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Abstract

Lorenz curves and second-order dominance criteria are known to be sensitive
to data contamination in the right tail of the distribution. We propose two
ways of dealing with the problem: (1) Estimate Lorenz curves using paramet-
ric models for income distributions, and (2) Combine empirical estimation
with a parametric (robust) estimation of the upper tail of the distribution
using the Pareto model. Approach (2) is preferred because of its ‡exibil-
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1 Introduction
The Lorenz curve is central to the analysis of income distributions. It em-
bodies some fundamental intuition about inequality comparisons. Ranking
theorems based on the associated concepts of stochastic dominance are funda-
mental to the theoretical welfare economics of distributions. But formal wel-
fare propositions can only be satisfactorily invoked for empirical constructs
if sample data can be taken as a reasonable representation of the underlying
income distributions under consideration. In practice income-distribution
data may be contaminated by recording errors, measurement errors and the
like and, if the data cannot be purged of these, welfare conclusions drawn
from the data can be seriously misleading. The purpose of this paper is to
provide a rigorous method for handling these potential problems, one that ac-
cords well with pragmatic procedures that are sometimes adopted by applied
researchers in this …eld.

The point of departure is recent research which has shown that Lorenz
and stochastic dominance results are non-robust (Cowell and Victoria-Feser
1996, 2002), This means that small amounts of data contamination in the
wrong place can reverse unambiguous welfare conclusions: the “wrong place”
usually means in the upper tail of the distribution. So it is important to have
an approach that enables one to control for the distortionary e¤ect of upper-
tail contamination in a systematic fashion. We need a robust method of
estimating Lorenz curves and implementing stochastic dominance criteria.

There are two main ways of avoiding misleading conclusions due to non-
robust ranking tools in the presence of contaminated data. One is based
on statistics that automatically remove from the sample any data that are
potentially troublesome. The other relies on the speci…cation of parametric
models for the distribution of the data and uses robust estimators of the
parameters. The …rst approach, based on the concept of trimmed Lorenz
curves (Cowell and Victoria-Feser 2001), raises issues which go beyond the
scope of this paper. Here we focus on parametric approaches, which are
of particular interest because of their ad hoc use in practical treatment of
problems associated with the upper tails of income and wealth distributions.1

The paper is organised as follows. In sections 3 and 4 we discuss two ways
of implementing a parametric approach to the estimation of Lorenz curves.

1For example a Pareto tail is sometimes …tted to data in cases where data are sparse
in order to provide better estimates of inequality measures.
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In section 5 we provide the necessary tools for inference on robust Lorenz
curves. Section 6 concludes.

2 The Background
Let F be the set of all univariate probability distributions andX be a random
variable which may be thought of as “income”, with probability distribution
F 2 F and support X µ R. F can be thought of as a parametric model Fµ.
We shall write statistics of any distribution F 2 F as a functional T (F ); in
particular we write the mean as ¹(F ) :=

R
xdF (x).

A key distributional concept derived from F is given by

De…nition 1 The qth cumulative income is the functional C : F£[0; 1] 7! X:
such that:

C(F ; q) :=
Z Q(F ;q)

x
xdF (x) = cq: (1)

where x := inf X and

Q(F ; q) = inffxjF (x) ¸ qg = xq (2)

is the quantile functional.

The importance of this concept in practical analysis of income distribu-
tions is considerable: note, for example, that the mean functional emerges as
one particular case – ¹(F ) = C(F; 1) – and the income share of the bottom q
of the population is given by C(F; q)=C(F; 1). Moreover, for a given F 2 F,
the graph of C(F; q) against q describes the generalised Lorenz curve (GLC).
From the fundamental concept of the cumulative income functional one ob-
tains two other important analytical tools for drawing welfare-conclusions
from income data, namely the Relative Lorenz curve (RLC)(Lorenz 1905):

L(F ; q) :=
C(F ; q)
¹(F )

(3)

and the Absolute Lorenz Curve (ALC) (Moyes 1987):

A(F ; q) := C(F ; q) ¡ q¹(F ) (4)
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Cumulative income functionals can obviously be estimated empirically by
replacing F in (1) by the empirical distribution. However, this can lead to
misleading conclusions when it comes to comparing distributions in terms
of their cumulative income functionals when there is data contamination
(Cowell and Victoria-Feser 2002).

