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Robust Low-Thrust Trajectory Optimization Using
Convex Programming and a Homotopic Approach

Andrea Carlo Morelli, Christian Hofmann, Francesco Topputo

Abstract—A robust algorithm to solve the low-thrust fuel-
optimal trajectory optimization problem for interplanetary space-
craft is developed in this paper. The original nonlinear optimal
control problem is convexified and transformed into a parameter
optimization problem using an arbitrary-order Gauss–Lobatto
discretization scheme with nonlinear control interpolation. A
homotopic approach that considers the energy-to-fuel smoothing
path is combined with an adaptive second-order trust-region
mechanism to increase performance. The overall robustness
is assessed in several fuel-optimal transfers with poor initial
guesses. The results show a superior performance in terms
of convergence and computational time compared to standard
convex programming approaches in the literature.

I. INTRODUCTION

IN recent years, the miniaturization of satellites and of their
components has significantly decreased the costs of space

missions [1]. Small satellites such as CubeSats have granted
institutions and small companies access to space, resulting
in an increasing number of launches. As all spacecraft are
operated similarly, the operational costs of CubeSats are
comparable to those of conventional spacecraft [2]. Increasing
the level of autonomy and shifting flight-related tasks such as
the guidance design on-board is therefore a desirable goal for
future missions [3]. These developments require new trajectory
design approaches.
Designing a low-thrust trajectory is a complex task as it
requires solving a nonlinear optimal control problem. State-
of-the-art methods can be compared in terms of computational
effort (how many computational resources are needed), re-
liability (capability of converging even when a poor initial
guess is provided) and optimality (minimization of some cost
function) [4]. Given the high computing power of desktop
computers and workstations, computational time and effort are
often of secondary importance; the focus is on optimality. Yet,
preliminary studies and scenarios like autonomous guidance
require computationally fast and robust techniques that are
able to find (near) optimal solutions in little time. This is of
paramount importance for on-board applications because the
algorithm must be compliant with the limited resources and
repeatedly compute feasible trajectories in real-time.
In [5], an exhaustive overview of the existing strategies for
optimal trajectory generation is given. Classical direct methods
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that solve the full nonlinear optimization problem are in
general not suitable due to their computational complexity
and poor robustness [6], [7]. Likewise, indirect methods that
make use of the calculus of variations are often not a viable
option as they have poor convergence properties [8]. Convex
optimization represents instead an interesting direct approach
when dealing with real-time applications since convex prob-
lems can be solved by means of polynomial-time algorithms
and limited computational resources [9]–[11]. In this context,
nonconvex problems are usually transformed into a convex
program by means of two specific techniques: lossless convex-
ification [12], [13] (also called exact convex relaxation [14])
and successive convexification [15]; they are then solved by
means of an iterative technique [16], [17]. This trust-region
based sequential convex programming (SCP) algorithm has
recently been applied to different space-related optimization
problems, including powered descent and landing [18], entry
[19], [20], and low-thrust trajectory optimization [21]. In [4],
the minimum-fuel low-thrust trajectory optimization problem
in spherical coordinates was convexified and solved with a
simple trapezoidal discretization method. In [7], an adaptive
flipped Radau pseudospectral convex programming method
was combined with a bang-off-bang mesh refinement pro-
cedure to compute more complex fuel-optimal interplanetary
trajectories.
Due to the discontinuous control, however, current methods
may encounter problems finding feasible fuel-optimal solu-
tions directly. In indirect optimization, smoothing techniques
and homotopic approaches are used to overcome this issue.
A sequence of simpler, smooth problems is solved first and
a continuation is performed until the original, discontinu-
ous problem is eventually solved. A logarithmic smoothing
function and a hyperbolic tangent function were considered
in [22] and [23], respectively. In [24], [25], an energy-to-
fuel continuation was used to generate minimum-fuel low-
thrust trajectories. In [26], a cubic function of the thrust as
a homotopic path was used, while in [27], [28] the perfor-
mance of additional smoothing functions was compared. In
[29], a double-homotopy technique was developed to find the
minimum-fuel transfer in the circular restricted three-body
problem.
This work proposes a homotopic approach to improve the
robustness of a convex programming algorithm when applied
to the fuel-optimal low-thrust trajectory optimization prob-
lem. A refined SCP algorithm based on an arbitrary-order
Gauss–Lobatto discretization scheme is used, which exploits
a nonlinear interpolation of the control variables. An adaptive
second-order trust-region mechanism is developed to increase
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the convergence rate. The purpose of the paper is to show the
effectiveness of our approach in numerical simulations with
poor initial guesses.
The paper is structured as follows. Section II states the
trajectory optimization problem. Section III describes the
arbitrary-order Gauss–Lobatto discretization scheme for con-
vex programming applications. The homotopic approach and
the complete SCP algorithm are presented in Section IV.
Section V shows the numerical results, and Section VI reports
the final remarks.

