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Abstract

This paper considers the problem of recovering
multidimensional array, in particular third-order
tensor, from a random subset of its arbitrarily cor-
rupted entries. Our study is based on a recently
proposed algebraic framework in which the tensor-
SVD is introduced to capture the low-tubal-rank
structure in tensor. We analyze the performance
of a convex program, which minimizes a weighted
combination of the tensor nuclear norm, a convex
surrogate for the tensor tubal rank, and the tensor
ℓ1 norm. We prove that under certain incoherence
conditions, this program can recover the tensor ex-
actly with overwhelming probability, provided that
its tubal rank is not too large and that the corrup-
tions are reasonably sparse. The number of re-
quired observations is order optimal (up to a log-
arithm factor) when comparing with the degrees of
freedom of the low-tubal-rank tensor. Numerical
experiments verify our theoretical results and real-
world applications demonstrate the effectiveness of
our algorithm.

1 Introduction

Real data, such as electroencephalography (EEG), video, and
color image, is usually multidimensional in nature. Tensor-
based modeling is a proper choice for such data because it is
capable of taking full advantage of the underlying multilinear
structures to provide better understanding and higher accu-
racy. In many applications, multidimensional data is proba-
bly incomplete or corrupted owing to various unpredictable or
unavoidable factors. The tremendous demand for clean data
leads to increasing interest in tensor sampling, estimation and
recovery during the last decade.

The strategies and their performance for tensor sampling
and recovery rely heavily on the low-rank decomposition
used to reveal the intrinsic structure in the multidimensional
data. For matrix (second-order tensor) data, its rank defined
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by means of the smallest number of rank-one matrix decom-
position, can be easily obtained via singular value decompo-
sition (SVD). The nuclear norm has been shown to be the
convex envelope of matrix rank over a unit ball of spectral
norm. Under some mild assumptions, efficient techniques
based on convex programming to minimize the nuclear norm
can recover the low-rank matrices accurately (or perhaps ex-
actly) from severely compressive [Wright et al., 2013], in-
complete [Candés and Recht, 2009; Chen, 2013], or cor-
rupted observations [Candés et al., 2011; Li, 2013].

Unlike the matrix case, several definitions of tensor rank
and their convex relaxations can be found in literature.
However, each has its own drawbacks. The CANDE-
COMP/PARAFAC (CP) decomposition [Kolda and Bader,
2009] compresses a tensor as the sum of rank-one outer prod-
ucts. The minimal number of such decomposition is de-
fined as the CP rank, which is NP-hard to compute in gen-
eral [Kolda and Bader, 2009]. Although efforts [Jain and
Oh, 2014; Shah et al., 2015; Karlsson et al., 2016] have been
made to recover low-CP-rank tensor in some special cases, it
still remains computationally intractable to determine the CP-
rank or its best convex approximation. The Tucker rank of a
tensor is a vector whose entries are the ranks of unfolding ma-
trices along each mode respectively [Kolda and Bader, 2009].
Inspired by the relation between matrix rank and nuclear
norm, Liu et al. proposed the Sum of Nuclear Norms (SNN),
which is the (weighted) sum of the nuclear norms of unfold-
ing matrices, as a convex relaxation for Tucker rank. The
effectiveness of this tractable measure has been successfully
validated in both theoretical analyses [Tomioka et al., 2011;
Gu et al., 2014] and practical settings (see, e.g., [Tomioka et
al., 2010; Gandy et al., 2011] and reference therein). Con-
sidering that the approximation may be substantially sub-
optimal in certain situations, Mu et al. further designed a
better (but still sub-optimal) convex surrogate for tensor rank
through a more balanced matricization.

The tensor-product and associated algebraic constructs in-
troduced for third [Kilmer and Martin, 2011] and higher or-
der tensors [Martin et al., 2013], provide a new framework
in which we can obtain a SVD-like factorization named the
tensor-SVD (t-SVD) [Kilmer and Martin, 2011; Martin et al.,
2013], and derive a notion of tensor rank referred to as the
tubal rank [Kilmer et al., 2013]. Using this new algebraic
framework, Zhang and Aeron and Lu et al. gave sufficient

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2649



conditions for convex programming to succeed in exact re-
covery of low-tubal-rank tensors from incomplete and grossly
corrupted observations respectively.