In order to present an alternative robust approach we will make use of
the in‡uence function (IF ).2 The primary usage of the IF is to characterise
the sensitivity of a statistic to point contamination in the data (see e.g.
Hampel et al. 1986) but can also be used to derive asymptotic results such as
asymptotic covariance matrices of for example cumulative income functionals
(Cowell and Victoria-Feser 1999, 2001). Let ¢z be a point mass distribution
giving probability 1 to an arbitrary point z 2 X and de…ne the mixture
distribution

F (z)
" = (1 ¡ ")F + "¢z (5)

F (z)
" de…nes a distribution which generates with a large probability (1 ¡ ")

data from the true model F and with a small probability " arbitrary data z.
The IF of a statistic T (F ) is de…ned as

IF (z;T;F ) = lim
"#0
T (F (z)

" ) ¡ T (F )
"

(6)

which becomes @
@" T (F

(z)
" )

¯̄
¯
"=0

if T is di¤erentiable. If the IF of a statistic
T is unbounded or can take large values, then T is said not robust in the
in…nitesimal sense in that an in…nitesimal amount of contaminated data at
z can change drastically the value of T . Using the IF, one can also compute
the asymptotic covariance matrix of T which is obtained by means of

cov(
p
nT (F (n)) =

Z

X
IF (z;T; F )IF 0(z;T; F )dF (z) (7)

(see Hampel et al. 1986). This result will be used when computing the
asymptotic covariance matrix of semi-parametric income functionals.

3 A full parametric approach
A parametric approach to modelling the Lorenz curve requires the speci…ca-
tion of a functional form for modelling the data. One then estimates robustly

2Also called the in‡uence curve and …rst introduced by Hampel (1971, 1974).
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the parameters of the model and uses the estimated distributions to compute
the (estimated) Lorenz curves. To be more precise, suppose we choose Fµ as
model for the data and estimate µ robustly by say µ̂, then robust estimates
of the GLC, RLC and ALC are given by respectively

C(µ̂; q) =
Z Q(Fµ̂;q)

x
xdFµ̂(x); (8)

L(µ̂; q) =
C(Fµ̂; q)
¹(Fµ̂)

; (9)

A(µ̂; q) = C(Fµ̂; q) ¡ ¹(Fµ̂) ¢ q; (10)

where ¹(Fµ̂) =
R
xdFµ̂(x). The IF of the estimators of the Lorenz curves

will then depend on the IF of the parameter’s estimator. Indeed, the Lorenz
curves depend on the data only through the estimator µ̂. If we write the latter
as a functional of the contaminated distribution given in (5), i.e. µ̂(F (z)

" ), then
we have

IF (z;C; Fµ) =
@
@µ
C(Fµ; q) ¢ IF (z; µ̂; Fµ): (11)

Note that @
@µC(Fµ; q) does not depend on z, so that only if the estimator is

robust, or in other words if its IF is bounded, the Lorenz curve estimated
through a parametric model is also robust. Optimal bounded-in‡uence esti-
mators have been developed in the statistical literature for general parametric
models (Hampel et al. 1986) and for income distribution (Victoria-Feser and
Ronchetti, 1994, 1997). Other types of robust estimators (for example ones
based on robust moment estimators) could also be used.

However, in the present context, a full parametric approach is inappropri-
ate because it forces the data into the “mould” of a functional form that may
not be suitable for welfare comparisons. For example, if one supposes that
the income data are lognormally distributed, then a “parametric Lorenz”
comparison of two distributions based on the lognormal will always yield a
strict dominance order! The parametric approach is therefore only appropri-
ate provided that the postulated model is capable of yielding Lorenz curves
that can cross: this may require speci…cation of a complicated functional
form that is di¢cult to estimate and to interpret.

