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The design of an accurate control scheme for a lower limb exoskeleton system has few challenges due to the uncertain
dynamics and the unintended subject’s reflexes during gait rehabilitation. In this work, a robust linear quadratic regulator-
(LQR-) based neural-fuzzy (NF) control scheme is proposed to address the effect of payload uncertainties and external
disturbances during passive-assist gait training. Initially, the Euler-Lagrange principle-based nonlinear dynamic relations are
established for the coupled system. The input-output feedback linearization approach is used to transform the nonlinear relations
into a linearized state-space form. The architecture of the adaptive neuro-fuzzy inference system (ANFIS) and used membership
function are briefly explained. While varying mass parameters up to 20%, three robust neural-fuzzy datasets are formulated
offline with the joint error vector and LQR control input. Thereafter, to deal with external interferences, an error dynamics with
a disturbance estimator is presented using an online adaptation of the firing strength matrix. The Lyapunov theory is carried out
to ensure the asymptotic stability of the coupled human-exoskeleton system in view of the proposed controller. The gait tracking
results for the proposed control scheme (RLQR-NF) are presented and compared with the exponential reaching law-based
sliding mode (ERL-SM) controller. Furthermore, to investigate the robustness of the proposed control over LQR control, a
comparative performance analysis is presented for two cases of parametric uncertainties and external disturbances. The first case
considers the 20% raise in mass values with a trigonometric form of disturbances, and the second case includes the effect of the
30% increment in mass values with a random form of disturbances. The simulation runs have shown the promising gait tracking
aspects of the designed controller for passive-assist gait training.

1. Introduction

Over the last two decades, an increasing number of neurolog-
ical disorders such as stroke, spinal cord injury, and Parkin-
son’s disease have been observed in different age groups.
The World Health Organization (WHO) reported “stroke”
as one of the principal reasons for nearly 5 million people’s
fatality through 2000-2016 and the third pioneering source
of debility throughout the world [1]. To address the concerns
of motor functionality in the lower body caused by neurolog-
ical disorders, researchers have developed many robot-based
lower limb exoskeleton devices to produce therapeutic effects
during walking [2, 3]. In a recent work by Kalita et al. [4], a

systematic yet comprehensive review has been carried out
on the state-of-the-art developments of such multijoint and
single-joint exoskeleton devices for gait rehabilitation,
mobility aid, and strength amplification.

A well-known treadmill-oriented exoskeleton, LOPES
[5], has been developed with a 2D translatable pelvis seg-
ment, two active hip joints, and an active knee joint for lower
limb rehabilitation. The system was controlled to supervise
or follow the subjects using “robot-in-charge” and “subject-
in-charge” modes. Bortole et al. [6] designed a 6-DOF lower
limb exoskeleton for overground training of stroke subjects
with a body height of 1.50-1.95m and a body mass of
100 kg. Hsieh et al. [7] proposed a soft exoskeleton design
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for preswing gait training of subjects with weak muscles,
where a single actuator with a pulley-slider arrangement is
used to drive the lower limb joints. The prototype is devel-
oped and clinically investigated with seven subjects. In a
study on a parallel mechanism-based lower limb rehabilita-
tion, Rastegarpanah et al. [8] investigated the performance
of a 6-DOF robot by executing foot trajectories of 20 healthy
subjects. Furthermore, the same prototype was tested for
eight poststroke patients while carrying out three exercises,
i.e., hip flexion/extension, ankle dorsiflexion/plantarflexion,
and marching [9]. Aggogeri et al. [10] presented a modular
and reconfigurable mechanism for rehabilitating ankle joints
of different subjects. Cestari et al. [11] introduced the ATLAS
exoskeleton to assist the children during flexion/extension of
the hip, knee, and ankle joints. At the preliminary level, a
dummy with body features of a 10-year-old child was used
to test the exoskeleton system. Patané et al. [12] proposed a
multijoint exoskeleton, WAKE-up, to rehabilitate the knee,
ankle, and foot of the pediatric subjects with neurological dis-
orders. The device was tested with four healthy children and
three children with cerebral palsy. To amplify human endur-
ance while carrying heavy loads, BLEEX [13] (7-DOF/limb)
was developed with intelligent and adaptable robot-based
strategies where linear hydraulic actuators were used for the
actuation of 4-DOF. Recently, Ji et al. [14] introduced a wear-
able exoskeleton, SIAT-WEXv2, to support the user’s waist
and bones while lifting heavy objects in construction and
logistic industries by providing an assistive output of 28N.

