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Robust Locally Linear Analysis with Applications to

Image Denoising and Blind Inpainting ∗

Yi Wang §, Arthur Szlam ‡, and Gilad Lerman †

Abstract. We study the related problems of denoising images corrupted by impulsive noise and blind in-
painting (i.e., inpainting when the deteriorated region is unknown). Our basic approach is to
model the set of patches of pixels in an image as a union of low dimensional subspaces, corrupted
by sparse but perhaps large magnitude noise. For this purpose, we develop a robust and iterative
RANSAC like method for single subspace modeling and extend it to an iterative algorithm for
modeling multiple subspaces. We prove convergence for both algorithms and carefully compare
our methods with other recent ideas for such robust modeling. We demonstrate state of the art
performance of our method for both imaging problems.

Key words. Denoising, impulsive noise, blind inpainting, alternating least squares, locally linear, robust
PCA, multiple subspaces modeling, subspace clustering

AMS subject classifications. 62H35, 65D18, 68U10, 94A08, 68Q32

1. Introduction. We consider the problem of denoising images corrupted with impulsive
noise, and the problem of blind inpainting where the image has been “scratched”. In both
of these settings, some percentage of the pixels of the image have been grossly corrupted
and the locations and the values of the corrupted pixels are unknown. In the former, it is
assumed that the corruptions are unstructured (i.e., they are completely random), whereas
the latter has geometrically structured corruptions (e.g., lying along curves). We take
advantage of some recent progress in sparse coding, dictionary design and geometric data
modeling in order to develop state-of-the-art performing methods for these two problems.

Sparse coding and dictionary design have been shown to be effective at denoising images
corrupted with Gaussian noise as well as at standard inpainting with corruptions in known
locations [11]. The basic approach is to fix a width

√
m, and extract all the

√
m × √

m
patches from the image, forming an m × n matrix X, where n is the number of patches.
Then X is decomposed into

DA ≃ X,

where D is an m × k dictionary matrix, and A is the matrix of coefficients; A is either
constrained to be sparse or encouraged to be sparse (via a regularization term). Using the
sparsity assumption and some assumptions on the dictionary one can learn both A and D

and create a new model for X that can be used for both standard denoising and inpainting.

Yu et al. [36] suggested a structured sparsity constraint. That is, they require A to have
a block structure with a prespecified number of blocks; each block corresponds to a fixed
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set of columns of D. They learn this structure by partitioning X into clusters associated
to subdictionaries of D via a variant of the K-subspaces algorithm [16, 4, 31, 15]. Given
parameters r andK, this algorithm attempts to findK r-dimensional subspaces, represented
by m × q (where q < m) orthogonal matrices D1, ...,DK (i.e., matrices with orthonormal
columns), minimizing

N∑

j=1

min
1≤i≤K

∥xj −DiD
T
i xj∥2. (1.1)

Finding D = [D1, ...DK ] can be thought of as a block structured dictionary learning prob-
lem, or as finding the best secant planes to the given data set.

The optimization for the K-subspaces model can be done via Lloyd iteration: holding
the clusters fixed, find the best D, and then update the clusters. With the clustering fixed,
the problem reduces to finding the best rank r approximation to the columns inX associated
to the cluster. In the case of Gaussian noise, “best” is usually chosen to be measured by
Frobenius norm, in which case the solution is given via SVD.

In this paper we adapt the approach of [36] to images corrupted by impulsive noise (and
perhaps with additional Gaussian noise) as well as to blind inpainting. In this framework,
finding D = [D1, ...DK ] with the clusters fixed requires a different tool than the SVD. In
particular, we will need a “robust” low rank method, which allows large corruptions of a
controlled percentage of the corresponding matrix. Recently, there has been a large interest
in developing robust low rank models for matrices corrupted this way [8, 7, 27]. Our goal is
to locally use such a low rank model in a framework like K-subspaces for image denoising
and blind inpainting. However, we will find that these recent methods of low rank modeling
are not well suited to this task, and will use instead a greedy and fast RANSAC like method
for the updates of the dictionary D.

The major contributions of this paper are as follows:

1. We describe a RANSAC like alternating least squares (ALS) algorithm for robust
recovery of low rank matrices and compare it to other low-rank modeling algorithms (for
the same corruption model).

2. We introduce local versions of the ALS (and other low-rank modeling algorithms)
for block structured dictionary learning (or equivalently locally linear modeling) in the
presence of large and sparse corruptions.

3. We prove that under some mild conditions the ALS algorithm and its local version
(the K-ALS algorithm) converge to a fixed point with probability 1.

4. We show how the local methods can be used for image denoising with impulsive
noise and blind inpainting. In addition to five common images, we use a database of 100
images to demonstrate the state of the art performance by our method.

2. Robust PCA Algorithms. We discuss here algorithms for robust principal compo-
nent analysis (robust PCA or RPCA) for recovering a given m × n matrix X when a
percentage of the entries have been corrupted by noise. It is clear that in general, this is
impossible: without some prior knowledge about the matrix, any value at any entry is as
legitimate as any other value. However, it often happens in applications that X can be
modeled as X = L+ S, where L is (approximately) low rank, and S is sparse.

While RPCA has a long history, most of the older work focused on the case where
entire columns where corrupted; we will need to consider the case where any entry in the
matrix may be corrupted. Recently this form of the problem has been intensely studied,
starting with two parallel ground-breaking works by Candès et al. [7] and Chandrasekaran
et al. [8]. They both proposed the following convex minimization for RPCA ([7] refers to it
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as principal component pursuit (PCP)):

min
L∈Rm×n

∥L∥∗ + λ∥X− L∥1, (2.1)

where ||X − L||1 :=
∑

i,j

|Xij − Lij |, ||L||∗ is the sum of the singular values of L (i.e., its

nuclear norm) and λ is a fixed parameter.

It was proved in [7] that if λ = 1/
√
n and the data matrix can be represented as X =

L+S, where L is low-rank and “strongly incoherent” and S is sparse enough with uniformly
sampled non-zero elements, then the minimizer of (2.1) is L with overwhelming probability
(of the uniform sampling). On the other hand, [8] provided a condition for deterministic
exact recovery for various distributions of corrupted elements, though it implied a stronger
restriction on the fraction of corruption; clearly [8] could not fix λ for its more general
setting.

The minimization of (2.1) can be done via an augmented Lagrangian approach, which
alternates between space shrinkage and singular value shrinkage, see e.g., [19]. This pro-
cedure can be made very efficient when one has a good guess at an upper bound for the
rank of the minimizer, which we refer as PCP(capped) and implement in the supplemental
material. We remark though that [19] regularizes the minimization of (2.1) as follows:

min
L,S∈Rm×n

∥L∥∗ + λ∥S∥1 + ν∥X− L− S∥2F , (2.2)

where ν is a sufficiently small parameter.

Another approach for RPCA, LMaFit [27], uses only the last two terms of (2.2). That
is, it minimizes the objective function

min
B,C,S

∥S+BC−X∥2F + µ∥S∥1 (2.3)

where S ∈ R
m×n, B ∈ R

m×d and C ∈ R
d×n. The LMaFit introduces narrow matrices B and

C to control the rank of the approximation and allows distortion by adding the Frobenius
norm term to the objective function. Thus the LMaFit model is expected to handle well
Gaussian noise.

We remark that Favaro et al. [12] suggested to directly minimize (2.2), where λ and ν
need to be carefully selected. No theoretical guarantees are provided for this generalization
of PCP and their code was not available to us.

2.1. RPCA via an Alternating Least Squares Algorithm. The simplest interpretation
of the decomposition of X into sparse S and low rank L is to fix the number of nonzero
elements N0 in S (or its percentage p, so that N0 = ⌊p ·m ·n⌋) and to fix a rank d for L. In
this situation, we might pay for errors with some matrix norm. If we choose the Frobenius
norm, we obtain the problem

min
B∈Rm×d,C∈Rd×n

I⊆{1,...,m}×{1,...,n} : |I|=N0

J(B,C, I), (2.4)

where

J(B,C, I) =
∑

i ∈ {1, . . . ,m}
j ∈ {1, . . . , n}

(i, j) /∈ I

|(BC)ij −Xij |2. (2.5)
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The low rank approximation is L = BC and the sparse matrix S = X − L is supported
on the set of indices I. This formulation suggests a simple algorithm, which we describe
in Algorithm 1 and will henceforth refer to as ALS. In order to obtain a well-conditioned
optimization problem and thus stable solutions, we regularize the objective function as
follows:

J(B,C, I) =
∑

i ∈ {1, . . . ,m}
j ∈ {1, . . . , n}

(i, j) /∈ I

|(BC)ij −Xij |2 + λ1∥B∥2F + λ2∥C∥2F . (2.6)

where λ1 and λ2 are some small positive constants.

In practice we use the regularized ALS algorithm and refer to it as the ALS algorithm.
Throughout all the experiments we fix λ1 = λ2 = 10−10 and n1 = 1. For the simulated
data n2 is chosen such that either the algorithm converges or n2 obtains a sufficiently large
value. More precisely, the outer loop stops if one of the following criterions is achieved: 1)
n2 = 100; 2) the relative change of J is less than 10−3; 3) the absolute change of J is less than
10−4. For the image data (§5) ALS is applied within K-ALS and it was enough to require
n2 = 1 and consequently speed up the algorithm. We note that the other parameters, p and
d, have a clear interpretation in terms of the data and one may expect a bound on them for
various data sets. As in many RANSAC-like algorithms, the results of ALS are robust to
overestimation of p and d, but not robust to underestimation (see §A). In §B, we propose
and test an estimation strategy for d.