II. PROBLEM FORMULATION

The minimum-fuel space trajectory optimization (STO)
problem aims to find the trajectory between two given points
with minimum propellant expenditure. Considering two-body
dynamics only, the equations of motion in Cartesian coordi-
nates are given by

ẋ =

 ṙ
v̇
ṁ

 =

 v
−µr/r3 + ũα/m

−T/(Ispg0)

 (1)

where r = [rx, ry, rz]
⊤, v = [vx, vy, vz]

⊤, and m are the
position vector, the velocity vector, and the mass of the space-
craft, respectively. µ is the standard gravitational parameter
of the primary body, ũα = [Tx, Ty, Tz]

⊤, T = ∥ũα∥2, and
ũ = [ũα, T ]

⊤ is the control vector. Isp and g0 are the specific
impulse and gravitational acceleration, respectively. Eq. (1)
is nonlinear and nonconvex; moreover, the state and control
variables are coupled through the term ũα/m. Therefore, we
transform the original minimum-fuel STO problem into a
convex one [4], [7]:

min
u

J0 =

∫ tf

t0

τ(t) dt (2)

subject to:

ẋ = ff (x
∗) +A(x∗)(x− x∗) +Bu (3a)

τ2x + τ2y + τ2z ≤ τ2 (3b)

0 ≤ τ ≤ Tmaxe
−w∗

[1− (w − w∗)] (3c)
xl ≤ x ≤ xu (3d)

uα,l ≤ uα ≤ uα,u (3e)
∥x− x∗∥1 ≤ R (3f)

x(t0) = x0, r(tf ) = rf , v(tf ) = vf (3g)
(3h)

with states x = [r,v, w]⊤ and controls u = [τx, τy, τz, τ ]
⊤.

Note that a change of variables has been exploited to replace
the mass m and the thrust T such that w = lnm and τ = T/m
(τx, τy and τz are defined accordingly). Eqs. (2) and (3)
represent the convex STO problem, which will be referred to
as CXP (Convex Problem) throughout this paper. As it will be
extensively explained in Section IV, directly solving CXP does
not correspond to solving the original nonconvex minimum-
fuel STO problem. An iterative technique that considers a
sequence of convex problems is, in fact, needed. The dynamics

in (1) have been linearized to obtain (3a), where the superscript
(·)∗ denotes the reference trajectory. In (3a),

ff = [vx, vy, vz,−rx/r
3,−ry/r

3,−rz/r
3, 0]⊤ (4)

denotes the vector of the natural two-body dynamics, A =
∂ff/∂x the Jacobian matrix and B is such that

B =

 03×4

I3×3 03×1

01×3 b

 (5)

where b = −1/(Ispg0). The relationship between the compo-
nents of the control vector has been convexified in (3b); the
inequality constraint on τ in (3c) has been linearized due to
the change of variables [4]. The lower (subscript l) and upper
bounds (subscript u) of states and controls are given in (3d)
and (3e), respectively. The trust-region constraint in (3f) is
used to keep the solution close to the reference and hence,
the linearization valid. Initial x0 and final (rf ,vf ) boundary
conditions are given in (3g).

III. CONVEX ARBITRARY-ORDER
LEGENDRE–GAUSS–LOBATTO QUADRATURE

CXP in (2) and (3) represents an infinite-dimensional opti-
mal control problem. There are several discretization schemes
to transform it into a finite-dimensional parameter optimization
problem [30]. A popular choice are pseudospectral methods
because of their spectral convergence rate for smooth problems
[7], [31]. Yet, the discretized problem is often less sparse
compared to zero-order-hold or first-order-hold interpolation
[32], local methods such as the trapezoidal rule (linear interpo-
lation of states and controls) and higher order methods like the
Hermite–Simpson scheme (cubic interpolation of states and
linear interpolation of controls). A generalization of Hermite–
Simpson is the arbitrary-order Gauss–Lobatto collocation
method that is widely used to solve nonlinear programs (NLP)
[33]. In this paper, we apply this method to convex optimiza-
tion and choose the Legendre–Gauss–Lobatto points for both
the nodes and the collocation points. In [34], the performance
of the zero-order-hold, first-order-hold, Runge-Kutta and of
three pseudospectral discretization methods was compared in
space-related convex optimization problems. However, to the
best of the authors’ knowledge, an arbitrary-order Legendre–
Gauss–Lobatto method based on Hermite interpolation has
never been applied to convex programs instead. Therefore,
this work aims to complement the existing literature on dis-
cretization methods for convex optimization in space-related
applications.

A. State Discretization

The arbitrary-order Gauss–Lobatto collocation method ap-
proximates the state variables by means of an arbitrary-order
polynomial and is therefore an extension of the Hermite–
Simpson scheme. The total time of flight (ToF) is divided into
I subintervals. Each time interval [ti, ti+1] is mapped into the
interval [−1, 1] through the transformation

t → h

2
ξ +

ti+1 + ti
2

(6)
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where ξ ∈ [−1, 1] and h = ti+1 − ti is the time step. Inside
the i-th subinterval, the state x(i)(ξ) ∈ Rnx×1 (nx = 7) is
approximated as

x(i)(ξ) ≈ a
(i)
0 + a

(i)
1 ξ + · · ·+ a(i)n ξn, i = 1, . . . , I (7)

where the column vectors of coefficients a
(i)
m ∈ Rnx×1,

m = 0, . . . , n are unknowns that are used to approximate
the state at the nodal and collocation points. The idea is to
find the values of the coefficients a

(i)
m using the information

of the states and dynamics at the nodes (the so-called Hermite
interpolation) and eventually express the constraints at the
collocation points. In this paper, nodes and collocation points
are defined according to the Legendre–Gauss–Lobatto (LGL)
points, which are the roots of the derivative of the (n− 1)-th
degree Legendre polynomial [33]. The n-th degree Legendre
polynomial is given by the Rodrigues formula as [35]

Pn(ξ) =
(−1)n

2nn!

dn

dξn
(1− ξ2)n (8)

and the LGL points are then

ξ̂ = [ξ̂1 = −1, ξ̂2, . . . , ξ̂i, . . . , ξ̂n−1, ξ̂n = 1] (9)

where ξ̂i (i = 2, . . . , n− 1) is the i-th root of the polynomial
dPn−1(ξ)/dξ. The nodes θj and collocation points ζj are
defined as [30]

θj = ξ̂2j−1, j = 1, . . . , (n+ 1)/2 (10)

and
ζj = ξ̂2j , j = 1, . . . , (n− 1)/2 (11)

Note that only odd orders n ≥ 3 can be considered, since the
number of collocation points inside each interval is defined as
(n − 1)/2 [33]. Fig. 1 illustrates the nodes and collocation
points according to the Legendre distribution for different
Gauss–Lobatto orders. Considering the information at the
nodes, the following linear system can be written for the i-th
trajectory segment [33], [36]:

Inx θ1Inx . . . θn1 Inx

Inx
θ2Inx

. . . θn2 Inx

...
...