To augment the rehabilitation devices’ performance, the
appropriate control schemes are designed by the researchers
for executing repetitive gait movements. The control archi-
tecture required for the exoskeleton systems poses extra com-
plexity over the conventional robotic arm control due to the
sophisticated mechanical configuration, complex motion
trajectory, and human involvement. The researchers, in the
literature, have regarded the predefined gait tracking control
as the basis of every control scheme for exoskeleton systems,
where the joint movements of the lower limb could be
estimated using gait analysis experiments [15, 16, 17].
Although the exoskeleton systems exploit the gait of healthy
humans to replicate the same using predefined trajectory
control schemes, however, in practice, they are unable to
attain the proper gait trajectory because of the parametric
uncertainties and external disturbances (PUEDs). Therefore,
various robust control strategies have been designed to deal
with the limitations of classical trajectory tracking control
in lower limb exoskeleton systems [18, 19, 20, 21, 22, 23].
Ajayi et al. [18] proposed a bounded control scheme for the
rehabilitation of the knee ankle joint of a user in a sitting
position. The stability of the control law and convergence
analysis of the gain observer is validated with the Lyapunov
theory. The simulation results are presented without and
with the effect of the human interaction torque. Yang et al.
[19] presented a sliding mode control (SMC) scheme where
a second-order command filter-aided backstepping is incor-
porated to avert the “explosion of complexity.” Moreover,
the fuzzy logic is exploited to counter the chattering issues
of the control scheme during the estimation of structured
and unstructured uncertainties. In another work on robust

control, Long et al. [20] presented a hybrid strategy where
SMC is augmented with a cerebellar model articulation con-
troller (CMAC) to predict the motion intent of the subject.
The optimized sliding surface of the SMC is estimated using
the genetic algorithm to improve the effectiveness of the
proposed control scheme. Liu et al. [21] introduced an
event-triggered SMC for effective tracking of the reference
trajectory using a lower limb exoskeleton system with
PUEDs. In another work to address the model uncertainties
and the unintended subject’s response, Wu et al. [22] pro-
posed an adaptive control scheme for a 3-DOF lower extrem-
ity rehabilitation device. Working on the decoupled control
strategy, Sun et al. [23] designed a reduced-order adaptive
fuzzy approach and implemented it on a two-link exoskele-
ton system for lower limb rehabilitation.

Furthermore, in recent times, robust intelligent control
schemes have gain popularity to address the adverse effects
of PUEDs with effective approximation features. A neural
network (NN) along with a time-delay evaluation-based con-
trol scheme is proposed by Zhang et al. [24] to realize the
desired gait trajectory for a simulated model of a 10-DOF
exoskeleton. The performance of the designed control
scheme is investigated by comparing the classical PD control
scheme. Narayan and Dwivedy [25] proposed a neuro-fuzzy
compensator for PID control to deal with the system’s known
and unknown uncertainties during passive gait rehabilitation
of a human child. The controller is found to be more robust
towards external disturbances over payload uncertainties.
Chen et al. [26] proposed a disturbance estimator-based
subject-cooperative control for a weight-reinforced active-
assist rehabilitation device. They computed the interaction
torques using a backpropagation neural network-aided
disturbance observer and proved the stability using the
Lyapunov theory. In a recent work by Han et al. [27], time-
delay estimator-aided computed torque control is designed
to deal with PUEDs of a lower limb exoskeleton system.
Moreover, an adaptive radial basis function neural network
(RBFNN) is utilized to compensate for the time-delay error.