This paper considers a more challenging problem, namely,
recovering a low-rank tensor from a small fraction of its en-
tries, part of which are even arbitrarily corrupted. In essence,
this problem is tensor-based generalization of robust matrix
completion (RMC) [Li, 2013; Shang et al., 2014]. This
is why we call it robust tensor completion (RTC) hereafter.
Leveraging on the t-SVD algebraic framework, we study the
performance of a convex optimization model and provide re-
covery guarantee. Specifically, we show that when certain
tensor incoherence conditions are satisfied, the convex pro-
gram can exactly recover the low-tubal-rank tensor with high
probability, provided that the tubal rank is not too large and
that the corruptions are reasonably sparse. The sampling
complexity is order optimal (up to a logarithm factor) when
comparing with the degrees of freedom of the tensor.

We are aware that the RTC problem has been theoretically
examined in [Huang et al., 2014]. Our study departs from
that work on several fronts. First, the t-SVD algebraic frame-
work, in which third-order tensors are treated as linear op-
erators over matrices oriented laterally [Kilmer et al., 2013;
Braman, 2010], is quite different from the multilinear alge-
braic setup for Tucker decomposition. Besides, the tubal rank
and tensor nuclear norm differ seriously from the Tucker rank
and its convex relaxation SNN. Consequently, the recovery
theory established in [Huang et al., 2014] is not directly com-
parable to our result.

2 Notations and Preliminaries

We first go over some notations. In this paper, tensors are de-
noted by boldface Euler letters, e.g., A, matrices by boldface
capital letters, e.g., A, vectors by boldface lowercase letters,
e.g., a, and scalars by lowercase letters, e.g., a. The field of
real number and complex number are denoted as R and C,
respectively. We denote ⌊n⌋ as the nearest integer less than
or equal to n and ⌈n⌉ as the one greater than or equal to n.

For a third-order tensor A ∈ R
n1×n2×n3 , we denote its

(i, j, k)-th entry as Aijk and denote its i-th horizontal, lateral
and frontal slice using the MATLAB notation A(i, :, :), A(:
, i, :) and A(:, :, i), respectively. For simplicity, the front slice

A(:, :, i) is denoted compactly as A(i). A(i, j, :) denotes a
tubal fiber oriented into the board obtained by fixing the first
two indices and varying the third. Moreover, a tensor tube of
size 1 × 1 × n3 is denoted as ȧ and a tensor column of size

n1 × 1× n3 is denoted as b̊.
For a vector v ∈ C

n, the ℓ2-norm is ‖v‖2 =
√
∑

i |vi|2.

The inner product of A and B in C
n1×n2 is given by

〈A,B〉 = Tr(AHB), where AH denotes the conjugate
transpose of A and Tr(·) denotes the matrix trace. The
spectral norm of a matrix A ∈ C

n1×n2 is denoted as
‖A‖ = maxi σi(A), where σi(A)’s are the singular val-
ues of A. The matrix nuclear norm is ‖A‖∗ =

∑

i σi(A).
The inner product of A and B in C

n1×n2×n3 is defined as

〈A,B〉 =
∑n3

i=1〈A(i),B(i)〉. For any A ∈ C
n1×n2×n3 ,

the complex conjugate of A is denoted as conj(A) which
takes the complex conjugate of all entries of A. We denote

the ℓ1-norm as ‖A‖1 =
∑

ijk |Aijk|, the infinity norm as

‖A‖∞ = maxijk |Aijk| and the Frobenius norm as ‖A‖F =
√

∑

ijk |Aijk|2. These norms reduce to the corresponding

vector or matrix norms if A is a vector or a matrix.
For A ∈ R

n1×n2×n3 , using the MATLAB command fft,
we denote Ā ∈ C

n1×n2×n3 as the result of Fast Fourier
Transformation (FFT) of A along the third dimension, i.e.,
Ā = fft(A, [], 3). In the same fashion, we can compute
A from Ā using the inverse FFT, i.e., A = ifft(Ā, [], 3).
Furthermore, we define the block circulant matrix of A as

bcirc(A) =











A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)











,

and the following operators

unfold(A) =











A(1)

A(2)

...
An3











, fold(unfold(A)) = A.