...
...

Inx
θnp

Inx
. . . θnnp

Inx

0nx
Inx

. . . nθn−1
1 Inx

...
...

...
...

0nx
Inx

. . . nθn−1
np

Inx


︸ ︷︷ ︸

θ



a
(i)
0
...

a
(i)
np

...
a
(i)
n−1

a
(i)
n


︸ ︷︷ ︸

a(i)

=



x(i)(θ1)
...

x(i)(θnp
)

h
2 f

(i)
l (θ1)

...
h
2 f

(i)
l (θnp)


︸ ︷︷ ︸

b(i)

(12)
where θj are the positions of the nodal points as in (10), np =
(n+1)/2 is the number of nodes in each time interval, Inx

is
the nx × nx identity matrix and 0nx

the nx × nx null matrix.
Note that fl(θj) is the two-body dynamics as given in (3a) and
thus

fl(θj) = ff (x
∗
j ) +A(x∗

j )(xj − x∗
j ) +Buj (13)

where the subscript (·)j indicates that the considered quantity
is evaluated at the node θj and the superscript (·)(i) has been
dropped for simplicity. This linearization is required due to

our convex approach. The linear system in Eq. (12) can be
written in compact form as θa(i) = b(i) and hence a(i) =
θ−1b(i), with θ ∈ R2nxnp×2nxnp , a(i) ∈ R2nxnp×1 and b(i) ∈
R2nxnp×1. The state at the collocation points is defined as

x(i)(ζ) = [x(i)(ζ1); . . . ;x
(i)(ζj); . . . ;x

(i)(ζnc
)] ∈ Rncn×1

(14)
where nc = (n− 1)/2 is the number of collocation points in
one interval. Considering (7) and recalling that a(i) = θ−1b(i),
the state can be calculated as

x(i)(ζ) =


Inx ζ1Inx . . . ζn1 Inx

Inx ζ2Inx . . . ζn2 Inx

...
...

...
...

Inx
ζnc

Inx
. . . ζnnc

Inx


︸ ︷︷ ︸

ζ


a
(i)
0

a
(i)
1
...

a
(i)
n


︸ ︷︷ ︸

a(i)

= ζθ−1b(i) = ϕϕϕb(i)

(15)

where ζ ∈ Rncnx×2nxnp and ϕ ≡ ζθ−1. The derivative of the
state at the collocation points can therefore be written as

dx(i)(ζ)

dξ
=


0nx

Inx
. . . nζn−1

1 Inx

0nx Inx . . . nζn−1
2 Inx

...
...

...
...

0nx
Inx

. . . nζn−1
nc

Inx


︸ ︷︷ ︸

ζ′


a
(i)
0

a
(i)
1
...

a
(i)
n


︸ ︷︷ ︸

a(i)

= ζ′θ−1b(i) = ϕϕϕ′b(i)

(16)

Note that dx(i)(ζ)/dξ in Eq. (16) indicates the derivative of
the state with respect to the independent variable ξ at the
collocation points ζ, where we used the same notation as in
[33]. These expressions can easily be extended to all trajectory
segments by defining the vectors of unknown coefficients â
and constant terms b̂ as

â = [a(1); . . . ;a(i); . . . ;a(I)]

b̂ = [b(1); . . . ;b(i); . . . ;b(I)]
(17)

Note that the first node of the i-th subsegment and the last
node of the (i−1)-th subsegment are equal. Consequently, the
vectors x(i)(θ1) and f

(i)
l (θ1) in b(i) are the same as the vectors

x(i−1)(θnp) and f
(i−1)
l (θnp) in b(i−1) for i = 2, . . . , I − 1.

Extending the linear system in (12) to all trajectory segments
yields

ΘΘΘâ = b̂ ⇐⇒ â =ΘΘΘ−1b̂ (18)

where ΘΘΘ ∈ R2Inxnp×2Inxnp is a diagonal matrix with
θθθ on the main diagonal. Defining x̂(ζ) = [x(1)(ζ);
x(2)(ζ); . . . ;x(i)(ζ); . . . ;x(I)(ζ)] as the column vector of con-
catenated states at the collocation points, we obtain

x̂(ζ) = ZΘΘΘ−1︸ ︷︷ ︸
ΦΦΦ

b̂ ≡ ΦΦΦb̂ (19)

dx̂(ζ)

dξ
= Z′ΘΘΘ−1︸ ︷︷ ︸

ΦΦΦ′

b̂ ≡ ΦΦΦ′b̂ (20)
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Fig. 1: Nodes θj (circles) and collocation points ζj (triangles) for different Legendre–Gauss–Lobatto orders.