4



4 A semi-parametric approach
In light of the above considerations, we suggest using a semi-parametric ap-
proach. If the income range is bounded below – 0 is a typical value – the
problems with contaminated data occur in the upper tail of the distribution
(Cowell and Victoria-Feser 2002). A case can therefore be made for using
parametric modelling only in the upper tail and estimating the parameter of
the upper-tail model robustly. The rest of the distribution is estimated using
the empirical distribution function.

4.1 Robust estimation
A suitable model for the upper tail is the Pareto distribution given by

Fµ;x0(x) = 1 ¡
·
x
x0

¸¡µ
(12)

with density f(x; µ) = µx¡(µ+1)xµ0. The parameter of interest is µ and is
assumed to be greater than 2 for the variance to exist. A semi-parametric
approach will combine a non-parametric RLC for say the (1 ¡ ®)% lower
incomes and a parametric RLC based on the Pareto distribution for the ®%
upper incomes. Therefore we suppose that x0 is determined by the 1 ¡ ®
quantile Q(F ; 1¡ ®) de…ned in (2). The full semi-parametric distribution eF
of the income variable X is then

eF (x) =
(

F (x) x · Q(F ; 1 ¡ ®)
1 ¡ ®

³
x

Q(F ;1¡®)

´¡µ
x > Q(F ; 1 ¡ ®) : (13)

For x > Q(F ; 1 ¡ ®), the density ef is

ef(x; µ) = ®µQ(F ; 1 ¡ ®)µx¡µ¡1 :

In particular
ef(x1¡®; µ) =

®µ
x1¡®

: (14)

To estimate the Pareto model for the upper tail of the distribution, one
can use the maximum likelihood estimator (MLE). Unfortunately, the MLE
for the Pareto model is known to be very sensitive to data contamination

5



(Victoria-Feser 1993). Robust estimators for general parametric models have
been developed by Hampel et al. (1986) and now implemented in INeQ (2001)
for the Pareto model. These are actually bounded IF M -estimators (Huber
1981) with minimal asymptotic covariance matrix and are called optimal B-
robust estimators (OBRE). The expression ofM -estimators is similar to that
of the MLE. Given a sample fxi; i = 1; : : : ng and a bound c on the IF, they
are de…ned implicitly by the solution µ̂( eF ) in

Z 1

Q(F ;1¡®)
Ã(x; µ̂( eF ); Q(F ; 1 ¡ ®))d eF (x) = 0

When Ã is the score function s(x; µ;Q(F ; 1¡®)) = 1
µ ¡ log(x)+ log(Q(F ; 1¡

®)) we get the ML estimator. We get the OBRE when

Ã(x; µ) = [s(x; µ) ¡ a(µ)]Wc(x; µ)

with
Wc(x; µ) = min

½
1;

c
kA(µ)[s(x; µ) ¡ a(µ)]k

¾
(15)

where k¢k denotes the Euclidean norm, and the matrix A(µ) and vector a(µ)
are de…ned implicitly by

E [Ã(x; µ)Ã0(x; µ)] = [A(µ)0A(µ)]¡1

E [Ã(x; µ)] = 0

The weights (15) are attributed to each observation according to its in‡uence
on the estimator. The constant c is a regulator between e¢ciency and ro-
bustness: the lower c the more robust is the OBRE but also the less e¢cient.
Finally, the asymptotic covariance of

p
nµ̂ is given by

var(µ̂) =
1

M2(µ)

Z
Ã2(x; µ)dFµ(x)

with

M(µ) = ¡
Z
@
@µ
Ã(x; µ)dFµ(x)

=
Z
Ã(x; µ)s(x; µ)dFµ(x)

(see Hampel et al. 1986).
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4.2 First and second order semi-parametric rankings
The quantile functional is obtained using (13) and is given by

Q( eF ; q) =
(
Q(F; q) q · 1 ¡ ®
Q(F ; 1 ¡ ®)

¡1¡q
®

¢¡1=µ( eF ) q > 1 ¡ ®

Hence the cumulative income functional de…ning the semi-parametric GLC
becomes

C( eF ; q) =
Z Q( eF ;q)

x
xd eF (x)

=

8
>><
>>:

R Q(F;q)
x xdF (x) q · 1 ¡ ®R Q(F;1¡®)
x xdF (x)

+®
R Q(F ;1¡®)( 1¡q® )¡1=µ̂(

eF )

Q(F;1¡®) xdFµ̂( eF );Q(F ;1¡®) q > 1 ¡ ®

=

8
>>><
>>>:

R Q(F;q)
x xdF (x) q · 1 ¡ ®R Q(F;1¡®)
x xdF (x)

+® µ̂( eF )
1¡µ̂( eF )Q(F ; 1 ¡ ®)

·¡1¡q
®

¢ µ̂( eF )¡1
µ̂( eF ) ¡ 1

¸
q > 1 ¡ ®

where x := inf X. An estimator is given by ĉq = C(F (n); q). The mean of the
semi-parametric distribution is given by:

C( eF ; 1) =
Z Q(F;1¡®)

x
xdF (x) ¡ ®Q(F ; 1 ¡ ®) µ̂(

eF )
1 ¡ µ̂( eF )

= c1¡® ¡ ®x1¡®
µ

1 ¡ µ
= ¹( eF )

The semi-parametric RLC is simply

L( eF ; q) = C(
eF ; q))
¹( eF )

(16)

which is estimated by blq = L(F (n); q). A question arises here about the
choice of the proportion ® of data to model. We propose a simple rationale
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based on prior knowledge of the quality of the data. There are to points
to be stressed. First, ® should be as small as possible to avoid putting too
much of the parametric approach into the ranking exercise, for the reason
we mentioned above. Second, ® should be large enough so that a majority
of data points in the upper tail subsample are uncontaminated data. Let
" be the (suspected) proportion of contaminated data in the whole sample,
which should be relatively small. Suppose that the data analyst has a fairly
good idea of that quantity which in general depends on the data source. We
propose the adoption of a minimax approach in that we assume that the
contamination will result in the worst scenario, i.e. in extremely large in-
comes. To prevent the ranking exercise being completely determined by this
proportion " of contaminated data, one then should get the information on
the upper tail through the estimation of the parameter of the Pareto distrib-
ution. Then ®, the proportion of data to model, should be such that "® equals
that proportion of contaminated data that the chosen robust estimator can
withstand before it breaks down (see Hampel et al. 1986). In our experience,
the OBRE for the Pareto model can withstand up to 10% of contaminated
data, so that ® = 1

0:1".

4.3 Simulated examples
In order to test our semi-parametric RLC we performed the following simu-
lation exercise. Two samples of 10 000 observations were simulated from a
Dagum type I distribution given by

f(x;¯; ¸; ±) = (¯ + 1)¸±x¡(±+1)(1 + ¸x¡±)¡(¯+1) (17)

(Dagum 1977).3 The values of the parameters were chosen in order to get
two distributions such that one exactly RLC-dominates the other. They are
the Dagum(2,1,3) (i.e. ¯ = 2, ¸ = 1, ± = 3) and the Dagum(2,1,2.5). We
then contaminated the Dagum(2,1,3) by multiplying 0:25% of the largest
observations by 10. The RLC for the uncontaminated and contaminated
Dagum(2,1,3) and the Dagum(2,1,2.5) are given in Figure 1. We can see that
the original dominance order does not anymore hold because the contami-
nated Dagum(2,1,3) is completely determined by 0:25% extreme observations
introduced into the data.

3The form (17) has the property that for large values of x, the distribution converges
to the Pareto distribution. Note also that this model can be seen as a particular case of
the generalized Beta distribution proposed by McDonald and Ransom (1979).
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Figure 1: Contaminated Dagum-I distribution