Definition 1 (t-product) [Kilmer and Martin, 2011] The t-
product A ∗B of A ∈ R

n1×n4×n3 and B ∈ R
n4×n2×n3 is a

tensor C ∈ R
n1×n2×n3 ,

C = A ∗B = fold(bcirc(A) · unfold(B)).

For the frontal slices of Ā, we have
{

Ā(1) ∈ R
n1×n2 ,

conj(Ā(i)) = Ā(n3−i+2), i = 2, · · · , ⌊n3+1
2 ⌋. (1)

Using the above property, we can compute t-product by a
more efficient way (see [Lu et al., 2018, Algorithm 1]).

Definition 2 (Conjugate transpose) [Kilmer and Martin,
2011] The conjugate transpose of a tensor A ∈ R

n1×n2×n3

is the tensor AH ∈ R
n2×n1×n3 obtained by conjugate trans-

posing each of the frontal slice and then reversing the order
of transposed frontal slices 2 through n3.

Definition 3 (Identity tensor) [Kilmer and Martin, 2011]

The identity tensor I ∈ R
n×n×n3 is defined to be a tensor

whose first frontal slice is the n×n identity matrix and whose
other frontal slices are zero matrices.

Definition 4 (Orthogonal tensor) [Kilmer and Martin,
2011] A tensor Q ∈ R

n×n×n3 is orthogonal if it satisfies

QH ∗Q = Q ∗QH = I.

Definition 5 (f-diagonal tensor) [Kilmer and Martin, 2011]

A tensor A is called f-diagonal if each frontal slice A(i) is a
diagonal matrix.

Definition 6 (t-SVD) [Kilmer and Martin, 2011; Lu et al.,
2018] For A ∈ R

n1×n2×n3 , the t-SVD of A is given by

A = U ∗ S ∗ VH ,

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal
tensors, and S ∈ R

n1×n2×n3 is a f-diagonal tensor.
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Figure 1: Sketch map of the t-SVD for a n1 × n2 × n3 tensor.

The entries of the first frontal slice S(:; :; 1) are called the sin-
gular values of the tensor A [Lu et al., 2018]. Figure 1 illus-
trates the t-SVD for a n1 ×n2 ×n3 tensor. This factorization
can be obtained by computing matrix SVDs in the Fourier
domain. This idea was proposed first in [Kilmer and Mar-
tin, 2011] and later some related works [Kilmer et al., 2013;
Zhang and Aeron, 2017], but the way for computing U and
V cannot guarantee that they are real tensors. The study [Lu
et al., 2018] uses property (1) to construct U and V , which
leads to a more efficient way for computing t-SVD (see [Lu
et al., 2018, Algorithm 2]), and thus fixes this issue. It is only
required to run ⌈n3+1

2 ⌉ matrix SVDs while the number is n3

for the original method [Kilmer and Martin, 2011].

Definition 7 (Tensor tubal rank) [Lu et al., 2018] For A ∈
R

n1×n2×n3 , the tensor tubal rank, denoted as rankt(A), is
defined as the number of nonzero singular values of S, where

S is from the t-SVD of A = U ∗ S ∗ VH . We can write

rankt(A) = #{i,S(i, i, 1) 6= 0} = #{i,S(i, i, :) 6= 0}.
For A ∈ R

n1×n2×n3 with tubal rank r, it has the skinny t-

SVD, i.e., A = U ∗ S ∗ UH where U ∈ R
n1×r×n3 , S ∈

R
r×r×n3 , and V ∈ R

n2×r×n3 such that UH ∗ U = I and
VH ∗ V = I . The skinny t-SVD will be used in this paper.