Z and Z′ are diagonal matrices with ζζζ and ζζζ ′ on the main
diagonal, respectively. These expressions are now used to write
the defect constraints ∆∆∆ in a compact way:

∆∆∆ = ΦΦΦ′b̂− h

2
[f̂f + Â(ΦΦΦb̂−ΦΦΦb̂∗)] + B̂û(ζ) = 0 (21)

with

f̂f = [f
(1)
f,1 , . . . , f

(1)
f,nc

, . . . , f
(I)
f,1 , . . . , f

(I)
f,nc

]⊤ (22)

Â =


A(ζ1) 0 . . . 0

0 A(ζ2)
...

...
. . .

...
0 . . . . . . A(ζp)



B̂ =


B 0 . . . 0

0 B
...

...
. . .

...
0 . . . . . . B


(23)

p = Inc is the total number of collocation points and
A(ζj) = A(x(ζj)). The concatenated control vector û(ζ) will
be described in the next section.

Remark 1: Different from the conventional LGL scheme, we
include the initial and final points in the optimization to easily
account for the initial and final boundary conditions.

B. Nonlinear Control Interpolation

Unlike the state, the control variables are often linearly
interpolated in direct collocation methods [30]. As this may
result in a poor approximation, we approximate the controls
u(i)(ξ) ∈ Rnu×1 (nu = 4 is the number of control variables)
in the i-th subinterval as a polynomial of degree np − 1:

u(i)(ξ) ≈ a
(i)
0 + a

(i)
1 ξ + · · ·+ a

(i)
np−1ξ

np−1 (24)

Similar to (15), the controls at the collocation points are

u(i)(ζ) =


Inu

ζ1Inu
. . . ζ

np−1
1 Inu

Inu
ζ2Inu

. . . ζ
np−1
2 Inu

...
...

...
...

Inu
ζnc

Inu
. . . ζ

np−1
nc Inu


︸ ︷︷ ︸

ζζζu


a
(i)
0

a
(i)
1
...

a
(i)
np−1


︸ ︷︷ ︸

a
(i)
u

= ζζζuθθθ
−1
u b(i)

u = ϕϕϕub
(i)
u

(25)

where the subscript (·)u refers to expressions related
to controls instead of states. Combining the controls
at all collocation points into one vector û(ζ) =
[u(1)(ζ);u(2)(ζ); . . . ;u(i)(ζ); . . . ;u(I)(ζ)], we can write

û(ζ) = ZuΘΘΘ
−1
u b̂u = ΦΦΦub̂u (26)

with similar notation as in Section III-A. Eq. (21) can now be
rewritten to obtain

∆∆∆ = ΦΦΦ′b̂− h

2
[f̂f + Â(ΦΦΦb̂−ΦΦΦb̂∗)] + B̂ΦΦΦub̂u = 0 (27)

Fig. 2 shows the difference between a nonlinear control inter-
polation (solid line) and a simple linear interpolation (dashed
line) in the 7th-order Legendre–Gauss–Lobatto method. The
time instants ti, ti+1, ti+2, and ti+3 are nodal points.

Remark 2: Due to numerical reasons, only LGL orders for
which the interpolating polynomial of the control is of odd
degree (i.e. when np−1 is an odd number) can be considered.
Results show that if LGL orders n are chosen such that np−1
is even, the algorithm either fails to converge or finds solutions
in which the thrust profile strongly suffers from oscillations.

IV. HOMOTOPIC APPROACH AND CONVEX PROGRAMMING

In this section, we present the sequential convex pro-
gramming approach combined with a homotopic approach
that considers continuation from the minimum-energy to the
minimum-fuel problem to enhance the overall robustness. This
method is similar to the one employed in literature to improve
numerical convergence of indirect methods (see for example
[27]).
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Fig. 2: Linear (dashed line) vs. nonlinear control interpolation
(solid line) in the 7th-order Legendre–Gauss–Lobatto method.

A. Sequential Convex Programming

The original nonconvex problem is solved by iteratively
solving a sequence of convex subproblems. As the dynamical
and thrust constraints have been linearized, the resulting
problem may become infeasible even though the original
problem is feasible. To avoid this artificial infeasibility, we
add unconstrained slack variables ν and η in (3a) and (3c) to
obtain [7]

ẋ = ff (x
∗) +A(x∗)(x− x∗) +Bu+ ν (28)

0 ≤ τ ≤ Tmaxe
−w∗

[1− (w − w∗)] + η (29)

Note that ν and η must be zero at the end of the optimization
process so that the constraints are satisfied. Therefore, the
objective function J0 in (2) is augmented with two terms [7]

J = J0 +
∑
i∈Ieq

µi||νi||1+
∑

i∈Iineq

λi max(0, ηi) (30)

where µi and λi are two sufficiently large parameters. Ieq
and Iineq are the set of equality and inequality constraints,
respectively.
One key feature of the SCP algorithm is the trust-region
mechanism to keep the solution close to the reference and
thus the linearization valid. The ratio of the actual cost
reduction ∆ϕk = ϕk−1 − ϕk to the predicted cost reduction
∆ϕ̂k = ϕ̂k−1 − ϕ̂k (with k denoting the current iteration)
serves as a measure to decide whether the step is to be accepted
or not. At each iteration, the merit functions ϕk and ϕ̂k are
calculated as [37]

ϕk = J0 +
∑
j∈Ieq

µj ||hj ||1+
∑

j∈Iineq

λj max(0, gj) (31)

ϕ̂k = J0 +
∑
j∈Ieq

µj ||νj ||1+
∑

j∈Iineq

λj max(0, ηj)

+
∑

j∈Iineq

λj max(0, σj)

(32)

hj and gj are the constraint violations of the equality and
inequality constraints, respectively, of the original, nonconvex
problem. In contrast, (32) refers to the violations of the convex
problem with σj = τ2x,j + τ2y,j + τ2z,j − τ2j .

