE densities are almost

indistinguishable. The MSVM-RFE model with 8 predictors yields an CV-MSPE

density with a large mean as well as a large variance, and thus an undesirable result.

However, the MSVM-RFE CV-model considerably improves the initial model. Its

CV-MSPE density is not shown in Figure 9 as it overlaps with the CV-MSPE density

of the B-RLARS CV-model. Note that the B-RLARS CV and MSVM-RFE CV-

models both contain six predictors and they have 5 predictors in common. The only

difference between both models is that the B-RLARS CV-model contains predictor

24 whereas the MSVM-RFE CV-model contains predictor 9 instead.

Finally, note that we needed almost 10 days to find the best full CV-model, while it

took less than 5 minutes to determine the B-RLARS CV-model or the RF CV-models

and a little bit longer to determine the MSVM-RFE CV-model.

Protein data. This dataset of n = 145, 751 protein sequences was used for the

KDD-Cup 2004. Each of the 153 blocks correspond to a native protein, and each

data-point of a particular block is a candidate homologous protein. There are 75

variables in the dataset: the block number (categorical) and 74 measurements of

protein features. We use the first feature as the response. Though this analysis may

not be of particular scientific interest, it will demonstrate the scalability and stability

of the robust LARS algorithm.

We applied RLARS to this dataset, and obtained a reduced subset of size 25

from the original d = 225 covariates (152 block indicators + 73 features) in only

30 minutes. Given the huge computational burden of other robust variable selection

procedures, our algorithm may be considered extremely suitable for computations of
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Figure 10: Learning curve for Protein data.

this magnitude.

To further investigate the performance of B-RLARS with this dataset, we select 5

blocks with a total of n = 4141 protein sequences. These blocks were chosen because

they contain the highest proportions of homologous proteins (and hence the highest

proportions of potential outliers). We split the data of each block into two almost

equal parts to get a training sample of size n = 2072 and a test sample of size n = 2069.

The number of covariates is d = 77, consisting of 4 block indicators (variables 1− 4)

and 73 features. We applied B-RLARS with B = 100 bootstrap samples and for each

bootstrap sample we sequenced the first 50 variables. The resulting learning curve

is shown in Figure 10. This plot suggests a drastic reduction to a subset of only 5

covariates. The first 5 predictors found by B-RLARS are (14, 13, 5, 7, 76). By fitting

all possible submodels with MM-estimators and using robust FPE (see e.g. Maronna

et al. 2006) as selection criterion, we checked whether a better submodel of the 5

predictor model exists, but no submodel yielded a lower robust FPE value.

As in the previous example, we used random forests with its OOB importance
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measure to sequence the variables and used OOB prediction error to determine the

size of the reduced sequence. This yielded a model with 22 variables, that we call

the RF model. Since 22 variables are too many to determine an optimal submodel

using an exhaustive search, we only considered the 22 submodels that consist of the

first k (k = 1, . . . , 22) variables in the reduced sequence of 22 variables (sequenced

according to OOB-importance). Fitting these submodels with MM-estimators and

using robust FPE selection led to a model with 18 variables. We call this the RF-

RFPE model.

We also applied the MSVM-RFE procedure, which also resulted in a model with

22 predictors (of which 10 predictors are in common with the RF model). As with

RF, we considered the 22 submodels that consist of the first variables in the MSVM-

RFE sequence, sorted according to their MSVM-RFE importance (which corresponds

to the order by which variables are eliminated). Using MM-estimators and robust

FPE didn’t help to reduce the number of variables (the original model with all 22

covariates yielded the smallest robust FPE).