There are some connections between tensor tubal rank
and other tensor ranks. First, suppose the Tucker rank of
A be (rank(A(1)), rank(A(2)), rank(A(3))), where A(i) is

the ith mode matricization of A, and we have rankt(A) ≤
min(rank(A(1)), rank(A(2))). This indicates that a tensor
with low Tucker rank also has low tubal rank. Moreover, let

the CP decomposition of A be A =
∑r

i=1 a
(1)
i ◦a(2)

i ◦a(3)
i ,

where ◦ denotes the outer product. Then Ā =
∑r

i=1 a
(1)
i ◦

a
(2)
i ◦ ā(3)

i , where ā
(3)
i = fft(a

(3)
i ). This implies that each

frontal slice of Ā is the sum of r rank-one matrices and Ā has
CP rank at most r. Therefore, the tubal rank of A is not larger
than r. In a word, the low-tubal-rank assumption is weaker
than the low-Tucker-rank and low-CP-rank assumptions.

Definition 8 (Tensor nuclear norm) [Lu et al., 2018] Let
A = U∗S∗VH be the t-SVD of A ∈ R

n1×n2×n3 . The tensor
nuclear norm of A is defined as the sum of the tensor singular
values, i.e., ‖A‖∗ =

∑r

i=1 S(i, i, 1), where r = rankt(A).

The above definition of tensor nuclear norm (TNN) is equiv-
alent to that given in [Lu et al., 2016]. Indeed,

‖A‖∗ =
r

∑

i=1

S(i, i, 1) = 〈S,I〉 = 1

n3
〈S̄, Ī〉

=
1

n3

n3
∑

i=1

〈S̄(i), Ī(i)〉 = 1

n3

n3
∑

i=1

‖Ā(i)‖∗.

Definition 9 (Tensor spectral norm) [Lu et al., 2016] The
tensor spectral norm of A ∈ R

n1×n2×n3 , denoted as ‖A‖, is

defined as ‖A‖ = ‖bcirc(A)‖ = maxi ‖Ā(i)‖.

It has been shown that TNN is the dual norm of the ten-
sor spectral norm, and vice versa [Zhang et al., 2014].
If we define the tensor average rank as ranka(A) =
1
n3

rank(bcirc(A)), then the convex envelope of the ten-

sor average rank is the tensor nuclear norm within the set
{A|‖A‖ ≤ 1} [Lu et al., 2018]. We would like to empha-
size that the above definition of TNN is different from the
one in [Zhang and Aeron, 2017] due to the factor 1

n3

and this

factor is crucial in our theoretical analysis.

3 Exact Recovery Guarantee

Let us consider the RTC problem formally. Suppose we are
given a third-order tensor L0 having low tubal rank and cor-
rupted by a sparse term E0. Here, both L0 and E0 are of
arbitrary magnitude. We do not know the tubal rank of L0.
Also we have no idea about the locations of the nonzero en-
tries of E0, not even how many there are. Can we recover
L0 accurately (perhaps even exactly) and efficiently from an
observed subset of the noisy data X = L0 + E0?1

Mathematically, the problem can be represented by

min
L,E

rankt(L) + λ‖E‖0, s.t., PΩ(L+ E) = PΩ(X ), (2)

where λ is a penalty parameter and PΩ is a linear projection
such that the entries in the set Ω are given while the remaining
entries are missing. The optimization problem (2) is generally
NP-hard due to the discrete nature of the tubal rank and the
ℓ0 pseudo-norm. Replacing these two terms by their convex
surrogates, namely, tensor nuclear norm and ℓ1-norm respec-
tively, leads to the following convex optimization problem

min
L,E

‖L‖∗ + λ‖E‖1, s.t., PΩ(L+ E) = PΩ(X ). (3)

Our model (3) is equivalent to the following tensor comple-
tion (TC) problem when there is no corruption, i.e., E = 0,

min
L

‖L‖∗ s.t., PΩ(L) = PΩ(X ), (4)

and reduces to the tensor robust principal component analysis
(TRPCA) problem when Ω is the entire set of indices,

min
L,E

‖L‖∗ + λ‖E‖1, s.t., L+ E = X . (5)

3.1 Tensor Incoherence Conditions

As discussed in [Huang et al., 2014; Lu et al., 2016; Zhang
and Aeron, 2017; Lu et al., 2018], exact recovery is hopeless
if most entries of X are equal to zero. When X is both low-
rank and sparse (e.g., X 111 = 1 and zeros everywhere else),
we are not able to identify the low-rank tensor L0. To make
the problem meaningful, we need some tensor incoherence
conditions on L0. We denote e̊i as the tensor column basis,
which is a tensor of size n1× 1×n3 with its (i, 1, 1)-th entry

1In this situation, it is impossible to exactly recover E0 (some
of its entries are simply not observed!), unless the observed set is
identical to the support of E0.
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equaling 1 and the rest equaling 0. We also define the tensor
tube basis ėk, which is a tensor of size 1 × 1 × n3 with its
(1, 1, k)-th entry equaling 1 and the rest equaling 0.