B. Homotopic Sequential Convex Programming

Instead of solving the minimum-fuel problem directly, a
sequence of simpler and smoother problems is solved first
in a homotopic approach. These solutions serve as initial
guesses for the next subproblem where the complexity gradu-
ally increases until the original problem is eventually solved.
One of the most common continuations is the energy-to-fuel
homotopy which uses the objective function [24]

Jγ ≡ J(γ) =

∫ tf

t0

[(1− γ)τ + γτ2] dt (33)

with some parameter γ ∈ [0, 1] that defines the homotopic
path from the minimum-energy (γ = 1) to the minimum-
fuel (γ = 0) problem. τ is the acceleration magnitude defined
in Section II. Note that the objective function in Eq. (33) is
convex regardless of the value of γ, and thus it can be handled
by convex solvers. We exploit the strategy developed in [38]
to express the objective function in the standard form required
by the second-order cone program solver we use.
In this work, we start solving the minimum-energy prob-
lem; then, γ is gradually decreased. Note that we change
the homotopic parameter γ only when an SCP iteration is
accepted. However, to speed up convergence, if the maximum
nonlinear constraint violation cmax becomes less than fcεc
(where εc is the convergence threshold and fc is a large
enough multiplication factor) before the maximum number of
homotopic steps is reached, we set γ = 0.
The definition of the quantities ϕk and ϕ̂k in Eqs. (31) and (32)
includes the objective function J0. However, the values of J0
cannot be compared while γ is still changing, simply because
they refer to different problems. To avoid that the algorithm
fails due to this reason, we substitute the term related to
the objective function inside Eqs. (31) and (32) with a term
associated with the final spacecraft mass. The aforementioned
quantities are thus redefined as

ϕF
k = µm(e

w0 − ewf ) +
∑
j∈Ieq

µj ||hj ||1

+
∑

j∈Iineq

λj max(0, gj)

(34)

ϕ̂F
k = µm(e

w0 − ewf ) +
∑
j∈Ieq

µj ||νj ||1

+
∑

j∈Iineq

λj max(0, ηj) +
∑

j∈Iineq

λj max(0, σj)

(35)

where µm is a sufficiently large parameter such that µm > 0,
and the superscript F is used to distinguish the expressions.

C. Adaptive Second-Order Trust-Region Radius Change

In standard trust-region methods such as in [4], [16], a step
is rejected if ρk ≡ ∆ϕk/∆ϕ̂k < ρ0 because this indicates that
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there is no (sufficiently large) progress. When a solution is
accepted, the trust region is updated as follows:

Rk+1 =


Rk/α if ρ0 ≤ ρ(k) < ρ1

Rk if ρ1 ≤ ρ(k) < ρ2
βRk if ρ(k) ≥ ρ2

(36)

where α and β are two constants greater than 1 and 0 <
ρ0 < ρ1 < ρ2 < 1. Updating the trust-region radius like this
often works well, but it is not particularly flexible for two
reasons. First, the constants α and β must be selected by the
user and are fixed during the optimization process. Secondly,
the update only depends on the value of the parameter ρ at
the current iteration k, without considering some potentially
useful information from previous iterations.
We extend the work in [37] and propose an improved method
where α and β can vary based on the values of ρ in the current
k and previous iteration k− 1. Introducing the new parameter
δ = const. > 1, we define the update mechanism of α and β
as follows:

1. If ρ(k) ≥ ρ0 and ρ(k−1) ≥ ρ0 (that is, both the current
and the previous steps are accepted), then βk = δβk−1

and αk = αk−1/δ. Our rationale is that if two subsequent
steps are accepted, the algorithm will benefit from a larger
increase of the trust region in the next iteration.

2. If ρ(k) ≥ ρ0 and ρ(k−1) < ρ0 (that is, the current step
is accepted but the previous was not), then βk = βk−1/δ
and αk = δαk−1. This suggests to stay closer to the
current solution to avoid a rejected step in the next
iteration.

3. If ρ(k) < ρ0 and ρ(k−1) ≥ ρ0 (that is, the current step
is rejected whereas the previous one was accepted), then
αk = αk−1 and βk = βk−1. As the previous step was
accepted, it is convenient to neither increase nor decrease
the parameters. Note that this does not mean that the trust-
region radius remains the same.

4. If ρ(k) < ρ0 and ρ(k−1) < ρ0 (that is, both the current and
the previous steps are rejected), then αk = δαk−1 to stay
closer to the reference solution and speed up convergence.

The parameters α and β increase the degrees of freedom of
the algorithm and become part of the optimization process.
Note that we impose αmin ≤ α ≤ αmax and βmin ≤ β ≤
βmax. Moreover, we select δ < α0, β0 (where the subscript
(·)0 indicates the initial value) not to be too aggressive in the
change of the parameters. The effectiveness of this approach
is shown in Section V.

D. Algorithm

A flowchart is illustrated in Fig. 3, where the homotopic
approach (bold blocks) and the adaptive trust region (dashed
block) are integrated into the standard SCP method. The
interested reader is referred to [7], [16], [37] for a more
detailed description of the standard SCP algorithm. We focus
instead on the integration of the homotopic approach.
At the beginning of each iteration, the value of γ defines the
problem to be solved. For 0 < γ ≤ 1, the homotopic parameter
is gradually decreased by ∆γ. This process continues until
the maximum constraint violation cmax is lower than some

threshold fcεc. When this threshold is reached, the algorithm
sets γ = 0 to indicate that the minimum-fuel problem is to be
solved in the next iteration.