On the other hand, few researchers have explored the
optimal control, especially the linear quadratic regulator
(LQR), to realize the natural gait [28, 29, 30, 31]. The LQR
scheme with full-state feedback yields control measures con-
cerning the whole body compared to PD control for every
independent joint [28]. In addition to that, the relative prom-
inence of curtailing the tracking error and minimalizing the
control torque can be regulated by computing optimal values
of time-varying gain based on the design parameters of a sin-
gle controller. Furthermore, LQR as a linear control scheme
might be exploited for nonlinear system dynamics by
approximating the linear time-varying form and significantly
mitigating the computational complexity involved in several
nonlinear controllers. Ajjanaromvat and Parnichkun [29]
proposed an iterative online learning-based LQR control
scheme for a treadmill-appended exoskeleton to investigate
the robustness analysis. Moreover, the proposed control
scheme is aided with an adaptive iterative learning control
to address tracking errors. Gupta et al. [30] presented the
LQR control for lower limb exoskeleton systems by consider-
ing the 4-DOF human gait model in the Single Support Phase

2 Applied Bionics and Biomechanics



(SSP). They exploited the nondominated sorting genetic
algorithm to find out the optimal weighing matrix. However,
the formulation work has not considered the uncertain fac-
tors in system dynamics. Castro et al. [31] proposed an
integral-aided LQR (LQRi) and unknown input disturbance
observer (UIO) to address external interferences of the lower
limb exoskeleton system. The results of the proposed control
are compared with proportional-derivative control and
found to be more effective.

Although the hybrid form of sliding mode control can be
considered a highly robust control strategy, chattering always
affects the performance of exoskeleton systems. On the other
hand, the LQR is the most optimal control scheme and lacks
to resolve uncertain exoskeleton dynamics. Therefore, in this
work, a new robust LQR-based neural-fuzzy control scheme
is designed for the lower limb exoskeleton system with para-
metric uncertainties and external disturbances during passive
gait rehabilitation training. The key highlights of the present
work are as follows:

(i) The input-output feedback linearization approach is
represented to linearize the nonlinear dynamics of
the lower limb exoskeleton system

(ii) A robust offline LQR-based neural-fuzzy control
scheme is designed to deal with payload uncertainties

(iii) A disturbance estimator is proposed using an online
adaptation of firing strength in offline designed
LQR-NF architecture

(iv) The simulation results are carried out for the RLQR-
NF control scheme and compared with an exponential
reaching law-based sliding mode control (ERL-SM) to
track the desired gait trajectory during passive thera-
peutic training

(v) The robustness performance of the proposed control
scheme (RLQR-NF) is investigated by varying pay-
load parameters and inducing different forms of
external disturbances

The rest of the paperwork is structured as follows. The
mechanical description of the lower limb exoskeleton system
and the estimation of control input parameters are presented
in Section 2. In Section 3, the nonlinear dynamic relation is
formulated using the Euler-Lagrange principle, and thereaf-
ter, input-output linearization of the nonlinear form is
explained. Section 4 presents the concept of ANFIS architec-
ture with the selected membership function. Section 5
describes a detailed design procedure of the proposed control
strategy. In Section 6, the Lyapunov theory of stability is pre-
sented. The control results are simulated and discussed in
Section 7. The complete paperwork is concluded in Section 8.

2. Mechanical Configuration of the Lower Limb
Exoskeleton System

The main criteria for the mechanical design of a lower limb
exoskeleton system are to ensure its strength and stability
of the subject’s safety. Moreover, the adaptability of the sys-

tem with different heights of the subjects augments the
feature of cost-effectiveness. Considering the subject’s physi-
ological safety, all possible degrees of freedom should be
avoided at the initial phases of rehabilitation training. Invok-
ing the design features, authors have designed a low-cost
stand-alone module-aided lower limb exoskeleton system
for pediatric rehabilitation in their previous work [32]. The
CAD model of the designed exoskeleton system is shown in
Figures 1(a) and 1(b). A 3-DOF multilink mechanism for
each leg was intended to carry out hip flexion/extension, knee
flexion/extension, and ankle dorsiflexion/plantarflexion
motions. The placements of the joint actuators were made
to avoid any physical interference with the subject’s body.
To serve subjects of different heights, a telescopic link joint
arrangement was designed around the knee joint of the exo-
skeleton system. Moreover, a detailed structural analysis of
the stand-alone module was carried for maximum loading
conditions at the hip joint [32].