The non-parametric RLC clearly gives a misleading picture. We can avoid
this by modelling the upper tail of the Dagum(2,1,3) distribution using the
Pareto-tail model as explained above. We used INeQ (2001) which computes
the MLE and the OBRE for the Pareto model and chose c = 2 and ® = 5%.
The values of µ̂ (with standard errors) for the non-contaminated sample are
respectively µ̂ = 2:82(0:126) for the MLE estimator and µ̂ = 2:78(0:134)
for the OBRE, whereas for the contaminated sample they are respectively
µ̂ = 2:11(0:094) for the MLE estimator and µ̂ = 2:78(0:134) for the OBRE.
We can see that the OBRE remains very stable whereas the MLE seems to
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be quite in‡uenced by data contamination. We then estimated the semi-
parametric RLC using (16) in which eF is replaced by F (n) and using either
the MLE or the OBRE for µ. The results are compared to the non-parametric
RLC using the non-contaminated sample in Figure 2. Figure 3 presents the
same picture but zoomed in the upper tail of the distribution. We can see that
the semi-parametric RLC on non-contaminated data and/or using a robust
estimator are very near to the non-parametric RLC with non-contaminated
data. However, when one uses a semi-parametric RLC with a classical esti-
mator on contaminated data, the picture is distorted and the resulting RLC
actually crosses the RLC of the Dagum(2,1,2.5) data. It should be noted that
it not as distorted as with the non-parametric RLC given in Figure 1. Hence,
with the robust semi-parametric RLC, the dominance order is preserved with
or without contamination, whereas with the classical semi-parametric RLC
on contaminated data the curves cross, thus contradicting the original order.

5 Inference with semi-parametric LCs
As noted in section 2 the IF can be used to derive asymptotic covariance
matrices. Although this has been done for a wide variety of data settings
and welfare statistics the semi-parametric case has not yet been tackled;
nevertheless it can be developed quite easily using the same approach as in
Cowell and Victoria-Feser (1999).

First we need to compute the IF of µ̂( eF ); this is given in the following
theorem:

Theorem 1 If µ̂( eF ) is a consistent estimator of µ which implies that (Fisher
consistency) Z 1

x1¡®
Ã(x; µ; x1¡®)dFµ;x1¡®(x) = 0 (18)

then we have that the IF of µ̂( eF ) is

IF (z; µ̂; eF ) = 1
®M(µ)

Ã(z; µ; x1¡®)¶(z > x1¡®) (19)

Proof. See Appendix A.1.

To derive the asymptotic covariance matrix of RLC ordinates, we then
need the IF of the cumulative income functionals.
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Theorem 2 The IF of ĉq is

IF (z; ĉq; eF ) =

8
>>>><
>>>>:

qxq ¡ cq + ¶(xq ¸ z)[z ¡ xq] if q · 1 ¡ ®

C(q) +D(q) [¶(x1¡® ¸ z)]
+ [¶(x1¡® ¸ z)] [z ¡ x1¡®]
+E(q) 1

M(µ)Ã(z; µ; x1¡®) [¶(z > x1¡®)] if q > 1 ¡ ®

(20)

where ¶ is the indicator function and

C(q) = (1 ¡ ®)x1¡® ¡ c1¡®

+
(1 ¡ ®)x1¡®

1 ¡ µ

"µ
1 ¡ q
®

¶ µ¡1
µ

¡ 1

#
(21)

D(q) = ¡ x1¡®
1 ¡ µ

"µ
1 ¡ q
®

¶ µ¡1
µ

¡ 1

#
(22)

E(q) =
x1¡®
µ(1 ¡ µ)

"µ
1 ¡ q
®

¶ µ¡1
µ

log
µ
1 ¡ q
®

¶

+
µ

(1 ¡ µ)

"µ
1 ¡ q
®

¶ µ¡1
µ

¡ 1

##
(23)

with

C(1) = (1 ¡ ®)x1¡® ¡ c1¡® ¡ (1 ¡ ®)x1¡®
1 ¡ µ

D(1) =
x1¡®
1 ¡ µ

E(1) = ¡ x1¡®
(1 ¡ µ)2

Proof. See Appendix A.2.

We then use (7) to obtain the asymptotic covariances for the semi-parametric
income functionals.