Algorithm 1: An ALS algorithm of recovering a low rank matrix from corrupted data

Input: X ∈ R
m×n, d: low rank, p: the percentage of corrupted entries, n1, n2: numbers

of iteration, λ1, λ2 ≥ 0: regularization parameters.
Output: B ∈ R

m×d, C ∈ R
d×n, I ⊆ {1, . . . ,m} × {1, . . . , n} : |I| = ⌊p ·m · n⌋.

Initialization: I = ∅, B ∈ R
m×d with i.i.d. entries: Bij ∼ N (0, 1).

for l = 1 : n2 do

for t = 1 : n1 do

C = argmin
C

J (J is defined in (2.6)).

B = argmin
B

J .

end for

I = indices of the ⌊p ·m · n⌋ greatest elements of {|Xij − (BC)ij |2}mi=1
n

j=1
.

end for

ALS algorithms for PCA have long history and have been widely used for matrix com-
pletion, i.e., when the locations of the corrupted elements are specified, see for exam-
ple [35, 29, 32, 6, 25, 24, 38]. In fact, the ALS algorithm for matrix completion is practically
obtained by fixing the outlier set I and performing a restricted version of the ALS algorithm
of this paper. In our more general setting, the ALS iterations for finding B, C and I can be
thought of as a version of RANSAC [14] (though we do not randomly initialize the inliers
each time, but we iterate between the choice of inliers and the low-rank model with a single
random initialization for each of them).

2.2. Why a New RPCA Algorithm?. The reader may wonder why we use an alter-
nating least squares method rather than the convex method of [8, 7], which has theoretical
guarantees. In fact, we use RPCA in a K-subspaces framework for modeling the under-
lying data by multiple subspaces. One cannot expect a fully convex formulation for such
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setting. Indeed, Lerman and Zhang [18, §5.1] have shown that it is impossible to general-
ize convex strategies as in [8, 7] for recovering multiple subspaces by energy minimization.
Moreover, strategies like [21, 20], which generalize [8, 7] to obtain an affinity matrix via a
convex procedure (and then apply the non-convex spectral clustering), are extremely slow
for our application (as we exemplify in §5). Furthermore, it does not make much sense to
apply [8, 7] within a K-subspaces algorithm because it is unclear how to extend the nuclear
norm out-of-sample (see §3.2). In particular, we cannot prove weak convergence theorems
for the naive K-subspaces versions of PCP, unlike ALS (see §4.4).

A second concern with many of the above methods is sensitivity to non-sparse corrup-
tions (such as additive Gaussian noise). While they often can perform better than ALS
with only sparse corruptions, the exact recovery results do not extend to this more general
situation. In practice, we have found that many of these methods are brittle with additive
white Gaussian noise.

Finally, and in some sense, most importantly, in our application, we have a good ini-
tialization. One of the complaints with non-convex methods like K-means or K-subspaces
is the dependence on the initialization for good performance. But the initialization in [36]
has shown to be effective for image denoising. In our setting, because we have such a good
idea where to start, dependence on initialization is actually a feature, and not a bug.

2.3. Numerical Simulations with a Single Subspace. To evaluate the performance of
ALS in comparison to other RPCA methods, several simulations are conducted. We dis-
tinguish here and thereafter between p0, the ground truth percentage of sparse corruptions
(i.e., impulsive noise), and p, the input parameter of ALS estimating the percentage of
corruption; d0, the ground truth rank of the clean matrix, and d, the input rank of the
matrices B and C for the ALS algorithm.

We generate a low rank matrix X0 as a product of two independent m× d0 and d0 × n
matrices whose entries are i.i.d. N (0, 1) random variables and scale it to have unit spectral
norm. We form X by independently adding to each element of X0 Gaussian noise with
standard deviation σ (where σ = 0.05 or σ = 0 when no Gaussian noise). Finally, p0
randomly chosen pixels of X (p0 = 5%, 10%, 20%) are assigned uniform random values in
the interval [−a, a], where a = maxi,j |X0ij |.

We test the following RPCA algorithms on this data: PCP, PCP(capped), LMaFit and
ALS. For PCP, we use the fast implementation suggested in [19] with λ = (mn)−0.25. For
ALS, PCP(capped) and LMaFit(oracle) we input the intrinsic rank to be d0+3 (since they
all can handle an overestimation for this parameter; see §A). We recall that PCP(capped)
is the version of PCP mentioned in §2, which requires an upper bound, i.e., a cap, on the
intrinsic dimension (we defer the full implementation details to the supplemental code). For
PCP(capped) we also input two other parameters: λ of (2.1) and γ, which is present in
every ADMM (alternating direction method of multipliers) implementation for PCP (see
supplemental code). We tested (λ, γ) = (10k, 10l), for k, l = −3, . . . , 3 and selected (λ, γ) =
(0.1, 10) based on the true fitting error (defined below); therefore our implementation of
PCP(capped) is of oracle type. For LMaFit, we chose µ = 103 by minimizing the true fitting
error among µ = 10k, k = −3, . . . , 5. We thus refer to the method as LMaFit(oracle). The
parameters for ALS were specified in §2.2.

For all of the experiments n = 1000. For any RPCA algorithm, we quantify the recovery
of the underlying low rank model by the following relative fitting error:

e =
∥X̃−X0∥F

∥X0∥F
, (2.7)
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where X̃ is the low rank estimation for X. We report the mean of this error for different
values of m , d0 and p0 in Tables 2.1 and 2.2 when σ = 0 and σ = 0.05 respectively. Note
that in those tables, the error is shown in percentage (%), ALS(p0) inputs p0 as the estimate
of portion of corruptions, i.e., p = p0, while ALS(2p0) has p = 2p0.

Table 2.1: Relative fitting error on simulations without Gaussian noise

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS(2p0) 1.10 6.02 20.95 0.49 2.58 10.71 0.08 0.49 5.48 0.04 0.06 1.19
ALS(p0) 0.15 0.54 2.93 0.02 0.05 0.66 0.00 0.01 0.11 0.00 0.01 0.02

PCP(capped) 0.43 6.56 19.86 0.44 3.69 10.97 0.61 2.51 5.93 0.90 2.60 5.35
PCP 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

LMaFit(oracle) 0.95 1.43 3.77 1.01 1.54 2.47 1.13 1.71 2.80 1.36 2.05 3.34

Table 2.2: Relative fitting error on simulations with Gaussian noise (σ = 0.05)

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS(2p0) 7.53 9.21 21.60 6.60 7.82 12.70 6.06 7.13 10.32 5.87 6.91 10.00
ALS(p0) 6.65 7.04 8.63 5.80 6.13 6.84 5.28 5.56 6.19 5.09 5.36 5.97

PCP(capped) 14.27 15.31 20.56 11.89 12.74 14.91 10.03 10.74 12.43 8.74 9.41 10.95
PCP 20.80 24.37 41.59 15.86 18.97 26.25 12.40 13.34 17.61 10.28 11.50 14.43

LMaFit(oracle) 5.38 5.84 6.95 5.23 5.69 6.79 5.11 5.56 6.69 5.14 5.65 6.90

We observe that PCP performs the best for clean data, but it could not handle well
Gaussian noise. ALS works better with higher ambient dimensions, since in this case there
are more equations for the least squares solution (with the same number of variables) and
thus it increases the accuracy. ALS is also more accurate when the portion of corruptions
decreases. We note that ALS(p0) performs better than LMaFit(oracle) for clean data and
they are comparable for noisy data. As for ALS(2p0), it performs better than PCP(capped)
in general. When the ambient dimension is high or the corruption level is low then it
performs better than LMaFit(oracle) for clean data and comparably to it for noisy data,
whereas for the rest of the cases it is not as good as LMaFit(oracle).

Table 2.3 reports the speed of these algorithms (with σ = 0.05; the running times are
comparable when σ = 0). The experiments were performed using a Dual processor Intel
Core 2 CPU at 2.66GHz with 2 GB of memory. We observe that PCP(capped) is the fastest
method (though we did not take into account the repetitions for the choices of the oracle
parameters) and ALS is right after it. LMaFit is also comparable to these two in terms of
speed (again repetitions for best parameters were not taken into account). On the other
hand, PCP is extremely slow.

Table 2.3: The running time (in s) of the simulations with Gaussian noise (σ = 0.05)

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS(2p0) 0.18 0.17 0.18 0.48 0.50 0.48 0.84 0.81 0.80 2.14 2.10 2.04
ALS(p0) 0.18 0.18 0.18 0.49 0.49 0.50 0.84 0.83 0.82 2.16 2.15 2.10

PCP(capped) 0.06 0.06 0.06 0.18 0.18 0.19 0.34 0.32 0.33 0.78 0.78 0.78
PCP 4.83 4.81 5.21 16.54 16.42 16.15 89.94 86.61 83.94 581.77 569.24 555.28

LMaFit(oracle) 0.26 0.31 0.46 0.56 0.66 0.93 0.93 1.10 1.54 1.79 2.17 3.11

3. Piecewise Linear Models. We introduce local versions of the ALS (and other low-
rank modeling algorithms) for block structured dictionary learning. Alternatively, we in-
troduce local linear modeling of data with low-dimensional structure in the presence of
large and sparse corruption. Our elementwise matrix corruption model completely distorts
the nearest neighbors’ distances between the uncorrupted data points (stored as matrix
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columns). Therefore, standard methods for manifold learning [28, 26, 17] will completely
fail on such corrupted data. We thus model the data by several multiple subspaces via a
K-subspaces strategy, which replaces the least squares best fit subspaces by different robust
low-rank best fit subspaces.