The mechanical configuration of the exoskeleton system is
intended for children of 8-12 years of age, 25-40kg weight,
and 115-125 cm height. The possible range of motion
(ROM) for three joints of the exoskeleton system in the sagittal
plane is as follows: 30°/-12° (hip-f/e), 60°/-10° (knee-f/e), and
13°/-20° (ankle-d/p). To avoid any undesirable actions beyond
the ROM, an emergency stop option is provisioned at the
software interface during simulation runs. In this work, an
eight-year-old male subject’s anthropometric and kinematic
parameters (body mass: 30kg and body height: 1.22m) are
considered input parameters to the control architecture. The
breakdown of input parameters for the lower limb exoskeleton
and subject is shown in Table 1, where the length of the
thigh and shank link is kept constant at 0.27m and
0.30m, respectively.

Furthermore, an affordable wireless Labview-aided
Kinect setup was established to conduct the experimental gait
analysis. With necessary approval, the child subject was
asked to follow an inclined path over the ground in front of
the experimental setup for 1.6-2.0 seconds. The angle estima-
tion algorithm comprehended the information about the
lower limb joint angles from the skeleton model in Labview.
The angle estimation algorithm exploits the relation between
joint triples using vector algebra.

The detailed procedure of performing gait analysis, as
shown in Figure 2(a), is based on the work by Narayan et al.
[33]. The skeleton form of the subject during the gait analysis
is illustrated in Figure 2(b). The desired lower limb joint
angles attained from the experiment are presented in
Figure 3(a) and the corresponding trajectory in Figure 3(b).
The ROM for the hip, knee, and ankle joints are recorded
as 22.16° to -8.98°, 58.26° to 1.21°, and 5.84° to -7.94° for an
eight-year-old child, respectively.

3. Dynamic Model of the Coupled Human-
Exoskeleton System

In this section, the Euler-Lagrange principle is used to
formulate the nonlinear dynamics of the coupled human-
exoskeleton system. Thereafter, the input-output feedback
linearization approach is exploited to linearize the nonlinear
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behavior of the dynamical system. The transformed linear
state-space relation is established for the dynamics of the
lower limb exoskeleton system.

3.1. Nonlinear Dynamic Formulation. Among various
methods for expressing applied joint torques and angular
acceleration, the Euler-Lagrange principle is well appreciated
by the research communities [34]. Invoking the Euler-
Lagrange principle, which employs kinetic and potential
energy, the nonlinear representation of the coupled human-
exoskeleton dynamics is obtained. A multilink structure of
the coupled system with a collaboration effect is shown in
Figures 4(a) and 4(b).

A generalized formulation to estimate the joint torques
using the Lagrangian L is as follows:

τ =
d

dt

∂L

∂ _θi

 !
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In the abovementioned relations, θi represents the gener-
alized coordinate of the human-exoskeleton system. The
kinetic and potential energy about the i-link is denoted by

K and P, respectively. In Equation (3), _θi, _si,mi, and Ii signify
the angular velocity, speed of the center of mass in transla-
tional direction, mass, and inertia corresponding to the i
-link. The acceleration due to the gravitational effects is
referred by g, and the distance between the i-link’s center
point forming the gravitational vector and the origin is
denoted by hci as illustrated in Equation (4).

Referring to Equations (2)–(4) to solve Equation (1), the
nonlinear dynamics of the coupled dynamical system can be
articulated as follows:

τ =M θð Þ€θ + C θ, _θ
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Figure 1: CAD model of (a) LLES (labels: (1) thigh link, (2) shank link, (3) foot link, (4) hybrid stepper motor, (5) lead screw actuator, (6)
stepper motor, (7) timing belt, (8) support module, (9) wheels, and (10) telescopic link joint connector) and (b) LEES with a human dummy
[32].