To compare the B-RLARS model with the RF, RF-RFPE, and MSVM-RFE mod-

els, we first fitted the models using the training data, and then used the fitted models

to predict the test data outcomes. Since the test data is likely to contain outliers as

well, we report the 1%, 5% and 10% trimmed means of squared prediction errors in

Table 1 (the largest errors are trimmed). From this table we can see that while the

MSVM-RFE and RF models have the same number of predictors, the MSVM-RFE

model is much worse than the RF-model. The RF-RFPE model does not improve

on the initial RF model, but its prediction errors are very similar while containing

4 predictors less. The trimmed prediction errors of the B-RLARS model are only

slightly larger than those of the RF and RF-RFPE models despite the large differ-

ence in dimensions. Hence, the B-RLARS procedure clearly managed to identify the
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Trimming fraction
Model 1% 5% 10%
B-RLARS 116.19 97.73 84.67
RF 111.11 93.80 81.30
RF-RFPE 111.30 93.92 81.27
MSVM-RFE 173.70 150.48 133.17

Table 1: Trimmed means of squared prediction errors in the protein test set, obtained
by the B-RLARS, RF, RF-RFPE, and MSVM-RFE models fitted on the protein
training data.

five most important predictors among the 77 candidate variables.

7 CONCLUSIONS

LARS is a very effective, time-efficient model building tool, but is not resistant to

outliers. We introduced two different approaches to construct robust versions of the

LARS technique. The plug-in approach replaces the classical Pearson correlations in

LARS by easily computable robust correlation estimates. The cleaning approach first

transforms the dataset by shrinking the outliers towards the bulk of the data, and

then applies LARS on the transformed data. Both approaches use robust bivariate

correlation estimates which can be computed efficiently using bivariate Winsorization.

The data cleaning approach is limited in use because the sample size needs to be

(much) larger than the number of candidate predictors to ensure that the resulting

correlation matrix is positive definite. Moreover, the data cleaning approach is more

time consuming than the plug-in approach, certainly when only part of the predictors

is being sequenced. Since the plug-in approach has good performance, is faster to

compute and more widely applicable, we prefer this method.

We propose to use B-RLARS to sequence the candidate predictors and as such

identify a reduced set of most promising predictors from which a more refined model
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can be selected in a second segmentation step. In general, the reduced set obtained by

B-RLARS contains more of the important covariates than the reduced set obtained

by initial RLARS. Software code in R to compute B-RLARS together with a detailed

description of its use and the datasets used in the examples, is available at

http://users.ugent.be/∼svaelst/software/RLARS.html.

There is a growing literature on feature selection in Machine Learning (see for

example Dı́az-Uriarte and Alvarez de Andrés 2006; Torkkola and Tuv 2006; Rajapakse

and Wang 2005); our paper makes only a limited comparison with them because the

focus is on robustifying LARS. In fact, this is a first attempt to robustify LARS,

with an emphasis on computational efficiency. The underlying theory has yet to be

developed and there may well be other better approaches. For instance, one could

consider solving a robust version of the original problem posed by LARS.

It is important to determine the size of the reduced sequence, that is, the number

of predictors that is retained for the second step. This number is a trade-off between

success-rate, that is the number of important predictors captured in the reduced set,

and feasibility of the segmentation step. A simulation study shown in our technical

report available at http://www.amstat.org/publications/jasa/supplemental materials

indicated that the reduced set can have size comparable to the actual number of

relevant candidate predictors. However, in practice this number is usually unknown.

To still get an idea about an appropriate size for the reduced set we propose a robust

learning curve that plots robust R2 values versus dimension. An appropriate size can

be selected as the dimension corresponding to the point where the curve starts to

level off.
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APPENDIX: TECHNICAL DERIVATIONS

A. Determination of γ for One Active Covariate

Assume that the first selected covariate is +Xm. The current fit Ŷ ← 0 should be

modified as

Ŷ ← γ Xm.