3.1. The K-ALS Algorithm. The generalization of ALS to the setting of K-subspaces
is straightforward. We fix a number of subspaces, K, a rank, d (though mixed ranks for the
different subspaces are also possible), and a percentage of corrupted entries, p. We initialize
a list of subspaces (details of the initialization are discussed in §5) and assume no corrupted
elements in the initial iteration. The algorithm then iteratively repeats the following two
stages. The first step finds clusters of “nearest” data points to the K subspaces. To
formulate it precisely, we associate to each of the ith d-dimensional subspaces (1 ≤ i ≤ K)
a basis, which we represent as the columns of an m × d matrix Bi. Given a data point
x ∈ R

m (i.e., column of the matrix X), we denote by x the uncorrupted entries in x (i.e.,
uncorrupted elements in the corresponding column of X) and by Bi the dim(x)× d matrix
obtained by the rows of Bi corresponding to the same uncorrupted indices of x. Using this
notation, x is nearest to the subspace indexed by

j = argmin
1≤i≤K

min
c∈Rd

∥Bic− x∥22. (3.1)

The second step computes a subspace for each cluster of the first step by the ALS
procedure of §2.

3.2. Other Possibilities of K-RPCA Algorithms. While in some sense, any algorithm
for robust PCA can be extended to a K-RPCA algorithm, the generalization of the PCP
model (∥ · ∥∗ + λ · ∥ · ∥1) to the setting of K-subspaces is less straightforward. Indeed,
the inclusion of new data points (i.e., the first step above) affects the nuclear norm of the
whole data set and may require changing the representations of other points. Nevertheless,
to run the local version of the algorithm, if x ∈ R

m is a data point and B1, ...,BK are
the orthonormal bases of the d-dimensional subspaces representing the clusters, then we
associate to x the subspace Bj , where

j = argmin
1≤i≤K

min
c∈Rd

∥x−Bic∥1. (3.2)

On the other hand, the LMaFit model extends to a K-LMaFit model without com-
plications. If x ∈ R

m is a data point and B1, ...,BK are the orthonormal bases of the
d-dimensional subspaces representing the clusters, then we associate to x the subspace Bj ,
where

j = argmin
1≤i≤K

min
c∈Rd,e∈Rm

∥e+Bic− x∥2F + µ∥e∥1. (3.3)

3.3. Some Implementation Details. All the piecewise linear models discussed above
have hard decision boundaries for cluster membership, therefore, points near the boundary
may not be well represented. One simple remedy to this kind of problem is to repeat the
clustering several times and generate multiple reconstructions via overlapping clusterings.
In the wavelet literature, this technique is called cycle spinning [9]; in this context, it is
simply the idea that the charts of a manifold should overlap. If the final goal is denoising,
then we average the outputs of all repetitions.

In the K-PCP model, when computing the nearest low rank model for a data point, we
need to cap the rank allowed for each of the models, else the model with the highest rank
will become the representative for every point.
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4. Mathematical Analysis of Convergence. We establish theoretical analysis for slightly
modified versions (via additional regularization) of the ALS and K-ALS algorithms. Our
numerical experiments indicated similar performance of these modified versions and the
original versions presented earlier. Therefore, we use the modified versions only for theo-
retical analysis and the simpler algorithms in the rest of the paper.

4.1. Preliminaries. We denote the Hadamard product by ◦, i.e., (A ◦ B)ij = AijBij .
We let A·j and Ai· denote the j-th column and i-th row respectively of the matrix A. We
represent the set I by the matrix W ∈ R

m×n such that Wij = 0, if (i, j) ∈ I; and Wij = 1
otherwise.

We modify the objective function J for ALS by adding another regularization term
(depending on a sufficiently small λ3 > 0 and U ∈ R

m×n whose elements are i.i.d. samples
from a continuous distribution on [0, 1]) and express J using the above notation in the
following way:

J(B,C,W) = ∥(BC−X) ◦W∥2F + λ1∥B∥2F + λ2∥C∥2F + λ3∥U ◦W∥2F . (4.1)

We also extend this objective function for K-ALS (with further regularization) as follows:

J ({Bk}Kk=1, {Ck}Kk=1, {Wk}Kk=1, η) (4.2)

=

K∑

k=1

(∥(BkCk −Xk) ◦Wk∥2F + λ1∥Bk∥2F + λ2∥Ck∥2F ) + λ3∥Uk ◦Wk∥2F + λ4

n∑

j=1

V2
η(j),j ,

where η maps the indices of data points (1, . . . , n) to indices of subspaces (1, . . . ,K), Xk ∈
R
m×nk is a submatrix of X representing the nk data points in cluster η(j) = k, Wk ∈

{0, 1}m×nk , Uk ∈ R
m×nk , V ∈ R

K×n (both {Uk}Kk=1 and V are initialized by i.i.d. samples
from a continuous distribution on [0, 1]), Vη(j),j is the element at the η(j)-th row and j-th
column and λ1, . . . , λ4 are arbitrarily small and positive regularization parameters.

Theorems 4.1 and 4.2 below use the technical notion of a fixed point of an algorithm.
We delay its definition as well as the proof of these theorems to §D.

4.2. Theorem for the Convergence of ALS. We establish the following result for con-
vergence of the regularized ALS algorithm for robust PCA.

Theorem 4.1.For the regularized ALS algorithm described above, the following statements
hold with probability one: 1) All accumulation points of the iterates (Bt,Ct,Wt) produced by
this algorithm are its fixed points; 2) J(Bt,Ct,Wt) → J(B∗,C∗,W∗), where (B∗,C∗,W∗)
is a fixed point; 3) ∥(Bt+1,Ct+1,Wt+1)− (Bt,Ct,Wt)∥ → 0; and 4) either {(Bt,Ct,Wt)}
converges or the accumulation points form a continuum.

4.3. Main Theorem: Convergence of K-ALS. We establish the following result for
convergence of the regularized K-ALS algorithm for robust PCA. For simplicity, we denote
({Bk}Kk=1, {Ck}Kk=1, {Wk}Kk=1, η) by Ω.

Theorem 4.2.For the regularized K-ALS algorithm described above, the following state-
ments hold with probability one: 1) All accumulation points of the iterates Ωt produced
by this algorithm are its fixed points; 2) J(Ωt) → J(Ω∗), where Ω∗ is a fixed point; 3)
∥Ωt −Ωt+1∥ → 0; and 4) either Ω converges or the accumulation points form a continuum.

4.4. Discussion on Statements of Theorems. The purpose of our theory is to guar-
antee convergence of the ALS and K-ALS algorithms. While the convergence is not fully
guaranteed (when the accumulation points form a continuum), we note that also the theoret-
ical guarantees for the agglomerative Lagrangian for PCP [19] are only formulated in terms
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of convergence of the objective function as we have in the second part of our theoretical
statements (but they do not have results for convergence in norm).

The type of convergence we have for K-ALS is slightly weaker than the one of K-means
or K-subspaces. For these algorithms one can prove convergence to a local minimum [3],
whereas here we only prove convergence to a fixed point. The difference is that for K-
means and K-subspaces, the best fit center or subspace is easily determined for each cluster,
whereas the robust ALS only guarantees convergence for each cluster. It is interesting to
note that while K-PCP easily determines a subspace for each fixed cluster, we cannot
guarantee convergence for the full algorithm (as in K-ALS). Indeed, K-PCP minimizes
||L||∗ + λ||X−L||1 within each cluster, but for the partition it minimizes ||X−L||1 among
clusters (due to the difficulty of extending the nuclear norm out of sample). Therefore the
resulting objective function for K-PCP is not even guaranteed to be monotonic.

5. Restoration of Corrupted Images.

5.1. Problem Setting. We test different methods of local (and global) low rank model-
ing for denoising images with impulsive noise as well as blind inpainting. The data consists
of 5 popular images and also the 100 test images of the Berkeley segmentation database [22].
We use two noise parameters p0 and σ to specify the corruptions to the images. The images
are corrupted with i.i.d. additive Gaussian noise with standard deviation σ, and a percentage
of p0 random pixels per image (uniformly selected) are corrupted with an integer uniformly
sampled between 0 and 255. For inpainting, the images are further degraded by drawing
a scratch. For many of the methods (in particular, K-ALS) the images are represented by
their 8 × 8 patches. That is, the actual data matrix X is formed by stacking the vectors
representing these patches as columns. Its size is thus 64 × n, where n is the number of
pixels in the image. This matrix is transformed back to the image (after enhancing it) by
finding the average value of all coordinates representing the same pixel.

5.2. Methods, Implementation Details and Parameters. We compared K-ALS with
the following methods (sometimes combined with each other, though we reported only
methods that were sufficiently fast and accurate): Median filter (MF), iterated median filter
(IMF), structured sparse model selection (SSMS) [36], K-SVD [11, 1], low rank represen-
tation (LRR) [21, 20], PCP, PCP(capped), LMaFit, K-PCP, K-PCP(capped), K-LMaFit
and three variations of the non-local means method of [5] (described in §5.3).