Table 1: Specifications of the lower limb exoskeleton system and
child dummy.

Part Mass (kg) Length (m) COM (m)

Lower limb exoskeleton system

Thigh link me
1 = 4:75 le1 = 0:25‐0:30 lec1 = 0:12‐0:15

Shank link me
2 = 1:60 le2 = 0:30‐0:35 lec2 = 0:14‐0:17

Foot link me
3 = 0:85 le3 = 0:05 lec3 = 0:02

Child (age 8 years, body weight 30 kg, and body height 122 cm)

Thigh mh
1 = 3:50 lh1 = 0:27 lhc1 = 0:13

Shank mh
2 = 2:25 lh2 = 0:30 lhc2 = 0:15

Foot mh
3 = 0:65 lh3 = 0:04 lhc3 = 0:02
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The matrix form of inertial, Coriolis-centrifugal, and
gravity effects of the coupled dynamical system is signified

by MðθÞ, Cðθ, _θÞ, and GðθÞ, respectively. In Equation (6),

MeðθÞ andMhðθÞ represent the inertial dynamics of the exo-
skeleton and human leg in the matrix form, respectively. The
Coriolis-centrifugal matrix of the exoskeleton and human leg

is represented by Ceðθ, _θÞ, and Chðθ, _θÞ, respectively. The
gravity matrix of the exoskeleton and human leg is referred

by GeðθÞ and GhðθÞ, respectively. τa implies the actuator tor-
que while driving the joint of a human’s lower limb. The col-
laboration torque is indicated by τeh and τhe for collaboration
of exoskeletons with humans and vice versa, respectively.

During exoskeleton-human interaction, splints are
exploited to keep the exoskeleton link and human leg
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Figure 2: Gait analysis experiment. (a) Schematic diagram of the detailed procedure. (b) A child subject with the skeleton model during the
experiment.
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Figure 3: Experimental gait data. (a) Desired joint angular trajectory. (b) Desired gait trajectory.
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attached, which induces the collaboration torques (τeh and
τhe). However, in passive gait rehabilitation, as considered
in the present work, these collaborations are withdrawn by
assuming rigid connections and matching joint angles for
exoskeletons and humans. As illustrated in Figure 4(b), the
interaction dynamics is formulated as below:

τeh = −τhe = JT f co = JT kΔx + cΔ _xð Þ = k θh − θeð Þ + c _θh −
_θe

� �

,

ð8Þ

where f co represents the collaboration force between the exo-
skeleton and the human, k and c signify the mechanical stiff-
ness and damping factors of the used splints, Δx denotes the
Cartesian coordinate disparity between the human leg and
the exoskeleton link, and ðθh − θeÞ refers to the joint angular
disparity between the human leg and the exoskeleton link.

Furthermore, in the presence of parametric uncertainties
and external disturbances, Equation (5) can be rewritten as

τˇ =Mˇ θð Þ€θ + Cˇ θ, _θ
� �
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where D denotes the external disturbances applied by the
subjects to the system; η is the uncertain scaling factor when
considering the same amount of variation in dynamic
parameters.

After considering joint torques (τ) equivalent to joint
actuator torques (τa) in case of passive rehabilitation train-

ing, the actuator dynamics can be formulated using Kirchh-

off’s law to obtain the control voltage (Ǔm) as follows:

Ǔm =
τˇ Rm

Sm
+ _imLm + Ξe

_θ, ð11Þ

where Rm, Sm, _im, Lm, and Ξe denote the armature resistance,
torque sensitivity, current, armature inductance, and back
EMF constant of the DC motor. These parameters are
selected from the specification sheet provided by Bholanath
Precision Engineering Private Limited [35].

To imitate the realistic cases, the actuator saturation
should be considered in the design of the control law to avoid
the hysteresis cycle and maintain the linearity of the actuator.
Moreover, this ensures closed-loop stability by limiting the
large control signals. Based on the saturation theory, the

control signal ðǓmÞ from Equation (11) can be further
defined as below:

Ǔm =
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where ℧∈ℝ3 denotes a vector with positive elements. The
upper and lower saturation bound is denoted by ℧m and
−℧m, respectively.