Definition 10 (Tensor Incoherence Conditions) Assume
that rankt(L0) = r and its skinny t-SVD is L0 = U∗S∗VH .
L0 is said to satisfy the tensor incoherence conditions with
parameter µ0 > 0 if

max
i=1,...,n1

‖UH ∗ e̊i‖F ≤
√

µ0r

n1
, (6)

max
j=1,...,n2

‖VH ∗ e̊j‖F ≤
√

µ0r

n2
, (7)

and

‖U ∗ VH‖∞ ≤
√

µ0r

n1n2n3
. (8)

The incoherence conditions (6)-(8) reduce to the regular
matrix incoherence conditions [Candés and Recht, 2009;
Candés et al., 2011; Li, 2013] when n3 = 1. According
to [Chen, 2013], we name (6) and (7) tensor standard in-
coherence conditions, and (8) tensor joint incoherence con-
dition. Zhang and Aeron indicate that the joint incoherence
condition (8) is unnecessary for tensor completion, while we
get the same conclusion in an alternative way. However, this
incoherence condition is indispensable for obtaining exact so-
lution to the TRPCA and RTC problems, as shown in our
analysis2. Another concern arises if the corruption term E0

has low tubal rank. This can be avoided by assuming that the
support of E0 is distributed uniformly at random.

3.2 Main Results

Now we present our main results. For convenience, we denote
n(1) = max(n1, n2) and n(2) = min(n1, n2).

Theorem 1 Suppose L0 ∈ R
n1×n2×n3 obeys (6)-(8), and

the observation set Ω is uniformly distributed among all sets
of cardinality m = ρn1n2n3. Also suppose that each ob-
served entry is independently corrupted with probability γ.
Then, there exist universal constants c1, c2 > 0 such that with
probability at least 1−c1(n(1)n3)

−c2 , the recovery of L0 with

λ = 1/
√
ρn(1)n3 is exact, provided that

r ≤ crn(2)

µ0(log(n(1)n3))2
and γ ≤ cγ (9)

where cr and cγ are two positive constants.

The theorem tells us that the target tensor L0 whose singu-
lar vectors U(:, i, :) and V(:, j, :) are reasonably spread, can
be exactly recovered with probability nearly one from a sub-
set of its entries even if they are arbitrarily corrupted. All
we require is that the tubal rank of the tensor L0 is not too
large, to be exact, on the order of n(2)/(µ0(log(n(1)n3))

2)
and the corruption term E0 is sufficiently sparse. We would
like to emphasize that the only “random distribution” in our

2The proof of Theorem 1, the optimization algorithm to solve (3),
and additional experimental results are given in the longer version of
this paper: http://www.math.hkbu.edu.hk/∼mng/qiang-mng.pdf

assumptions concerns the locations of the nonzero entries of
E0, but not on their magnitudes or signs. Another remarkable
fact is that there is no tuning parameter in our model.

The recovery guarantees for problems (4) and (5) are nat-
urally implied by Theorem 1 as in the following corollaries

Corollary 1 Suppose L0 ∈ R
n1×n2×n3 obeys (6) and (7)

and m entries of L0 are observed with locations sampled
uniformly at random, then there exist universal constants
c0, c1, c2 > 0 such that if

m ≥ c0µ0rn(1)n3(log(n(1)n3))
2, (10)

L0 is the unique minimizer to (4) with probability at east 1−
c1(n(1)n3)

−c2 .