We explain here various implementation issues of the different algorithms and the choice
of parameters. For IMF, we chose among 10 iterations the one with highest PSNR, thus
giving an oracle advantage to this method. For local methods based on the K-subspaces
strategy (i.e., SSMS, K-ALS, K-PCP, K-LMaFit), we followed [36] to learn K = 19 sub-
spaces of dimension d = 8 with 18 bases for subspaces initialized on artificial edges at given
orientations and one low frequency DCT basis (our implementation is available online).
Note that this initialization is important for good results.

In order to account for Gaussian noise, we apply additional steps in the spirit of [36]
(in order to be consistent for all methods). We first recall that [36] uses the following
thresholding step for their estimator for X, X̃, in order to remove additional Gaussian
noise. The modified estimator X̂ is obtained by replacing each column x̃ of X̃ by the
following column:

x̂ = Bδ(BT x̃), (5.1)

where B ∈ R
m×d′ is formed by stacking as columns the first d′ components of the basis of

the cluster containing x̃ (they use the full dimension d′ = 64) and δ(aj) = aj if |aj | > 3σ;
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and = 0 otherwise (i.e., SSMS assumes knowledge of the model parameter σ described in
§5.1).

For K-ALS and K-PCP we applied a similar thresholding procedure within each itera-
tion with d′ = 20. We chose this parameter since the SVD of the clusters of natural image
patches can be well approximated with rank 15 and slight overestimation cannot effect the
results.

Before thresholding, K-ALS applies the following procedure within each iteration to re-
estimate the locations of corruption in the corresponding image: let Y denote the original
image, med(Y) the image obtained by applying 4 × 4 median filter to Y, Ỹ the image
translated from the patches of the current iteration (before thresholding) and abs(·) the
elementwise absolute value. Furthermore, let r = abs(Y − Ỹ) and s = abs(Y −med(Y)).
For denoising, we identify in each iteration the corrupted pixels of a fixed percentage (p)
as the ones with the largest entries in r; for inpainting, we do the same with r + s at the
first iteration and with r thereafter (the purpose of the additional s for inpainting is to
improve scratch detection, however, for denoising such a process can falsely detect edges as
corruption).

For the global low rank model (in particular, PCP), we address Gaussian noise by further
applying the SSMS algorithm [36] (so the method is comparable to the other strategies).
Numerical experiments indicated that applying SSMS after the global low rank model was
slightly better than applying the thresholding described above and clearly better than PCP
alone.

In terms of parameters, for K-ALS, λ1 = λ2 = 10−10, n1 = n2 = 1 and n3 = 5 (where
n3 is the number of iterations between ALS and the subspace clustering, i.e., the number of
iterations for the very outer loop). For p, we tested both p = p0 and p = 2p0. It is important
to note that we used the same fixed parameters for all 105 test images. We capped both
PCP(capped) and K-PCP(capped) at 20. For PCP and K-PCP, the parameter λ was
chosen to be 0.01 after testing the largest PSNR obtained among λ = 10k, k = −3, . . . , 3.
Similarly, (0.1, 0.001) was chosen for (λ, γ) after testing (10k, 10l), k, l = −3, . . . , 3 for
PCP(capped)+SSMS and K-PCP(capped). For LMaFit, K-LMaFit and LRR [21, 20], we
fine-tuned the best parameters based on PSNRs of the outputs. We first tested 7 values of
10k, k = −3, . . . , 3 and then searched around the best one in a finer scale until the results
were not improved.

5.3. An Alternative Approach: Non-Local Medians. Many of the best performing
image denoising methods (in the additive Gaussian noise setting) are versions of the non-
local means algorithm (NLM) [5]. A standard version takes in parameters m, ϵ, and l, and
defines a weight matrix W with elements

Wij = h(i) e−d(xi,xj)
2/ϵ2 ,

where xi and xj are patches of width
√
m about pixels i and j respectively (represented as

vectors in R
m), h is 1 in a square neighborhood centered at i of sidelength l pixels and 0

elsewhere, and d denotes the Euclidean distance between the patches considered as vectors.
A normalized weight W̃ is formed by W̃ = D−1(W+WT ), where D is the diagonal matrix
with the row sums of W + WT on its diagonal. The noisy image is then smoothed by
multiplying it with W̃. The standard versions of NLM cannot handle impulsive noise or
scratches, because the patch distance is too sensitive to outliers or gross corruptions.

We propose and test three robust versions of non-local means, which we refer to as the
non-local medians. First, we define three different similarity functions between patches xj

and xi (of width
√
m) as follows: 1) dq is defined as the q-th power of the lq (quasi)-norm,
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where q ≤ 1; 2) d̃r(xi−xj) :=
∑m

k=1 µk(xi(k)−xj(k))
2, where µk = 1 for the r coordinates of

xi−xj with smallest absolute difference |xi−xj | and µk = 0 on the other m−r coordinates;
and 3) apply first a median filter to the entire image, and then use the regular Euclidean
distance d2. To find the non-local medians, we define a square neighborhood of length l for
the i-th pixel and denote the indices of the pixels in this neighborhood by Si. We compute
the distances (dq, d̃r, or d2 after median filtering) between xi and xj for all j ∈ Si. Then
we form S̃i by keeping only s patches corresponding to the smallest distances. Finally, an
estimate for the intensity value at pixel i is made by taking the median value among all
intensities of pixels of patches in S̃i.

In our experiments testing these three non-local median methods, we let q = 0.5, m =
16, s = 12, l = 7 and r = ⌊(1 − 2p0)m⌋. We remark that the algorithm is not sensitive to
the choice of l as long as it is sufficiently large (but the algorithm slows as l gets larger).
The parameter r was set to be adaptive to p0. The other parameters were chosen by fine
tuning numerical results.

We noticed that the application of SSMS after any of these methods does not in general
help with reducing Gaussian noise. In fact, it tended to make things worse for small (or
no) Gaussian noise and improved results for larger amounts, e.g., σ ≥ 20 (though, this
improvement with known σ and p0 was still not better than K-ALS(p0)).

5.4. Results. For each image, method and choice of corruption/denoising parameters,
we averaged the PSNR over five simulations. Tables 5.1 and 5.2 report results of the different
methods for denoising impulsive noise and blind inpainting respectively for the five common
images. Figures 5.2 and 5.3 plot the PSNR of the database of 100 images in several scenarios
for denoising and inpainting respectively. The image IDs are sorted according to increasing
PSNR of K-ALS(2p0) for better illustration.

The tables and figures omit some methods for the following reasons. The PCP algo-
rithm is extremely slow (as in Table 2.3), we thus run PCP+SSMS and K-PCP only for
these five common images. We reported the best of the 3 non-local medians methods. Since
MF+SSMS is similar to but better than MF+KSVD and since SSMS and K-SVD are de-
signed only for Gaussian noise and thus not competitive at all, we only reported MF+SSMS
among these. The PSNR of K-LMaFit was in the order of 25db and we thus did not report
it in the tables. The reason for this poor performance is not clear to us since the distributed
software of LMaFit is not an open source; however, we suspect their initialization may be to
blame. For LRR, it is not feasible to assign the data matrix itself as the dictionary (as done
in [21, 20]). We thus tried the following two options: the first is to use the initial basis used
for K-ALS and the second is to use the output basis learned by K-ALS. We observed that
both options could achieve good results by carefully choosing the regularization parameter.
However, they are very sensitive to the choice of the regularization parameter. In fact,
they needed to be accurate up to the third decimal place to obtain comparable results as
K-ALS(2p0) and those best values can be different for different images. Also, LRR is slow;
for example, it takes about a minute for K-ALS to finish the House image and several hours
for LRR.

In addition to PSNR, we also evaluated the image quality by the Structural Similarity
(SSIM) index [34]. We report these results in §C. We observe that the SSIM index favors K-
ALS more than PSNR. The performance of PCP(capped)+SSMS in terms of SSIM oscillates
much more, while it stays close to a certain level in terms of PSNR. Moreover, we see that
the performance of K-ALS(p0) is more correlated with K-ALS(2p0) in SSIM than in PSNR.

Besides PSNR and SSIM, we also demonstrate the visual quality of some denoising and
blind inpainting results in Figures 5.4 and 5.5 respectively. The visual quality is important.
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Figure 5.1: Demonstration of the importance of visual quality. From left to right: corrupted im-
age (σ = 0, p0 = 0), NLM3 (PSNR=29.51, SSIM=0.8637), PCP(capped)+SSMS (PSNR=32.66,
SSIM=0.9425) and ALS(2p0) (PSNR=31.70, SSIM=0.9425)

Indeed, Figure 5.1 shows an image where PCP(capped)+SSMS obtains high values of both
PSNR and SSIM for blind inpainting, but its visual output is clearly not satisfying.

To summarize, we observe that PCP+SSMS and K-PCP are not practical (in terms of
long running times). Moreover, PCP+SSMS is not successful to restore images in general
and K-PCP (with additional thresholding) also fails in some cases, for example the image
House. PCP(capped)+SSMS and K-PCP(capped) are fast but do not work well in general.
LRR is inappropriate because it is too slow and sensitive to the choice of parameters.
LMaFit and K-LMaFit failed in general. The variants of the non-local median cannot
handle Gaussian noise well. The best of them is comparable to K-ALS when Gaussian
noise is low, but obviously worse as Gaussian noise arises. Our method, K-ALS, even
with overestimating its main parameter p, outperforms the other competitors that we have
discussed.