The distance γ should be such that the residual (Y − Ŷ) will have equal (maximal)

correlation with +Xm and another signed covariate Xj. We have

cor(Y − Ŷ,Xm) =
X′

m(Y − γXm)/n

SD(Y − γXm)
=

r − γ
SD(Y − γXm)

, (A.1)

and

cor(Y − Ŷ,+Xj) =
X′

j(Y − γXm)/n

SD(Y − γXm)
=

rj − γrjm

SD(Y − γXm)
. (A.2)

Equating (A.1) to (A.2), we have

γ(+Xj) =
r − rj

1− rjm

. (A.3)

Similarly, equating (A.1) with cor(Y − Ŷ,−Xj) yields

γ(−Xj) =
r + rj

1 + rjm

. (A.4)

The distance γ is now obtained by taking the minimum of (A.3) and (A.4) over all

inactive (not yet selected) covariates Xj. The signed covariate corresponding to this

minimum is the (signed) covariate that enters the model at this point.
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B. Quantities Related to Equiangular Vector BA

Let A denote the set of indices corresponding to the ‘active’ covariates. Let XA =

(· · · slXl · · · ), l ∈ A, where sl is the sign of Xl as it enters the model. The stan-

dardized equiangular vector BA is obtained using the following three conditions.

1. BA is a linear combination of the active signed predictors, so

BA = XA wA , where wA is a vector of weights. (A.5)

2. BA has unit variance:

1

n
B′

ABA = 1. (A.6)

3. BA has equal correlation (a, say) with each of the active predictors. Since the

covariates and BA are standardized, this means that

1

n
X′

ABA = a 1A , 1A is a vector of 1’s. (A.7)

Using equation (A.5) in equation (A.6) yields

1

n
w

′

AX′

AXAwA = 1,

or

w
′

AR
(s)
A wA = 1, (A.8)

where R
(s)
A is the correlation matrix of the active signed variables. Using (A.5) in

(A.7), we obtain

R
(s)
A wA = a1A,
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so that the weight vector wA can be expressed as

wA = a (R
(s)
A )−11A.

Let RA be the correlation matrix of the unsigned active covariates, i.e., RA is a

submatrix of RX. Let sA be the vector of signs of the active covariates (we get the

sign of each covariate as it enters the model). We can then rewrite wA as

wA = a (DARADA)−11A, (A.9)

where DA is the diagonal matrix whose diagonal elements are the elements of sA.

Finally, using equation (A.9) in equation (A.8), yields

a = [1′

A(DARADA)−11A]−1/2. (A.10)

Note that the procedure is stopped when detRA = 0 and thus the inverse does not

exist.

The correlation of an inactive covariate Xj with BA, denoted by aj, can be ex-

pressed as follows

aj =
1

n
X′

jBA =
1

n
X′

jXAwA = (DArjA)′wA, (A.11)

where rjA is the vector of correlation coefficients between the inactive covariate Xj

and the (unsigned) selected covariates. Thus, we need only (a part of) the corre-

lation matrix of the data (not the observations themselves) to determine the above

quantities.
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C. Determination of γ for Two or More Active Covariates

Let us update r ← (r − γ), see (A.1), and rj ← (rj − γrjm), see (A.2).

The correlation of an active covariate with the ‘current’ residual Y−Ŷ is r/SD(Y−

Ŷ), and the correlation of the active covariate with the current equiangular vector

BA is ‘a’. Therefore, the correlation between an active covariate and the ‘modified’

residual (Y − Ŷ − γABA) is

r − γA a

SD(Y − Ŷ − γABA)
.

An inactive covariate +Xj, j ∈ Ac, has correlation rj/SD(Y − Ŷ) with the ‘current’

residual, and it has correlation aj with BA. Therefore, the correlation between +Xj,

j ∈ Ac, and the ‘modified’ residual is

rj − γA aj

SD(Y − Ŷ − γABA)
.

Equating the above two quantities, we get

γA(+Xj) = (r − rj)/(a− aj). (A.12)

Similarly,

γA(−Xj) = (r + rj)/(a+ aj). (A.13)

We have to choose the minimum possible γA over all inactive covariates. Note that

when A has only one covariate, (A.12) and (A.13) reduce to (A.3) and (A.4), respec-

tively.
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