Corollary 2 Suppose L0 ∈ R
n1×n2×n3 obeys (6)-(8) and E0

has support uniformly distributed with probability γ. Then,
there exist universal constants c1, c2 > 0 such that with prob-
ability at least 1−c1(n(1)n3)

−c2 , (L0,E0) is the unique min-

imizer to (5) with λ = 1/
√
n(1)n3, provided that

r ≤ crn(2)

µ0(log(n(1)n3))2
and γ ≤ cγ (11)

where cr and cγ are two positive constants.

It is worth pointing out that the theoretical results given
here can be easily extended to the case of pth-order tensors
with p ≥ 3, by exploiting the higher-order t-SVD algebraic
framework [Martin et al., 2013].

3.3 Connections with Prior Works

Recall that the t-product for third-order tensors and the tubal
nuclear norm reduce to the standard matrix multiplication and
the matrix nuclear norm respectively when n3 = 1. In this
sense, Theorem 1.3 in [Li, 2013] can be viewed as a special
case of Theorem 1 in this paper.

The two works [Zhang and Aeron, 2017; Lu et al., 2018]

are the most similar to our study. However, they simply fo-
cus on the TC and TRPCA problems, which are both special
cases of our model. Corollary 2 seems slightly different from
Theorem 4.1 in [Lu et al., 2018], but they are actually in good
agreement with each other. Note that our incoherence param-
eter µ0 and the incoherence parameter µ given in [Lu et al.,
2018] have the relationship µ0 = µ

n3

. Substituting the equa-

tion into (6)-(8) and (11), we obtain the identical results.
The number of observed entries m required by Corollary 1

is O(rn(1)n3(log(n(1)n3))
2). For a n1 × n2 × n3 tensor

with tubal rank r, its degrees of freedom is O(r(n1+n2)n3).
Therefore, such rate is order optimal (up to a logarithmic fac-
tor). The similar results have been observed in the matrix
cases [Candés and Recht, 2009; Chen, 2013].

4 Experiments

We conduct a series of experiments to demonstrate the va-
lidity of our theorem, and show possible applications of our
model and algorithm. As suggested by Theorem 1, the pa-
rameter λ is set to be λ = 1/

√
ρn(1)n3 in all the experiments

unless otherwise specified. For practical problems, it is pos-
sible to further improve the performance by turning λ cau-
tiously. Nevertheless, the default value is often a good rule of
thumb. We employ the standard alternating direction method
of multipliers (ADMM) algorithm to solve (3).
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r = 0.05n, ρ = 0.9, γ = 0.1 r = 0.1n, ρ = 0.8, γ = 0.2

n r rankt(L) ‖L−L0‖F

‖L0‖F

n r rankt(L) ‖L−L0‖F

‖L0‖F

100 5 5 1.68× 10−10 100 10 10 8.53× 10−10

200 10 10 5.25× 10−12 200 20 20 1.13× 10−11

300 15 15 4.80× 10−12 300 30 30 2.26× 10−12

Table 1: Exact recovery on random data with different sizes. In
the two scenarios, synthetic tensors are with different tubal ranks,
percentage of missing entries and proportion of grossly corrupted
observations.

r/n

γ

(a) ρ = 0.95
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r/n

γ

(b) ρ = 0.8

0.1 0.2 0.3 0.4 0.5
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r/n

γ

(c) ρ = 0.65
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0.4
0.5

r/n

γ

(d) ρ = 0.5
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0.1
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Figure 2: Exact recovery for varying rank and gross corruptions un-
der different proportions of observed entries. Fraction of perfect
recoveries across 10 trials, as a function of tubal rank rankt(L0)
(x-axis) and proportion of gross corruptions E0 (y-axis).

4.1 Synthetic Tensor Recovery

Validity of Exact Recovery

We first verify the correct recovery phenomenon of Theo-
rem 1 by synthetic problems. For simplicity, we consider the
tensors of size n×n×n with varying dimension n = 100, 200
and 300. We generate the clean tensor L0 = P ∗ W with
tubal rank rankt(L0) = r, where the entries of P ∈ R

n×r×n

and W ∈ R
r×n×n are independently sampled from a stan-

dard Gaussian distribution N (0, 1). In addition, a fraction γ
of its entries are uniformly corrupted by additive i.i.d. noise
from a standard Gaussian distribution N (0, 1) at random. Fi-
nally, we randomly choose a percentage ρ of the noisy tensor
entries as our observations.