Theorem 3 For any q; q0, q · q0 the asymptotic covariance of
p
nĉq and
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p
nĉq0 is

!qq0 =

8
>>>>>>>>>>><
>>>>>>>>>>>:

sq + (qxq ¡ cq)(xq0 ¡ q0xq0 + cq0) ¡ xqcq q; q0 · 1 ¡ ®

sq + (qxq ¡ cq)(c1¡® + ®x1¡® ¡ ®D(q0)) ¡ cqxq q · 1 ¡ ® < q0

s1¡® ¡ 2c1¡®x1¡® + (1 ¡ ®)x21¡®+
(C(q) +D(q) + C(q0) +D(q0)) (c1¡® ¡ (1 ¡ ®)x1¡®)
+C(q)C(q0) + (1 ¡ ®)C(q)D(q0)
+(1 ¡ ®)C(q0)D(q) + (1 ¡ ®)D(q0)D(q)
+®E(q0)E(q)var(µ̂) 1 ¡ ® < q; q0

(24)

Proof. See Appendix A.3.

The estimation of !qq0 is relatively straightforward. Given a sample©
x[1]; : : : ; x[n]

ª
of ordered data, letting n1¡® = int ((n¡ 1)(1 ¡ ®) + 1) we

can obtain µ̂ and var(µ̂) from
©
x[n1¡®]; : : : ; x[n]

ª
. The set of proportions©

qi = i
n ; i = 1; n

ª
is then de…ned and !qq0 is estimated by !̂qiqj obtained by

replacing in (24), (21), (22) and (16), q by qi and q0 by qj, xq by x[i] and xq0
by x[j] and x1¡® by x[n1¡®], cq by 1

n

Pi
k=1 x[k] and cq0 by 1

n

Pj
k=1 x[k] and c1¡®

by 1
n

Pn1¡®
k=1 x[k], sq by 1

n

Pi
k=1 x

2
[k] and s1¡® by 1

n

Pn1¡®
k=1 x

2
[k], and µ by µ̂.

To extend the results for the cumulative income functional to the Lorenz
curve is also straightforward. Indeed, the covariance between

p
nl̂q and

p
nl̂q0

is obtained using the standard results on limiting distributions of di¤eren-
tiable functions of random variables, and is given by

Àqq0 =
1
¹4

£
¹2!qq0 ¡ ¹ (cq0!q1 + cq!q01) + cqcq0!11

¤

where ¹ = ¹( eF ). It is estimated in the same manner as !qq0.

5.1 Empirical comparison of variances
It is interesting to compare asymptotic variances for RLC ordinates when
computed on empirical RLC or semi-parametric RLC and with or without
contaminated data. We did this by taking the simulated samples used when
we compared the two approaches, i.e. 10 000 data from a Dagum(2, 1, 3),
a contaminated Dagum(2, 1, 3) and a Dagum(2, 1, 2.5). We computed the
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Figure 4: Variance comparisons between empirical and semi-parametric RLC
(without contamination)

asymptotic variances for the empirical RLC and for the semi parametric RLC
using the MLE and the OBRE (c = 2) and their standard errors obtained on
the top 5% of the data. The results are presented in Figures 4 to 7 where in
each case the horizontal axis plots 10 000q for 0 < q · 1.

We can draw the following conclusions. First, the semi-parametric ap-
proach leads to similar variances in the non-contaminated samples (top two
panels). In these cases the semi-parametric approach using the OBRE leads
to relatively larger variances when compared to the MLE, which is expected
since the OBRE is less e¢cient than the MLE. Second, when there is contam-
ination, variances obtained through the non-parametric approach are exces-
sively large when compared to the uncontaminated case (bottom-left panel).
Third, with contaminated data, variances for the semi-parametric RLC are
considerably larger with the MLE than with the OBRE (bottom-left panel).
Fourth, variances for the semi-parametric RLC with the OBRE in the con-
taminated case are comparable to the nonparametric and semi-parametric
cases in the uncontaminated case (bottom-right panel). So, in cases where
there are contaminated data, it is always better to use a semi-parametric
approach in which the unknown parameters are estimated robustly.
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Dagum(2,1,2.5) quantiles
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Figure 5: Variance comparisons between empirical and semi-parametric RLC
(without contamination)

Contaminated Dagum(2,1,3) quantiles
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Figure 6: Variance of the empirical RLC (with contamination)
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Contaminated Dagum(2,1,3) quantiles