Table 5.1: Performance of denoising (in PSNR)
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10 30.77 31.84 26.35 26.61 22.06 22.81 24.74 24.96 24.63 29.69 29.73 26.32 24.11 29.18
5% 20 28.68 29.22 24.07 24.61 22.06 24.98 23.81 24.24 23.84 26.57 26.66 24.75 25.38 27.34

30 26.99 27.38 23.56 24.55 23.16 26.22 22.93 23.67 23.05 23.87 23.96 23.15 26.19 25.67
Barbara

10 29.30 30.84 24.34 25.31 19.26 19.59 24.59 24.77 24.35 28.97 29.20 25.79 19.77 28.45
10% 20 27.55 28.64 23.18 23.75 19.58 21.82 23.71 24.08 23.61 25.99 26.09 24.32 21.91 26.70

30 25.99 26.63 22.99 23.93 21.00 23.85 22.81 23.52 22.89 23.41 23.47 22.82 23.96 25.20

10 30.74 31.49 26.11 26.50 22.43 23.32 28.50 29.10 28.95 29.56 29.63 29.26 24.61 29.05
5% 20 28.88 29.30 24.51 24.55 22.54 25.46 26.55 27.46 27.06 26.59 26.69 27.11 25.94 27.43

30 27.38 27.69 24.43 24.63 23.97 26.63 25.05 26.34 25.58 24.03 24.10 25.00 26.67 26.00
Boat

10 29.70 30.84 24.52 25.30 19.76 20.15 28.29 28.84 28.42 28.92 29.13 28.84 20.43 28.52
10% 20 27.99 28.69 23.74 23.79 20.55 22.55 26.39 27.23 26.69 26.11 26.21 26.70 22.67 26.98

30 26.58 27.09 23.98 24.10 21.85 24.56 24.86 26.10 25.26 23.61 23.66 24.63 24.55 25.61

10 34.15 34.84 26.11 28.15 22.42 23.51 31.85 32.16 31.09 31.84 31.85 31.66 33.90 28.26
5% 20 31.76 32.17 24.32 26.17 22.90 25.87 29.81 30.13 28.60 27.82 27.89 28.49 31.38 27.14

30 29.79 30.10 24.80 26.43 24.92 28.11 27.24 28.81 26.93 24.74 24.81 25.80 30.23 25.99
House

10 32.96 34.12 24.75 26.66 19.75 20.25 31.27 31.52 30.42 31.24 31.41 31.20 28.75 27.74
10% 20 30.55 31.32 23.67 25.40 20.05 22.83 29.43 29.76 28.12 27.34 27.42 28.05 28.69 25.73

30 28.82 29.43 24.35 25.71 22.34 25.55 26.93 28.38 26.47 24.29 24.35 25.35 28.16 25.61

10 33.47 34.19 25.63 26.31 22.40 23.36 31.75 32.49 31.71 31.80 31.86 31.99 25.33 31.23
5%

20 31.29 31.69 23.92 24.53 22.76 25.62 29.28 30.40 29.17 27.72 27.81 28.64 26.36 29.39
30 29.54 29.85 24.64 25.09 24.31 27.95 27.37 28.95 27.53 24.68 24.76 25.90 27.96 28.02

Lena
10 32.35 33.49 24.16 25.23 19.74 20.15 31.48 32.11 31.22 31.19 31.39 31.55 20.40 30.74

10% 20 30.20 30.97 23.39 23.85 20.01 22.61 29.07 30.11 28.82 27.25 27.34 28.17 22.56 28.96
30 28.55 29.15 24.17 24.52 21.73 25.30 27.10 28.60 27.18 24.28 24.35 25.49 25.39 27.54

10 32.81 33.44 25.22 26.20 22.05 22.88 32.05 32.55 31.89 31.50 31.55 31.66 24.85 30.01
5% 20 31.01 31.42 24.16 24.54 22.32 24.94 30.03 30.64 29.53 27.64 27.71 28.44 25.87 28.75

30 29.48 29.82 24.73 25.01 23.73 27.50 28.15 29.25 27.91 24.68 24.75 25.79 27.68 27.83
Peppers

10 31.66 32.81 23.92 25.13 19.36 19.72 31.65 32.08 31.31 30.77 30.94 31.09 20.01 29.54
10% 20 29.88 30.74 23.40 23.78 19.57 21.96 29.69 30.24 29.10 27.13 27.20 27.91 21.99 28.37

30 28.41 29.07 24.18 24.40 20.97 24.62 27.75 28.81 27.47 24.25 24.32 25.34 24.76 27.15
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Table 5.2: Performance of inpainting (in PSNR)
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0 32.26 32.97 29.41 29.00 27.33 27.33 25.22 25.22 25.22 28.14 28.14 26.75 28.53 29.99
0% 5 31.32 32.23 28.49 28.31 27.09 27.10 25.15 25.23 25.06 27.79 27.85 26.60 27.95 29.25

10 30.41 30.90 26.70 26.42 26.85 26.97 24.72 24.96 24.69 26.97 27.14 26.04 27.40 28.51
0 29.67 31.60 27.84 27.11 20.77 20.76 24.91 24.91 24.91 27.48 27.45 26.21 21.53 29.15

Barbara 5% 5 29.30 31.02 27.23 26.68 20.96 21.00 24.90 24.99 24.77 27.20 27.25 26.05 21.72 28.56
10 28.98 29.97 25.53 25.16 21.07 21.66 24.58 24.78 24.42 26.45 26.58 25.53 22.37 27.92
0 25.43 30.45 25.74 25.32 18.33 18.33 24.56 24.54 24.55 26.86 27.08 25.68 18.44 28.40

10% 5 26.05 30.03 25.34 25.12 18.44 18.43 24.62 24.70 24.46 26.55 26.84 25.53 18.53 27.93

10 26.81 28.95 24.06 24.21 18.68 18.98 24.34 24.53 24.18 25.83 26.12 25.05 19.08 27.28

0 30.67 32.80 29.76 28.63 26.96 26.96 30.31 30.31 30.31 27.83 27.94 29.54 28.88 30.65
0% 5 30.25 31.84 28.93 28.07 26.67 26.66 29.73 29.95 29.87 27.56 27.72 29.25 27.91 29.46

10 29.59 30.45 26.48 26.15 26.40 26.51 28.41 29.01 28.89 26.82 27.07 28.57 27.08 28.58
0 29.66 31.65 27.59 26.93 21.06 21.05 29.74 29.72 29.72 27.28 27.32 29.24 21.92 29.37

Boat 5% 5 29.53 30.70 26.95 26.52 21.16 21.19 29.32 29.55 29.32 27.05 27.12 29.02 22.01 28.55
10 28.92 29.65 25.32 25.01 21.35 21.98 28.14 28.72 28.41 26.36 26.51 28.26 22.69 28.00
0 28.00 30.88 25.57 25.42 18.66 18.66 28.84 28.94 28.95 26.73 26.94 28.90 18.83 28.75

10% 5 28.11 30.02 25.06 25.11 18.82 18.81 28.77 28.98 28.69 26.46 26.69 28.59 18.95 28.05
10 27.99 29.30 23.94 24.11 19.08 19.42 27.74 28.31 28.00 25.87 26.12 27.92 19.63 27.50

0 36.44 35.89 27.35 25.66 23.67 23.67 31.11 31.10 32.05 25.97 26.11 31.44 33.64 29.44
0% 5 33.93 33.63 27.02 25.49 23.66 23.66 30.89 31.05 31.57 25.65 25.97 30.37 31.38 29.10

10 32.19 31.42 25.71 24.84 23.71 23.83 30.08 30.52 30.54 25.13 25.54 29.51 29.63 28.38
0 35.41 36.58 26.38 24.65 20.00 20.00 29.98 29.98 31.40 25.52 25.64 30.81 28.95 28.39

House 5% 5 33.29 33.90 25.81 24.62 20.08 20.12 29.99 30.06 30.92 25.25 25.49 30.14 27.59 28.52
10 31.79 31.54 24.54 24.26 20.35 20.89 29.16 29.75 30.00 24.74 25.10 29.03 27.15 28.21
0 32.67 35.80 24.58 23.63 18.02 18.02 28.43 28.53 30.48 25.07 25.26 30.19 22.67 27.93

10% 5 32.15 33.67 24.26 23.69 18.16 18.16 28.94 28.74 30.23 24.84 25.18 29.71 22.36 28.85
10 31.20 32.23 23.60 23.56 18.47 18.80 28.60 28.70 29.39 24.33 24.76 28.54 23.16 27.94

0 35.32 36.65 30.94 29.23 27.72 27.72 34.38 34.38 34.38 29.40 29.50 33.11 30.90 32.81
0% 5 34.15 34.97 29.72 28.69 27.49 27.50 33.24 33.54 33.33 29.00 29.16 32.64 29.73 31.76

10 32.84 33.03 26.26 26.62 27.36 27.47 31.49 32.29 31.70 28.03 28.28 31.30 28.75 30.82
0 33.71 35.46 27.99 27.00 21.19 21.19 33.50 33.44 33.44 28.87 28.93 32.78 22.46 31.71

Lena 5% 5 33.10 34.29 26.87 26.94 21.37 21.43 32.73 32.94 32.55 28.46 28.62 32.33 22.54 30.94
10 32.15 32.77 24.80 25.39 21.45 22.12 31.14 31.89 31.28 27.64 27.81 30.90 23.23 30.25
0 31.24 34.81 25.45 25.55 18.72 18.72 32.00 32.18 32.56 28.38 28.57 32.44 18.90 31.15