3.2. Input-Output Feedback Linearization. The main objec-
tive of the feedback linearization is to correctly linearize the
nonlinear dynamics with suitable modifications in state-
space coordinates using an inner loop control [34]. Thereaf-
ter, an outer loop control with a new set of coordinates can be
formed to establish a linear relationship between the output
vector (y) and the input vector (ǔ) and validate the cost
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Figure 4: Coupled human-exoskeleton configuration. (a) A simplified linkage model. (b) Interaction dynamics of the coupled human-
exoskeleton system.
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functions of the control design. Consider the nonlinear
multiple-input and single-output (MISO) dynamic relation
with n as the order and p as the total number of inputs as well
as outputs, defined in the affine state:

_x tð Þ =Ψ x tð Þð Þ + 〠
p

i=1

Πi x tð Þð ÞǓmi
tð Þ,

yi tð Þ =Λi x tð Þð Þ,

8

>

<

>

:

ð13Þ

where x = ½x1,x2,⋯,xn�
T ∈ℝn denotes the state vector,

Ǔmi
= ½Ǔm1

, Ǔm2
,⋯, Ǔmp

�
T
∈ℝp signifies the control input

vector, and y = ½y1, y2,⋯, yp�
T ∈ℝp indicates the output

vector.

Theorem 1. Suppose Ψ : ℝ
n
⇒ℝ

n signifies a smooth vector
field on ℝ

n and Λ : ℝ
n
⇒ℝ

n denotes a scalar function. Then,
the Lie derivative of Λ to Ψ, referred as L

Ψ
Λ, is expressed as

follows [36, 37]:
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Theorem 2. The function Φ : ℝ
n
⇒ℝ

n, specified in a region
Y ⊂ℝ

n, is termed as diffeomorphism if the function Φ along

with the inverse Φ−1 (if it exists) is smooth, i.e., differentiable
everywhere [36, 37].

However, as the global diffeomorphism is rare, one
should check for local diffeomorphisms, i.e., transformations
defined in a limited neighborhood of a specified point [37].
With the concept of diffeomorphism, we transform a nonlin-
ear system into another one by changing the variables in the
following form:
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with x = ½x1,x2,⋯,xn�
T .

Now, a linear relationship between inputs and outputs is
to be established by performing the differentiation of the
outputs ðyiÞ till the input terms appear in the formulation.

Considering r j is the smallest integer, ðy
ðr jÞ

j Þ can be evaluated

with a complete term of inputs as follows:

y
r jð Þ
j = L

r j
Ψ
Λj xð Þ + 〠

p

i=1

L
Πi

L
r j−1
Ψ

Λj xð Þ
� �

Ǔmi
, i, j = 1, 2,⋯, p,

ð19Þ

where Li
Ψ
Λj and L

i
Π
Λj signify the ith Lie derivatives ofΛjðxÞ

in the direction ofΨ andΠ, respectively. In Equation (19), r j
denotes the relative degree for the output yj which provides

information about the number of derivatives required to
carry out at least one of the inputs in the formulation [37,
38]. The sum of every relative degree from Equation (19)
constitutes the total relative degree ðrÞ which needs to be less
than or equal to the system’s order.

r = 〠
n

j=1

r j ≤ n: ð20Þ

Furthermore, rewriting Equation (19) and expressing the

nonlinear control law Ǔm to form the linear relationship
between the input and the output as follows, one can get