A
sy

m
pt

ot
ic

 v
ar

ia
nc

es

0 2000 4000 6000 8000 10000

0.
0

0.
00

00
1

0.
00

00
2

0.
00

00
3

0.
00

00
4

SP-MLE
SP-OBRE

Figure 7: Variance of the semi-parametric RLC (with contamination)

6 Conclusion
Using ranking criteria to make welfare inferences about income distributions
is of immense theoretical advantage and practical convenience. As abstract
theoretical constructs they provide a connection between the philosophical
basis of welfare judgments and elementary statistical tools for describing dis-
tributions. In practical applications they suggest useful ways in which simple
computational procedures may be used to draw inferences from collections
of empirical income distributions.However, since it has been shown that sec-
ond order rankings are not robust to data contamination, especially in the
upper tail of the distribution, it is important to provide the empirical re-
searcher with computational devices which can be used to draw restricted
welfare inferences about the properties of distributional comparisons in a
robust fashion.

One way is to estimate Lorenz curves through the speci…cation of a para-
metric model and the robust estimation of its parameters. However, this
approach is too restrictive in that in order to have the possibility of having
crossing Lorenz curves, the models should be very ‡exible and incorporate at
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least three parameters, which might lead serious estimation complications.
The way we propose here is a semi-parametric approach in that the up-

per tail of the distribution is robustly …tted using the Pareto model and a
semi-parametric Lorenz curve is then build which combines non parametric
cumulated incomes and estimated ones. Simulated examples have proven not
only that a few extreme incomes can reverse the ranking order, but also that
the robust parametric Lorenz curve restores the initial ordering. Inference
can be made for comparing two distributions even in the semi-parametric set-
ting, by extending the general setting provided in Cowell and Victoria-Feser
(1999). For variances too, a robust approach provides reasonable estimates
when there is contamination.

Finally, it should be stressed that, although our main discussion is couched
in the language of income distribution, all of our analysis is immediately ap-
plicable to cognate …elds such as the comparison of probability distributions
in …nance.
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A Proofs

A.1 Theorem 1
(18) implies @

@a

£R1
a Ã(x; µ; a)dFµ;x1¡®(x)

¤
a=x1¡®

= ¡
R1
x1¡®
Ã(x; µ; x1¡®) @

@x1¡®
log f(x; µ; x0)dFµ;x1¡®(x)

= ¡ µ
x1¡®

R1
x1¡®
Ã(x; µ; x1¡®)dFµ;x1¡®(x) = 0. Applying (6),

IF (z; µ̂; eF ) = @
@" µ̂(F")"=0 is obtained through

@
@"

hR1
Q(F";1¡®) Ã(x; µ̂(F"); Q(F"; 1 ¡ ®))dF"(x)

i
"=0

= 0 which is

@
@"

·
(1 ¡ ")

Z 1

Q(F";1¡®)
Ã(x; µ̂(F"); Q(F"; 1 ¡ ®))d eF (x)

¸

"=0

+
@
@"

·
"Ã(z; µ̂(F"); Q(F"; 1 ¡ ®))¶(z > Q(F"; 1 ¡ ®))

¸

"=0

= ¡®
Z 1

x1¡®
Ã(x; µ; x1¡®)dFµ;x1¡®(x)

+
@
@"

·Z 1

Q(F";1¡®)
Ã(x; µ̂(F"); Q(F"; 1 ¡ ®))d eF (x)

¸

"=0

+Ã(z; µ; x1¡®) [¶(z > x1¡®)]

= +®
@
@a

·Z 1

a
Ã(x; µ; a)dFµ;x1¡®(x)

¸

a=x1¡®

@
@"
Q(F"; 1 ¡ ®)

¯̄
¯̄
"=0

+®
·Z 1

x1¡®

@
@µ
Ã(x; µ; x1¡®)dFµ;x1¡®(x)

¸
@
@"
µ̂(F")

¯̄
¯̄
"=0

+Ã(z; µ; x1¡®) [¶(z > x1¡®)]
= 0

Solving for @
@" µ̂(F")

¯̄
¯
"=0

we get (19).