10% 5 31.73 33.61 24.92 25.57 18.84 18.85 31.91 32.19 32.02 28.00 28.25 31.93 19.05 30.50
10 31.17 32.22 23.76 24.45 19.17 19.51 30.57 31.29 30.75 27.14 27.42 30.49 19.75 29.75

0 29.22 31.26 31.36 29.23 27.68 27.67 34.22 34.22 34.22 29.19 29.28 32.93 30.97 32.08
0% 5 28.66 30.24 29.19 28.68 27.38 27.37 33.22 33.46 33.34 28.82 28.98 32.58 29.78 30.98

10 29.50 30.85 27.62 26.80 20.93 20.93 31.89 32.40 32.00 27.89 28.18 31.28 28.74 30.23
0 29.50 30.85 27.62 26.80 20.93 20.93 33.31 33.25 33.45 28.64 28.73 32.48 22.21 31.31

Peppers 5% 5 29.07 30.64 26.49 26.85 21.04 21.09 32.68 32.89 32.80 28.31 28.43 32.07 22.42 30.37
10 29.09 30.40 24.60 25.38 21.16 21.74 31.45 31.92 31.50 27.49 27.69 30.79 23.02 29.75
0 28.54 31.09 25.12 25.32 18.43 18.42 31.85 31.99 32.69 28.16 28.37 32.12 18.69 30.65

10% 5 29.07 30.14 24.60 25.35 18.55 18.55 31.74 31.96 32.17 27.77 28.00 31.62 18.69 29.86
10 28.70 29.98 23.62 24.40 18.80 19.11 30.74 31.26 30.95 27.02 27.27 30.37 19.36 29.14

6. Conclusions. We have shown that localized versions of robust PCA are sometimes
necessary and sufficient to model corrupted data which has local (but not global) low dimen-
sional structure. In particular, we see that the problems of denoising images with impulsive
noise and blind inpainting can be approached via localized robust PCA methods. For these
problems we have shown that a robust PCA algorithm, which is based on a RANSAC like
alternating least square approach, performs very well. We have also established a conver-
gence result for the proposed procedure. There is still much to do. In particular, there is
almost no theory for when recovery is possible with a manifold model; we suspect that it
may be possible to construct a theory analogous to that of [33].

Appendix A. Effect of the Parameters of the ALS. In this section, we show by exper-
iments the effects of the selection for the two parameters p and d on the ALS algorithm.
We first fix d = d0 + 3 and vary the values for p. We compute the relative fitting error
and plot it versus p for different experimental settings (with different m, d0 and p0) in Fig-
ures A.1 and A.2. Figures A.3 and A.4 plot the relative fitting error versus d when fixing
p = 2p0. We conclude from these figures that the ALS algorithm tends to be robust to the
overestimation of the rank and it also allows the overestimation of p to some degree. The
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(c) σ = 30, p0 = 5%
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Figure 5.2: Performance of denoising for BSD database.

ALS algorithm is less robust to the underestimation of these two parameters, however, it
can still perform well under very mild underestimation.

Appendix B. Estimation of the Rank in ALS. Since ALS is robust to overestimation
of the rank, we suggest the following strategy to estimate the underlying low rank of a
corrupted matrix. We apply ALS with di,where di < di+1, i = 1, . . . , t, and denote the
corresponding low-rank estimators of X by X̃1, . . . , X̃t. We then estimate the ranks of
these estimators and thus obtain a sequence of estimated ranks {d̃1, . . . , d̃t}. This sequence
would increase first, be equal to the underlying rank d0 for a while and finally increase again
because of the corruptions. Finding the “stable phase” (i.e., when the sequence does not
increase) will determine the appropriate rank.

To estimate the ranks of the different estimators, we apply second order differences
(SODs) to detect abrupt changes in the singular values of these estimators. Indeed, if the
underlying rank of a matrix is r, then the top (r + 1) singular values of the matrix drop
very quickly, while the ones following them decrease more slowly. The SOD of the singular
values thus expect to obtain the maximum at r+1. If σ1, . . . , σm are the singular values of
an m× n estimator (assume m < n WLOG), then the SODs obtain the form:

S(i) = σi−1 + σi+1 − 2σi, i = 2, . . . ,m− 1, (B.1)

and the estimated rank d̂ can be expressed by

d̂ = argmax
i

S(i)− 1. (B.2)

Note that this procedure is not able to detect the rank of a matrix if r ≥ m− 2. However,
in most problems where the rank is relatively low, this is not the case.

We estimated the rank for the synthetic setting of §2.3. We chose an arithmetic sequence
{di}2i=10 such that d1 = 1 and d20 = 0.2m. We compared with the rank estimated by PCP
and PCP(capped), where the cap for PCP(capped) was 0.2m. We considered both output



15

0 10 20 30 40 50 60 70 80 90 100
20

25

30

35

40

45

 

 

K−ALS(2p
0
)

K−ALS(p
0
)

PCP(capped)

MF+SSMS

IMF

NL−M3

(a) σ = 0, p0 = 0%

0 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

34

36

38

40

 

 

K−ALS(2p
0
)

K−ALS(p
0
)

PCP(capped)

MF+SSMS

IMF

NL−M3

(b) σ = 5, p0 = 0%

0 10 20 30 40 50 60 70 80 90 100
20

22

24

26

28

30

32

34

36

38

40

 

 

K−ALS(2p
0
)

K−ALS(p
0
)

PCP(capped)

MF+SSMS

IMF

NL−M3

(c) σ = 10, p0 = 0%
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(e) σ = 5, p0 = 5%
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(g) σ = 0, p0 = 10%

0 10 20 30 40 50 60 70 80 90 100
18

20

22

24

26

28

30

32

34

36

38

 

 

K−ALS(2p
0
)

K−ALS(p
0
)

PCP(capped)

MF+SSMS

IMF

NL−M3

(h) σ = 5, p0 = 10%
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Figure 5.3: Performance of denoising for BSD database.

values of d0 and d0+1 as successes (after all, ALS is not sensitive to overestimation and the
estimated ranks were either no greater than d0 +1 or equal to d20). All synthetic scenarios
were repeated 100 times. The successful rank identification rates for ALS, PCP(capped)
and PCP are shown in Tables B.1 and B.2.

Table B.1: The correctness(e%) of rank estimation without Gaussian noise

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS-reg(2p0) 100 100 100 100 100 100 100 100 100 100 100 100
PCP(capped) 100 100 79 100 100 100 100 100 100 100 100 100

PCP 100 100 100 100 100 100 100 100 100 100 100 100

Table B.2: The correctness(e%) of rank estimation with Gaussian noise (σ = 0.05)

m 100 200 400 800
d0 5 10 20 40
p0 5% 10% 20% 5% 10% 20% 5% 10% 20% 5% 10% 20%

ALS-reg(2p0) 100 100 99 100 100 100 100 100 100 100 100 100
PCP(capped) 100 100 73 100 100 77 100 100 100 100 100 100

PCP 100 100 100 100 100 100 100 100 100 100 100 100

Appendix C. Restoration of Corrupted Images in SSIM. We report the results of the



16

Figure 5.4: From left to right: noisy images, IMF, MF+SSMS, NLM3, K-PCP(capped) and K-
ALS(2p0). The images at the third row are transposed for larger illustration. For the noisy images,
the first one has Gaussian noise with σ = 30 and the rest has it with σ = 20. While the first three
at the same time has 5% impulsive noise and the last has 10%.

experiments in §5.4 using SSIM [36] instead of PSNR. The SSIM of the five common images
for impulsive noise denoising are shown Table C.1 and for blind inpainting are shown in
Table C.2. The SSIM of the BSD database are shown in Figure C.1 and C.2 for denoising
and blind inpainting respectively.

Appendix D. Mathematical Analysis of the ALS Algorithm. We analyze the perfor-
mance of the ALS algorithm following the strategies of [30, 2].

D.1. Preliminaries.

D.1.1. Notation. Let 1m×n denote an m × n matrix whose elements are all equal to
1; I denote the identity matrix (whose dimension will be clear from the context) and |A|0
denote the number of nonzero elements of the matrix A.

D.1.2. Point-to-Set Maps. Definition D.1 (Point-to-Set Map).Given two sets X ,Y, a
point-to-set map Ω is a function Ω: X → P(Y). The composition of two point-to-set maps
Ω1: X → P(Y) and Ω2: Y → P(Z) is defined by (Ω2 ◦ Ω1)(x) =

∪
y∈Ω1(x)

Ω2(y).
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Figure 5.5: From top to bottom: noisy images, IMF, MF+SSMS, NLM3, PCP(capped)+SSMS and
K-ALS(2p0). The first noisy image has only scratches. The rest also has 5% impulsive noise and
σ = 10 Gaussian noise.

Definition D.2 (Closed Map).A point-to-set map Ω is closed at x̂ ∈ X if {xk} ⊂ X , xk →
x̂, yk ∈ Ω(xk) and yk → ŷ together imply that ŷ ∈ Ω(x̂).

Definition D.3 (Fixed Point).A fixed point of the map Ω : X → P(X ) is a point x for
which {x} = Ω(x). A generalized point of Ω is a point x for which x ∈ Ω(x).