We test on two cases and summarize the results in Table 1.
We set r = 0.05n, γ = 0.1 and ρ = 0.9 for the first sce-
nario, and choose a more challenging setting with r = 0.1n,
γ = 0.2 and ρ = 0.8 for the second scenario. It is clear to
see that our method gives the correct rank estimation of L0

and the negligible relative error ‖L − L0‖F /‖L0‖F in all
cases. These results verify the exact recovery phenomenon as
claimed in Theorem 1 pretty well.

Phase Transition

To further corroborate our theoretical results, we check the
recovery ability of our algorithm as a function of tubal rank
r, fractions of gross corruptions γ and proportion of observed
entries ρ. The data are generated by the above-mentioned
strategy, where the data size n = 100. We set ρ to be different
specified values, and vary r and γ to empirically investigate

the probability of recovery success. For each pair (r, γ), we
simulate 10 test instances and declare a trial to be successful if
the recovered tensor L satisfies ‖L−L0‖F /‖L0‖F ≤ 10−3.
Figure 2 reports the fraction of perfect recovery for each pair
(black = 0% and white = 100%). We see clearly that there
exists a big region in which the recovery is correct for all the
cases. Moreover, the larger the percentage of missing values
is, the smaller the region of correct recovery becomes.

4.2 Natural Image Restoration

It is well known that the real color images can be well ap-
proximated by low-rank matrices on the three channels inde-
pendently. If a color image is treated as a third-order ten-
sor with each channel corresponding to a frontal slice, then it
can be well approximated by a tensor of low tubal rank [Liu
et al., 2013; Lu et al., 2016]. In this experiment, we fo-
cus on noisy image completion. Unlike the traditional prob-
lems of image inpainting and image denoising, this problem
aims to simultaneously fill the missing pixels and remove
the noise in an image. One typical example is the restora-
tion of archived photographs and films [Kokaram, 2004;
Subrahmanyam et al., 2010]. In this case, it is necessary to
deal with corruptions and missing values jointly.

We download 50 color images at random from the Berke-
ley Segmentation Database (BSD) [Martin et al., 2001]. For
each image, we randomly set γ pixels corrupted with Gaus-
sian noise N (0, σ), and choose ρ entries to be observed. We
compare our algorithm with several approaches for low-rank
matrix or tensor recovery, including RPCA [Candés et al.,
2011], RMC [Shang et al., 2014], SNN [Huang et al., 2014],
and TRPCA [Lu et al., 2016]. For RPCA and RMC, we apply
them on each channel independently with λ = 1/

√
n(1). For

SNN, we find that its performance is not satisfactory when
the parameters λi’s are set to the default values [Huang et al.,
2014]. As suggested by [Lu et al., 2016], we empirically set
λ1 = λ2 = 15 and λ3 = 1.5 which make SNN work fine
for most images. We run TRPCA with λ = 1/

√
n(1)n3. For

a comprehensive comparison, we also test BM3D3 [Dabov et
al., 2007] on the BSD image set, which is usually referred to
as the representative of state-of-the-art algorithms for image
restoration. Considering that BM3D is originally proposed
for image denoising, we further enhance it with the scheme
of “completion + denoising”, which means that we first fill
the missing pixels without considering the noise and then ap-
ply BM3D to the intermediate result. Here, HaLRTC4 [Liu
et al., 2013] and TNNM [Zhang et al., 2014] are used in the
completion step and the corresponding methods are denoted
by BM3D+ and BM3D++, respectively.

We consider two different situations in which ρ is set to
be 0.9 and 0.7 respectively, and change γ from 0.01 to 0.03
for each case. Table 2 gives the results in terms of average
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
index (SSIM) when σ = 30. The best results is in bold text
and the second one is underlined. Our algorithm yields the
best quantitative results for all the cases, significantly better
than the runner-up sometimes. The performance of TRPCA

3http://www.cs.tut.fi/∼foi/GCF-BM3D/index.html
4http://www.cs.rochester.edu/u/jliu/publications.html
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(a) Original (PSNR, SSIM) (b) Noisy (NA, NA) (c) RPCA (17.88, 0.3928) (d) RMC (24.03 0.6380) (e) TRPCA (25.60, 0.7192)

(f) BM3D (21.43, 0.4227) (g) BM3D+ (25.60, 0.6279) (h) BM3D++ (26.18, 0.6668) (i) SNN (25.47, 0.7399) (j) RTC (28.39, 0.8593)

Figure 3: Visual comparison of Image Restoration when ρ = 0.7 and γ = 0.3. Our result contains slightly sharper edges and fewer artifacts.