V. SIMULATIONS AND RESULTS

The minimum-fuel transfer from Earth to asteroid Dionysus
is considered in this work as it requires several revolutions
around the Sun with considerable changes in the orbital
elements. This problem is shown for the sake of comparison
with previous works [7], [22]. We use the embedded conic
solver (ECOS) [10] for all simulations, which are performed
in MATLAB version R2020b on an Intel Core i7-10700 2.90
GHz desktop computer with 16 GB of RAM. We consider
two-body dynamics without any additional perturbations, as-
sume a constant specific impulse, and use the gravitational
constant µ = 1.32712440018 × 1020 m3/s2 and gravitational
acceleration at sea level g0 = 9.80665 m/s2. The problem is
scaled with the quantities given in Table I. Relevant parameters
of the Earth to Dionysus transfer and the SCP algorithm are
given in Table II and III, respectively. In particular, the values
in Table III have been chosen in accordance with the typical
ones reported in literature [7], [16]. Throughout this section,
SCP refers to the standard algorithm with fixed α and β for
the trust-region mechanism whereas SCPATR uses the adaptive
second-order trust-region update described in Section IV-C.
Despite some advanced methods to find a good initial guess
exist in literature, such as the Finite Fourier Series (FFS)
approach [39], [40] or the initial guess generator proposed
in [41], we use a simple cubic interpolation to construct poor
initial guesses and assess the robustness of our algorithm. This
method requires the user to specify the number of revolutions
Nrev. In this paper, the nominal case with Nrev = 5 is
considered.

A. Comparison of Different LGL Orders

For different LGL orders, we compare SCP with SCPATR in
terms of the final mass of the spacecraft, number of iterations,
computational time, convergence rate, and maximum error on
the boundary conditions found when propagating the nonlinear
dynamics with the obtained controls. This also serves as a
validation of our algorithm when compared to results in the
literature. We keep the number of nodes N approximately
constant and close to 250. This value was chosen because it
assures a good level of accuracy while maintaining an accept-
able computational time. The results are presented in Table
IV where n is the LGL order, It. is the number of iterations,
Cv. is the convergence rate, and bmax is the aforementioned
maximum error on the boundary conditions. Note that bmax
is reported only once because the values are very similar for
SCP and SCPATR. Fig. 6a compares the performance of SCP
and SCPATR, where the results for different LGL orders have
been averaged. Table V shows the correspondence between the
selected LGL order n, the number of intervals I and nodes N .
We consider only orders up to n = 27 because the accuracy
of the solution decreases significantly for higher orders. We
perform a robustness analysis with 100 cases and random
perturbations on the nominal value of Nrev in the interval
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Problem solved.
Solution: ( , )

Solve the convex subproblem
and obtain the solution ( , )

Compute , , , 

if , ,   set , 
elseif , ,   set 
elseif , ,   set , 

Reject step and
update 

Accept step, i.e. 
( , ), , 

if , update 
and 

if 
if 
if 

Initial guess ( , ) 
Penalty weights , , 

Initial trust-region radius 
Threshold params. , , 
Params. 
Params. , , 
Params. , , , 

Set , , , 

or 
Yes

No

Yes

Yes

No

NoNo

Yes

Fig. 3: Algorithm structure.
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TABLE I: Physical quantities of the problem.

Physical Quantity Unit Normalization Factor Value

Length m LU = 1 AU 1.49597870× 1011

Velocity m/s VU =
√
µ/LU 2.97846918× 104

Time s TU = LU/VU 5.02264286× 106

Acceleration m/s2 ACU = VU2/LU 5.930083× 10−3

Mass kg MU = m0 4000
Force N FU = Tmax 0.32

TABLE II: Parameters of Earth to Dionysus transfer.

Parameter Unit Value

r0 = [rx, ry, rz]
⊤
0 LU [−0.0243, 0.9833,−1.5117× 10−5]⊤

v0 = [vx, vy, vz]
⊤
0 VU [−1.0161,−0.0285, 1.6955× 10−6]⊤

m0 MU 1
rf = [rx, ry, rz]

⊤
f LU [−2.0406, 2.0518, 0.5543]⊤

vf = [vx, vy, vz]
⊤
f VU [−0.1423,−0.4511, 0.0189]⊤

Tmax FU 1
Isp TU 5.9730× 10−4

ToF days 3534

TABLE III: Parameters of the algorithm.

Parameter Value

Penalty weights λ, µ 500
Trust region r0 100
Parameters ρ0, ρ1, ρ2 0.01, 0.25, 0.9
Parameters α0, β0 1.4
Parameter δ 1.3
Upper bounds αmax, βmax 5.2
Lower bounds αmin, βmin 1.05
Feasibility threshold εc 10−5

Optimality threshold εϕ 10−2

Parameter fc 103

Parameter µm 30
Max. iterations 500

[−10−1, 10−1]. This way, the final boundary conditions are
not satisfied, which deteriorates the convergence properties.

Remark 3: Each of the considered test cases corresponds to a
perturbed cubic interpolation-based initial guess, which is used
to assess the convergence properties of the proposed variants
of our algorithm. The more the value of Nrev differs from the
nominal one (Nrev = 5), the less accurate the initial guess.
Fig. 5 shows the comparison of the nominal initial guess and
a perturbed one.