A.2 Theorem 2
For q · 1 ¡ ® see Cowell and Victoria-Feser 2002. For q > 1 ¡ ®, applying
(6) we get

@
@"

2
4
Z Q(F";1¡®)

x
xdF"(x) + ®

µ̂(F")
1 ¡ µ̂(F")

Q(F"; 1 ¡ ®)

2
4

µ
1 ¡ q
®

¶ µ̂(F")¡1
µ̂(F") ¡ 1

3
5
3
5
"=0

=
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(1 ¡ ®)x1¡® ¡ c1¡® + [¶(x1¡® ¸ z)] [z ¡ x1¡®]
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1 ¡ µ
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!

"=0

#

Given that @@"Q(F"; 1 ¡ ®)
¯̄
"=0 =

q¡¶(x1¡®¸z)
f(x1¡®)

(Cowell and Victoria-Feser 1999)
and using (14) and (19) we get

(1 ¡ ®)x1¡® ¡ c1¡® +
(1 ¡ ®)x1¡®

1 ¡ µ

"µ
1 ¡ q
®

¶ µ¡1
µ

¡ 1
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¡ x1¡®
1 ¡ µ
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¶ µ¡1
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#
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log
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+
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##
1
M(µ)

Ã(z; µ; x1¡®) [¶(z > x1¡®)]

+ [¶(x1¡® ¸ z)] [z ¡ x1¡®]

On rearranging we then get (20).

A.3 Theorem 3
a) q; q0 · 1 ¡ ®: see Cowell and Victoria-Feser 2002, 1999, Theorem 2.

b) q · 1 ¡ ® < q0: we have to integrate with respect to eF the quantity

C(q0) [qxq ¡ cq + ¶(xq ¸ z)[z ¡ xq]]
+D(q0) [¶(x1¡® ¸ z)] [qxq ¡ cq + ¶(xq ¸ z)[z ¡ xq]]
+E(q0)

1
M(µ)

Ã(z; µ; x1¡®) [¶(z > x1¡®)] [qxq ¡ cq + ¶(xq ¸ z)[z ¡ xq]]

+ [¶(x1¡® ¸ z)] [z ¡ x1¡®] [qxq ¡ cq + ¶(xq ¸ z)[z ¡ xq]]

which gives the second line in (24).
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c)1 ¡ ® < q; q0: we have to integrate with respect to eF the quantity

C(q)C(q0) + C(q)D(q0) [¶(x1¡® ¸ z)]
+C(q)E(q0)

1
M(µ)

Ã(z; µ; x1¡®) [¶(z > x1¡®)]

+C(q) [¶(x1¡® ¸ z)] [z ¡ x1¡®] +D(q)C(q0) [¶(x1¡® ¸ z)]
+D(q)D(q0) [¶(x1¡® ¸ z)]
+D(q)E(q0)

1
M(µ)

Ã(z; µ; x1¡®) [¶(x1¡® ¸ z)] [¶(z > x1¡®)]

+D(q) [¶(x1¡® ¸ z)] [z ¡ x1¡®]
+E(q)C(q0)

1
M(µ)

Ã(z; µ; x1¡®) [¶(z > x1¡®)]

+E(q)D(q0)
1
M(µ)

Ã(z; µ; x1¡®) [¶(z > x1¡®)] [¶(x1¡® ¸ z)]

+E(q)E(q0)
1

M2(µ)
Ã2(z; µ; x1¡®) [¶(z > x1¡®)]

+E(q)
1
M(µ)

Ã(z; µ; x1¡®) [¶(z > x1¡®)] [¶(x1¡® ¸ z)] [z ¡ x1¡®]

+C(q0) [¶(x1¡® ¸ z)] [z ¡ x1¡®] +D(q0) [¶(x1¡® ¸ z)] [z ¡ x1¡®]
+E(q0)

1
M(µ)

Ã(z; µ; x1¡®)[z ¡ x1¡®] [¶(x1¡® ¸ z)] [¶(z > x1¡®)]

+ [¶(x1¡® ¸ z)] [z ¡ x1¡®][z ¡ x1¡®]

which gives the last four lines in (24).
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