ρ = 0.9 ρ = 0.7
γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.1 γ = 0.2 γ = 0.3

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RPCA 27.67 0.8535 27.30 0.8367 26.88 0.8122 21.69 0.5609 20.62 0.4744 19.64 0.4081
RMC 28.11 0.8552 27.82 0.8423 27.53 0.8276 26.33 0.7865 26.09 0.7736 25.84 0.7599

TRPCA 32.31 0.9457 31.59 0.9278 30.91 0.9037 29.25 0.8608 28.69 0.8209 28.06 0.7678
BM3D 28.31 0.8008 28.25 0.8002 28.18 0.7994 20.91 0.3392 20.80 0.3311 20.70 0.3234

BM3D+ 30.72 0.8289 30.51 0.8245 30.28 0.8203 29.75 0.8060 29.45 0.7993 29.18 0.7935
BM3D++ 30.94 0.8338 30.74 0.8297 30.52 0.8257 30.42 0.8221 30.11 0.8152 29.82 0.8093

SNN 30.14 0.9128 29.60 0.8972 29.11 0.8797 27.75 0.8426 27.35 0.8248 26.97 0.8063
RTC 33.03 0.9566 32.10 0.9400 31.27 0.9185 31.30 0.9296 30.58 0.9091 29.91 0.8831

Table 2: Average PSNR and SSIM obtained by various methods on the BSD image set.
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Figure 4: Comparison of the PSNR and SSIM values of various
methods for image restoration on 50 images when ρ = 0.7 and
γ = 0.3.

is comparable to our algorithm when ρ = 0.9, but it deteri-
orates dramatically as ρ and γ become larger. BM3D is not
able to achieve acceptable results, especially when the frac-
tion of missing pixels is relatively high, since it considers re-
moving the noise from the images purely. With an additional
completion step, BM3D+ and BM3D++ exhibit remarkably
improved performance. Three tensor-based methods, TR-
PCA, SNN and RTC, perform much better than two matrix-
based approaches, RPCA and RMC. The reason is that RPCA
and RMC, which conduct the matrix recovery on each chan-
nel independently, are incapable of exploiting the information
across channels, while the tensor-based methods can take the
advantage of the multi-channel structure. We also see that
our quantitative results are much better than those obtained

by SNN, which verifies that the t-SVD algebraic framework
is more suitable for natural image processing compared with
the traditional multilinear algebraic setup.

In Figure 4, we give the results obtained by various meth-
ods on all 50 images when ρ = 0.7 and γ = 0.3. Our algo-
rithm outperforms the other methods quantitatively for most
images. From the example in Figure 3, we see that our re-
covered images contain slightly sharper edges and fewer ar-
tifacts, exhibited in the enlarged views of the corresponding
areas in red and blue boxes.

5 Conclusions

In this work, we conduct a rigourous study for the RTC prob-
lem which aims to learn a low-tubal-rank tensor from partial
observations that are arbitrarily corrupted. Our study rests
heavily on recently proposed t-SVD algebraic framework, in
which we can define the tubal rank and tensor nuclear norm
for tensors. Equipped with the new definitions, we show that
one can exactly recover a third-order tensor having low tubal
rank with high probability and establish a theoretical bound
for exact recovery when using a convex optimization algo-
rithm. Numerical experiments verify our theoretical analysis
and the real-world applications demonstrate the superiority of
our method over other existing approaches. Considering that
real data routinely lies in thousands or even billions of dimen-
sions, the computational cost of our method may become ex-
pensive. We desire to develop fast algorithms for low-tubal-
rank tensor recovery and will explore this important direction
in our future work.
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