In all simulations, the only stopping criterion is cmax ≤ εc,
that is, the algorithm stops when the feasibility threshold is
reached. This ensures a fair comparison because we are mainly
interested in determining feasible solutions with respect to the
nonlinear dynamics. Apparently, the enhanced trust-region

method results in a considerable reduction of iterations and
computational time regardless of the order of the polynomial;
for the SCPATR algorithm, both figures are only 30–40%
of the correspondent ones of SCP. Yet, SCP has a higher
convergence rate and is able to find slightly higher final
masses m(tf ) with respect to SCPATR. Note however that this
behaviour can be improved by opting for a less aggressive
update strategy, for example by selecting lower values for αmax
and βmax, or by decreasing the value of the parameter δ. The
LGL order does not seem to particularly affect convergence
rates for the standard trust-region update, while higher values
of n can significantly increase convergence for SCPATR (up
to +10%). As expected, the CPU time increases for larger
n because the matrices are denser. However, the accuracy
of the solutions also increases with n, and therefore the
number of nodes could be reduced for these cases to find a
compromise between computational time and accuracy. Note
that this is true only for orders up to n = 23, probably
because high-order polynomials are not appropriate anymore
to represent the states and controls. Compared to SCP where
the number of iterations varies greatly over the different orders,
SCPATR required nearly the same amount of iterations (with
the exception of the case n = 27).
Fig. 4a illustrates the three-dimensional trajectory for n = 7
in the nominal case with Nrev = 5; several revolutions are
required to reach the target. The dashed lines represent the
orbits of the Earth and Dionysus. The bang-bang control
profile in Fig. 4b suggests that a locally optimal solution
was found. In addition, the thrust profile, trajectory and final
masses are very similar to the ones obtained with an indirect
method (see Fig. 8 in [22] and also [23] where a final mass
of 2718 kg is reported). Regardless of the LGL order and
of the trust-region update mechanism, the obtained solutions
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TABLE IV: Comparison of different LGL orders.

Par.
Alg. SCP SCPATR

n bmax mf (kg) It. Time (s) Cv. (%) mf (kg) It. Time (s) Cv. (%)

3 2.65e−2 2525 81.4 15.6 76.0 2330 33.3 6.6 58.0
7 3.68e−5 2534 88.8 52.0 74.0 2344 28.4 16.7 68.0
11 2.98e−4 2528 91.2 58.0 74.0 2424 26.5 16.8 59.0
15 5.83e−4 2522 95.9 78.8 74.0 2410 36.9 31.1 65.0
19 1.40e−3 2515 98.3 104.0 72.0 2371 27.4 29.0 62.0
23 4.60e−3 2537 97.9 134.8 72.0 2313 34.0 47.9 60.0
27 2.32e−2 2516 120.0 225.4 79.0 2284 54.9 104.1 66.0

Average 8.10e−3 2525 96.2 95.5 74.4 2354 34.5 36.0 62.6

TABLE V: Correspondence between LGL order n, intervals
I and number of nodes N .

Parameter Value

n 3 7 11 15 19 23 27
I 249 83 50 36 28 23 19
N 250 250 251 253 253 254 248

look similar to the ones in Fig. 4. However, we noticed that
when n is increased over 15–19 in case of SCPATR, the thrust
profile contains few more points that are neither 0 nor Tmax
with respect to lower LGL orders. Nevertheless, constraints
violation for high-orders is comparable to that of low ones.

B. Homotopic Analysis

As the results in Section V-A are similar for different LGL
orders, we choose n = 3 for all the subsequent analyses. More-
over, we select the SCPATR algorithm to understand whether
our homotopic approach is able to increase its convergence up
to the values of the standard trust-region update. We incorpo-
rate the homotopic approach of Section IV-B to increase the
robustness against poor initial guesses. Our rationale is that
solving the smooth minimum-energy problem is easier than
solving the non-smooth minimum-fuel problem directly.

1) Comparison of Min-Fuel, Min-Energy, and Homotopic
Approach: We consider the simple cubic interpolation ap-
proach with five revolutions as the nominal trajectory for
the initial guess. We perform a robustness analysis with
100 cases and the same perturbations as in Section V-A. A
maximum number of s = 10 equally spaced homotopic steps
is used to gradually decrease γ from 1 (minimum-energy) to
0 (minimum-fuel). Recall from Section IV-B, however, that
the algorithm switches to the minimum-fuel problem as soon
as the condition cmax < fcεc is met and therefore, the actual
number may be smaller. The results are presented in Fig. 6b
and Table VI where the average final mass, iterations, CPU
time, and convergence are compared. The error bars in Fig.
6b indicate minimum and maximum values, respectively. Note
that the results for the minimum-fuel problem are the same as
in Table IV.

−2
0

2
0

2

0

0.5

x (LU) y (LU)

z
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U
)

SCP
Earth
Dionysus

(a) Minimum-fuel transfer trajectory.
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(b) Thrust profile.

Fig. 4: Transfer trajectory and thrust profile for n = 7.

Remarkably, solving the smoother problem results in a con-
siderably higher success rate: 71 cases converged for the
minimum-energy, and 68 for the homotopic minimum-fuel
problem, while the fuel-optimal one converged in only 58
cases. The final masses obtained with the homotopic fuel-
optimal approach are slightly higher with respect to the
ones obtained with the minimum-fuel problem. As expected,
the minimum-energy case found lower final masses instead.
Moreover, the number of iterations is also larger for the
minimum-fuel case. Note that the average number of iterations
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Fig. 5: Nominal initial guess (Nrev = 5) and perturbed initial
guess (Nrev = 5.0913).

for the minimum-energy and the homotopic minimum-fuel
problem are very similar instead. Fig. 7 illustrates the thrust
profile obtained with the minimum-energy problem and a
comparison of thrust profiles associated with different val-
ues of the smoothing parameter γ, respectively. It can be
observed that the minimum-energy thrust profile is perfectly
smooth, and that the smoothness decreases as the homotopic
parameter approaches zero. Note that the figures show the
profiles obtained by solving the associated problems without
any homotopy.