D.1.3. Iterative Algorithms. An iterative algorithm is a point-to-set map Ω : X →
P(X ). Given an initial point x0, an algorithm generates a sequence of points via the rule
xk+1 ∈ Ω(xk). Now, suppose that ϕ : X → R+ is a continuous, non-negative function. An
algorithm Ω is monotonic with respect to ϕ whenever y ∈ Ω(x) implies that ϕ(y) ≤ ϕ(x).
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Figure A.1: The relative fitting error with different values of the parameter p without Gaussian
noise. From top to bottom, p0 = 0.05, 0.1 and 0.2 respectively. From left to right, m = 100, 200, 400
and 800 respectively.
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Figure A.2: The relative fitting error with different values of the parameter p with Gaussian noise
(σ = 0.05). From top to bottom, p0 = 0.05, 0.1 and 0.2 respectively. From left to right, m =
100, 200, 400 and 800 respectively.

If, in addition, y ∈ Ω(x) and ϕ(y) = ϕ(x) imply that y = x, then we say that the algorithm
is strictly monotonic.

Theorem D.4 (Zangwill [37]).Let Ω be an algorithm that is monotonic with respect to ϕ.
Given an initial point x0, suppose that the algorithm generates a sequence {xk} that lies in a
compact set. Then the sequence has at least one accumulation point x̂, and ϕ(x̂) = limϕ(xk).
Moreover, if Ω is closed at x̂ then x̂ is a generalized fixed point of the algorithm.

Theorem D.5 (Meyer [23]).Assume that the algorithm Ω is strictly monotonic with respect
to ϕ and that it generates a sequence {xk} which lies in a compact set. If Ω is closed at an
accumulation point x̂ then x̂ is a fixed point of Ω. Moreover, if X is normed, ∥xk+1−xk∥ →
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Figure A.3: The relative fitting error with different values of the parameter d without Gaussian
noise. From top to bottom, p0 = 0.05, 0.1 and 0.2 respectively. From left to right, m = 100, 200, 400
and 800 respectively.
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Figure A.4: The relative fitting error with different values of the parameter d with Gaussian noise
(σ = 0.05). From top to bottom, p0 = 0.05, 0.1 and 0.2 respectively. From left to right, m =
100, 200, 400 and 800 respectively.

0. It follows that {xk} converges in norm to x̂ or that the accumulation points of xk form
a continuum.

D.1.4. Infimal Maps. For ϕ : X ×Y → R+, we define the infimal map My : X → P(Y)
by My(x) = argmin

y∈Y
ϕ(x,y). We similarly define Mx : Y → P(X ).

Theorem D.6 (Dantzig-Folkman-Shapiro [10]).If ϕ(x̂, ·) is continuous on Y, then My is
closed at x̂.

Theorem D.7 (Fiorot-Huard [13]).If the infimal maps Mx and My are both single-valued
then the algorithm Ω , Mx ◦My is strictly monotonic with respect to ϕ.
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Table C.1: Performance of denoising (in SSIM)
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S
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P

10 0.897 0.912 0.654 0.656 0.582 0.616 0.726 0.754 0.727 0.845 0.846 0.790 0.641 0.874
5% 20 0.836 0.849 0.538 0.557 0.578 0.672 0.654 0.692 0.642 0.674 0.679 0.652 0.681 0.812

30 0.777 0.791 0.509 0.554 0.625 0.710 0.604 0.653 0.595 0.530 0.535 0.529 0.708 0.750
Barbara

10 0.867 0.896 0.566 0.607 0.425 0.442 0.723 0.749 0.717 0.827 0.832 0.772 0.444 0.859
10% 20 0.799 0.826 0.485 0.521 0.421 0.516 0.651 0.686 0.634 0.653 0.655 0.630 0.517 0.797

30 0.733 0.763 0.473 0.529 0.495 0.600 0.601 0.648 0.586 0.507 0.509 0.507 0.603 0.739

10 0.839 0.854 0.610 0.618 0.525 0.571 0.750 0.792 0.787 0.790 0.794 0.790 0.601 0.807
5% 20 0.770 0.783 0.496 0.500 0.523 0.633 0.673 0.727 0.700 0.613 0.619 0.663 0.640 0.742

30 0.715 0.727 0.489 0.496 0.581 0.663 0.622 0.682 0.641 0.468 0.473 0.545 0.662 0.688
Boat

10 0.812 0.841 0.529 0.565 0.383 0.404 0.746 0.787 0.777 0.769 0.777 0.777 0.404 0.795
10% 20 0.740 0.765 0.465 0.464 0.368 0.485 0.668 0.723 0.690 0.594 0.596 0.646 0.491 0.728

30 0.679 0.704 0.472 0.471 0.461 0.567 0.618 0.678 0.630 0.447 0.448 0.528 0.572 0.679

10 0.878 0.888 0.508 0.600 0.482 0.537 0.848 0.856 0.834 0.803 0.804 0.815 0.874 0.821
5% 20 0.836 0.844 0.410 0.497 0.519 0.604 0.812 0.824 0.776 0.594 0.598 0.655 0.816 0.794

30 0.797 0.805 0.435 0.527 0.612 0.684 0.759 0.800 0.712 0.436 0.442 0.519 0.790 0.767
House

10 0.861 0.879 0.452 0.547 0.323 0.350 0.845 0.853 0.792 0.801 0.790 0.801 0.681 0.816
10% 20 0.810 0.828 0.391 0.469 0.338 0.447 0.811 0.821 0.767 0.578 0.578 0.635 0.715 0.794

30 0.765 0.784 0.416 0.498 0.449 0.559 0.761 0.794 0.702 0.421 0.422 0.502 0.698 0.777

10 0.884 0.894 0.498 0.530 0.477 0.531 0.849 0.871 0.846 0.809 0.811 0.829 0.574 0.868
5% 20 0.837 0.847 0.402 0.429 0.516 0.616 0.799 0.831 0.781 0.597 0.603 0.670 0.632 0.826

30 0.794 0.805 0.427 0.451 0.605 0.700 0.759 0.800 0.719 0.438 0.442 0.532 0.703 0.793
Lena

10 0.864 0.884 0.433 0.485 0.318 0.342 0.848 0.868 0.839 0.795 0.796 0.817 0.351 0.863
10% 20 0.808 0.828 0.383 0.400 0.337 0.447 0.797 0.828 0.773 0.582 0.582 0.652 0.441 0.819

30 0.758 0.781 0.414 0.428 0.441 0.576 0.755 0.795 0.709 0.420 0.422 0.512 0.578 0.784

10 0.850 0.860 0.479 0.523 0.453 0.503 0.834 0.847 0.830 0.793 0.794 0.801 0.549 0.838
5% 20 0.812 0.822 0.401 0.425 0.488 0.578 0.802 0.818 0.776 0.592 0.596 0.650 0.600 0.810

30 0.776 0.786 0.437 0.444 0.575 0.673 0.771 0.792 0.715 0.434 0.439 0.515 0.676 0.783
Peppers

10 0.833 0.851 0.425 0.478 0.302 0.324 0.831 0.844 0.825 0.779 0.780 0.790 0.332 0.834
10% 20 0.780 0.802 0.380 0.391 0.313 0.416 0.798 0.813 0.768 0.575 0.575 0.631 0.414 0.803

30 0.740 0.763 0.417 0.422 0.407 0.538 0.766 0.787 0.706 0.417 0.419 0.498 0.546 0.777
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0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

K−ALS(2p
0
)

K−ALS(p
0
)

K−PCP(capped)

MF+SSMS

IMF

NL−M2
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Figure C.1: Performance of denoising (in SSIM) for BSD database.

D.2. The ALS Algorithm as a Point-to-Set Map. In ALS the energy function J
of (4.1) serves as the function ϕ of §D.1.3. Clearly J is continuous on R

m×d×R
d×n×R

m×n.
Let F := {W : W ∈ {0, 1}m×n, |W|0 = ⌊(1 − p)mn⌋}. We assume that d < min(m,n)
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Table C.2: Performance of inpainting (in SSIM)
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0 0.956 0.959 0.938 0.944 0.945 0.945 0.809 0.809 0.809 0.916 0.915 0.860 0.949 0.937
0% 5 0.932 0.936 0.873 0.891 0.912 0.911 0.780 0.789 0.784 0.885 0.887 0.839 0.915 0.898

10 0.904 0.908 0.730 0.717 0.886 0.887 0.725 0.755 0.732 0.811 0.819 0.788 0.888 0.866
0 0.936 0.950 0.851 0.808 0.564 0.5664 0.798 0.798 0.798 0.902 0.897 0.846 0.587 0.920

Barbara 5% 5 0.913 0.927 0.791 0.765 0.562 0.567 0.773 0.782 0.772 0.873 0.871 0.824 0.583 0.883
10 0.882 0.895 0.657 0.644 0.557 0.589 0.721 0.749 0.722 0.801 0.802 0.770 0.610 0.851
0 0.863 0.938 0.710 0.690 0.408 0.407 0.784 0.784 0.784 0.883 0.890 0.831 0.406 0.903

10% 5 0.848 0.914 0.670 0.667 0.406 0.407 0.764 0.772 0.756 0.853 0.860 0.807 0.407 0.868

10 0.830 0.877 0.574 0.594 0.406 0.423 0.715 0.741 0.711 0.781 0.786 0.751 0.431 0.837

0 0.920 0.930 0.930 0.921 0.932 0.932 0.847 0.847 0.847 0.872 0.871 0.851 0.941 0.929
0% 5 0.884 0.894 0.853 0.853 0.878 0.871 0.812 0.830 0.825 0.842 0.844 0.832 0.877 0.852