2) Influence of Homotopic Steps and Distribution: We
investigate the influence of the number of homotopic steps
and their distribution on the performance of our approach.
In addition to equidistant steps, two logarithmic distributions
with higher density close to γ = 1 (Fig. 8a) and close to
γ = 0 (Fig. 8b) are considered. For each of them, four analyses
with different numbers of homotopic steps are carried out. In
particular, we use s = 10, s = 50, s = 100 and s = 500. The
simulations consider again the same 100 perturbed test cases
already used to perform the analyses described in the previous
sections. Tables VII, VIII, IX show the results obtained with
the equidistant and the two logarithmic distributions of the
steps, respectively. In general, neither the distribution of the
steps nor their number particularly influence the performance
of the algorithm. In fact, the values of the average final masses
are practically identical for the three different distributions,
as well as average iterations and computational time. As
expected, the logarithmic case with denser distribution of steps
close to γ = 1 performed best in terms of converged cases,
followed by the linear case. Unexpectedly, fewer steps imply
more converged cases for the logarithmic distribution with
higher density of steps close to γ = 0. Finally, it is remarkable
that in the considered simulations, all the cases show better
properties in terms of converged cases, iterations and CPU
time with respect to the simple minimum-fuel problem (see

(a) Performance comparison of SCP and SCPATR algorithms with
perturbed initial guesses and different LGL orders.

(b) Performance comparison of SCPATR for minimum-fuel,
minimum-energy and homotopic problems with perturbed initial
guesses.

Fig. 6: Statistics for different problems and versions of the
algorithm.

Table VI). This confirms the effectiveness of the homotopic
approach.
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(a) Minimum-energy thrust profile.
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(b) Thrust profiles obtained with γ = 1 (dashed line), γ = 0.7 (dotted line), γ = 0.3 (dash-dotted line), and γ = 0 (solid line).

Fig. 7: Comparison of thrust profiles for different problems with Nrev = 5.
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(a) Distribution of the homotopic steps inside the interval [0, 1] with higher density close to γ = 1.
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(b) Distribution of the homotopic steps inside the interval [0, 1] with higher density close to γ = 0.

Fig. 8: Logarithmic distribution of the homotopic steps inside the interval [0, 1].
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TABLE VI: Comparison of SCPATR for minimum-fuel, minimum-energy and homotopic minimum-fuel problems with perturbed
initial guesses.

Element
Problem Min-fuel Min-energy Homotopic

m(tf ) (kg) 2330 2214 2392
Iterations 33.3 27.3 26.3
CPU Time (s) 6.6 6.4 5.9
Convergence (%) 58 71 68

TABLE VII: Convergence analysis of the Homotopic SCPATR algorithm varying s with linear distribution of homotopic steps.

Nr. steps s
Element

m(tf ) (kg) It. Time (s) Cv. (%)

10 2392 26.3 5.9 68.0
50 2385 24.2 5.3 68.0
100 2385 24.9 5.4 67.0
500 2385 25.7 5.5 70.0

Average 2387 25.3 5.3 68.3

TABLE VIII: Convergence analysis of the Homotopic SCPATR algorithm varying s with logarithmic distribution of homotopic
steps and higher density near γ = 1.

Nr. steps s
Element

m(tf ) (kg) It. Time (s) Cv. (%)

10 2391 23.3 5.1 68
50 2393 25.1 5.4 70
100 2396 25.8 5.5 70
500 2368 26.1 5.5 69

Average 2387 25.1 5.4 69.3

TABLE IX: Convergence analysis of the Homotopic SCPATR algorithm varying s with logarithmic distribution of homotopic
steps and higher density near γ = 0.

Nr. steps s
Element

m(tf ) (kg) It. Time (s) Cv. (%)

10 2355 25.3 5.8 70.0
50 2398 28.0 6.2 68.0
100 2406 25.5 5.7 66.0
500 2404 24.1 5.2 64.0

Average 2391 25.7 5.7 67.0

VI. CONCLUSIONS

In this paper, a robust algorithm based on convex optimiza-
tion is proposed to solve the low-thrust minimum-fuel space
trajectory optimization problem. An arbitrary-order Gauss–
Lobatto discretization method with nonlinear control interpo-
lation is exploited to improve the performance of the standard
SCP. Results show that higher-order LGL discretization can
increase the convergence rate of the simple Hermite–Simpson
rule and the accuracy of the results, at the expense of a higher
computational time. Moreover, the newly-developed adaptive

trust-region radius update shows superior performance in terms
of computational time with respect to the standard approach.
Finally, the combination of a homotopic approach with con-
vex programming improves convergence of the minimum-fuel
space trajectory optimization problem. Our assumption that
the smooth minimum-energy problem is easier to solve than
the minimum-fuel problem directly was confirmed in numer-
ical simulations. Overall, the proposed algorithm represents
a promising alternative to standard nonlinear programming
methods in scenarios like deep-space cruise where robustness
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and convergence are more important than optimality. The
rapid speed makes our method an ideal choice for preliminary
studies and also real-time applications.
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