10 0.843 0.851 0.664 0.673 0.826 0.826 0.748 0.791 0.789 0.765 0.773 0.787 0.828 0.809
0 0.900 0.918 0.793 0.784 0.538 0.538 0.838 0.838 0.838 0.852 0.848 0.845 0.566 0.902

Boat 5% 5 0.864 0.882 0.730 0.737 0.526 0.528 0.808 0.824 0.818 0.824 0.822 0.825 0.553 0.831
10 0.821 0.837 0.598 0.602 0.508 0.548 0.744 0.786 0.781 0.749 0.751 0.776 0.572 0.792
0 0.862 0.907 0.656 0.665 0.369 0.369 0.824 0.824 0.827 0.828 0.839 0.837 0.372 0.886

10% 5 0.829 0.868 0.613 0.635 0.369 0.369 0.800 0.815 0.810 0.800 0.809 0.814 0.371 0.821
10 0.790 0.824 0.520 0.548 0.367 0.386 0.737 0.779 0.770 0.729 0.735 0.764 0.390 0.777

0 0.955 0.954 0.866 0.855 0.849 0.849 0.868 0.868 0.883 0.840 0.839 0.881 0.929 0.899
0% 5 0.914 0.915 0.775 0.810 0.809 0.805 0852 0.860 0.865 0.796 0.802 0.846 0.867 0.856

10 0.870 0.866 0.567 0.629 0.767 0.770 0.831 0.841 0.831 0.704 0.715 0.788 0.817 0.815
0 0.953 0.961 0.703 0.692 0.457 0.457 0.854 0.855 0.877 0.824 0.824 0.872 0.755 0.871

House 5% 5 0.907 0.915 0.614 0.677 0.438 0.443 0.845 0.848 0.858 0.785 0.787 0.841 0.744 0.837
10 0.863 0.867 0.480 0.563 0.435 0.474 0.820 0.831 0.826 0.698 0.702 0.776 0.740 0.809
0 0.925 0.956 0.540 0.566 0.300 0.300 0.829 0.833 0.867 0.806 0.816 0.867 0.454 0.861

10% 5 0.881 0.910 0.498 0.564 0.295 0.297 0.829 0.831 0.848 0.769 0.778 0.832 0.435 0.839
10 0.844 0.862 0.433 0.510 0.301 0.323 0.812 0.818 0.819 0.686 0.690 0.766 0.504 0.809

0 0.950 0.955 0.932 0.924 0.933 0.933 0.918 0.918 0.918 0.900 0.900 0.909 0.943 0.940
0% 5 0.916 0.921 0.809 0.837 0.883 0.880 0.883 0.894 0.889 0.860 0.864 0.885 0.888 0.887

10 0.886 0.888 0.549 0.590 0.851 0.852 0.846 0.869 0.847 0.762 0.772 0.829 0.856 0.861
0 0.936 0.949 0.722 0.710 0.480 0.480 0.909 0.910 0.910 0.887 0.884 0.905 0.513 0.916

Lena 5% 5 0.903 0.914 0.629 0.672 0.469 0.476 0.879 0.889 0.884 0.849 0.849 0.880 0.512 0.874
10 0.872 0.881 0.474 0.518 0.458 0.501 0.843 0.865 0.841 0.756 0.759 0.818 0.540 0.850
0 0.907 0.942 0.553 0.582 0.305 0.305 0.897 0.897 0.900 0.860 0.878 0.900 0.306 0.908

10% 5 0.883 0.906 0.510 0.563 0.302 0.304 0.872 0.882 0.878 0.833 0.840 0.872 0.308 0.867
10 0.851 0.871 0.428 0.471 0.308 0.329 0.837 0.859 0.833 0.742 0.745 0.806 0.335 0.842

0 0.928 0.924 0.912 0.920 0.928 0.928 0.886 0.886 0.886 0.880 0.880 0.875 0.938 0.916
0% 5 0.878 0.875 0.753 0.810 0.860 0.851 0.856 0.864 0.866 0.842 0.846 0.855 0.860 0.849

10 0.847 0.846 0.512 0.571 0.818 0.818 0.832 0.846 0.831 0.749 0.759 0.803 0.822 0.827
0 0.916 0.925 0.689 0.688 0.466 0.466 0.878 0.878 0.879 0.865 0.864 0.872 0.497 0.911

Peppers 5% 5 0.869 0.877 0.603 0.657 0.449 0.452 0.852 0.860 0.861 0.830 0.831 0.849 0.491 0.844
10 0.840 0.844 0.465 0.507 0.437 0.477 0.828 0.841 0.826 0.742 0.745 0.793 0.514 0.823
0 0.889 0.919 0.533 0.561 0.291 0.291 0.865 0.866 0.874 0.845 0.857 0.868 0.296 0.903

10% 5 0.852 0.872 0.493 0.547 0.290 0.290 0.844 0.852 0.855 0.812 0.821 0.843 0.288 0.837
10 0.821 0.836 0.419 0.462 0.288 0.307 0.821 0.834 0.820 0.727 0.731 0.782 0.313 0.816

and p is the estimated portion of corruptions. The ALS algorithm minimizes J among
(B,C,W) ∈ R

m×d ×R
d×n ×F . Defining, MB(C,W) = argmin

B

J, MC(B,W) = argmin
C

J

and MW(B,C) = argmin
W∈F

J , we rewrite the ALS Algorithm as

Ω = MW ◦ (MB ◦MC)
t, (D.1)

where t is the number of iterations of the inner loop.

D.3. Conclusion of Theorem 4.1. At each step, the ALS Algorithm is composed of
2t+ 1 infimal maps as in (D.1). For fixed B, the product map C 7→ BC is continuous and
J is continuous w.r.t. BC. Thus, J(B, ·,W) is continuous for fixed B and W. As a result,
Theorem D.6 implies that both MB and MC are closed. Meanwhile, MW is closed because
F is finite. Therefore, the ALS Algorithm is closed. Lemmata D.8 and D.9, which are
formulated and proved below, imply that the ALS algorithm is composed by single-valued
infimal maps. Therefore, in view of Theorem D.7 the ALS algorithm is strictly monotonic.
Consequently, λ1∥Bt∥2F +λ2∥Ct∥2F ≤ J(Bt,Ct,Wt) < J(B0,C0,W0). Thus the iterates of
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(f) σ = 10, p0 = 5%
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(h) σ = 5, p0 = 10%
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Figure C.2: Performance of inpainting (in SSIM) for BSD database.

ALS are uniformly bounded. Combining these observations with Theorem D.5, we conclude
Theorem 4.1.

D.3.1. Establishing Single Values forMW. Lemma D.8.If the elements of U are i.i.d. sam-
ples from a continuous distribution on [0, 1], then the ⌊p · m · n⌋-th and ⌊p · m · n⌋ + 1-th
greatest elements of {|(BtCt)ij −Xij |2 + λ3U

2
ij}1≤i≤m

1≤j≤n
are different with probability 1.

Proof. Due to the independence and continuity of the distribution of Uij , we have

P { |(BtCt)ij −Xij |2 + λ3U
2
ij = |(BtCt)i′j′ −Xi′j′ |2 + λ3U

2
i′j′ }

= P{λ3(U
2
i′j′ −U2

ij) = |(BtCt)ij −Xij |2 − |(BtCt)i′j′ −Xi′j′ |2}
= 0 (D.2)

D.3.2. Establishing Single Values for MB and MC. Lemma D.9.The infimal maps MB

and MC derived from (4.1) are single-valued.
Proof.
By the definition of infimal maps, we have

B̂ := MB(C,W) = argmin
B

∥(BC−X) ◦W∥2F + λ1∥B∥2F + λ2∥C∥2F (D.3)
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Let C̃(i) = C ◦ (1d×1Wi·) and X̃ = X ◦Wi·. Then

B̂i· = X̃i·C̃
T
(i)(C̃(i)C̃

T
(i) + λ1I)

−1, (D.4)

where i = 1, . . . ,m. Similarly, let Ĉ = MC and we have

Ĉ·j = (B̃T
(j)B̃(j) + λ2I)

−1B̃T
(j)X̃·j , (D.5)

where B̃(j) = B ◦ (W·j11×d) and j = 1, . . . , n. Then (D.4) and (D.5) complete the proof.

D.4. Conclusion of Theorem 4.2. The K-ALS algorithm can also be viewed as a point-
to-set map:

Ω = (MW ◦ (MB ◦MC)
t1)t2 ◦Mη (D.6)

where Mη = argmin
η

J , i.e.,

η(j) = argmin
k

min
c

∥(Bkc−X·j) ◦W·j∥22 + λ4V
2
kj (D.7)

where W = P[W1 . . .WK ], P is a permutation matrix such that X = P[X1 . . .XK ].

The proof of Theorem 4.2 is analogous to Theorem 4.1. It suffices to show that (D.7)
is single-valued. Because each element of V is i.i.d. sampled from a continuous distribution
on [0, 1], we have:

P { min
c

∥(Bkc−X·j) ◦W·j∥22 + λ4V
2
kj = min

c
∥(Bk′c−X·j) ◦W·j∥22 + λ4V

2
k′j }

= P{λ4(V
2
k′j −V2

kj) = ∥(Bkc−X·j) ◦W·j∥22 − ∥(Bk′c−X·j) ◦W·j∥22}
= 0 (D.8)

Therefore, (D.7) is single-valued with probability 1 and the theorem is concluded.
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