y
r1
1 ,⋯, y

rp
p

h iT
= δ xð Þ + σ xð Þ · Ǔm, ð21Þ

ǔ = ǔ1, ǔ2,⋯, ǔp

� �T
= y

r1
1 ,⋯,y

rp
p

h iT
, ð22Þ

where

δ xð Þ =

L
r1
Ψ
Λ1 xð Þ

⋮

⋮

L
rp
Ψ
Λp xð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,

σ xð Þ =

L
Π1

L
r1−1ð Þ
Ψ

Λ1 xð Þ
� �

L
Π2

L
r1−1ð Þ
Ψ

Λ1 xð Þ
� �

⋯ L
Πp

L
r1−1ð Þ
Ψ

Λ1 xð Þ
� �

L
Π1

L
r2−1ð Þ
Ψ

Λ2 xð Þ
� �

L
Π2

L
r2−1ð Þ
Ψ

Λ2 xð Þ
� �

⋯ L
Πp

L
r2−1ð Þ
Ψ

Λ2 xð Þ
� �

⋮ ⋮ ⋮

L
Π1

L
rp−1ð Þ

Ψ
Λp xð Þ

� �

L
Π2

L
rp−1ð Þ

Ψ
Λp xð Þ

� �

⋯ L
Πp

L
rp−1ð Þ

Ψ
Λp xð Þ

� �
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ð23Þ

Assuming σðxÞ is not singular, the input transferred
form, i.e., the nonlinear control law, can be possibly
defined as

Ǔm = σ xð Þ−1 −δ xð Þ + ǔð Þ, ð24Þ

where ǔ = ½ǔ1, ǔ2,⋯, ǔp�
T and Ǔm = ½Ǔm1

, Ǔm2
,⋯, Ǔmp

�
T
.

In Equation (24), ǔ denotes the new input vector, Ǔm

refers to the decoupling control law, σðxÞ signifies an
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invertible matrix of order p × p, and δðxÞ represents a
decoupling matrix of the system.

Furthermore, the linearizing law from Equation (24) is
applied for transforming the nonlinear dynamics of the
coupled human-exoskeleton system (Equation (9)) into the
linear state-space representation as follows:

_z = Ǎz + B̌ǔ,

y =Cz,

(

ð25Þ

where Ǎ =A + ΔA, B̌ =B + ΔB, and ǔ = ðΔ + 1Þu + d.

Ǎ and B̌ are the state-weight factor matrices with the
effect of parametric uncertainties; A, B, and C denote the
state-weight factor matrices evaluated with nominal system
parameters, i.e., in the absence of parametric uncertainties; Δ
is the uncertain scaling factor in the linearized state-space form
related to state-weight factor matrices and can be expressed in
terms of dynamic parameters of the given system [39]. The
input vector ǔ carries the effect of parameter variations and
external disturbances. The input vector in the absence of
PUEDs is denoted byu. The disturbance applied to the system
after feedback linearization is denoted by d, being analogous to
D from Equation (9). The linearized dynamics in Equation (25)
stands valid with the following assumptions:

A1: the ðǍ, B̌Þ is in the controllable form.
A2: the disturbance d is in the bounded form.
In the present work, the state vector and output vector

related to the hip, knee, and ankle joints of the coupled dynam-

ical system is considered z = ½θH θK θA 
_θH 

_θK 
_θA�

T

and y = ½θH θK θA�
T , respectively. The input vector

with nominal system parameters is defined as u =

½uH uK uA�
T . Moreover, the respective state-weight fac-

tor matrices (A ∈ℝ6×6,B ∈ℝ6×3, andC ∈ℝ3×6) can be for-
mulated as below. The entries of these matrices are extensively
presented in the appendix.

A =

0½ �3×3 I3

α41
~α41

α42
~α42

α43
~α43

α51
~α51

−
α51′
~α51′

+
α51′′
~α51′′

α52
~α52

−
α52′
~α52′

+
α52′′
~α52′′

α53
~α53

+
α53′
~α53′

−
α53′′
~α53′′

α61
~α61

−
α61′
~α61′

−
α61′′
~α61′′

α62
~α62

−
α62′
~α62′

−
α62′′
~α62′′

α63
~α63

−
α63′
~α63′

−
α63′′
~α63′′

0½ �3×3

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

6×6

,

B =

0½ �3×3

β41

~β41

β42

~β42

β43
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β51
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β52
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β53

~β53

β61
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β62

~β62

β63

~β63

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

6×3

,

C =

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

B

B

@

1

C

C

A

3×6
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ð26Þ

4. Adaptive Neural-Fuzzy Inference System

The adaptive neural-fuzzy inference system (ANFIS),
colloquially known as the neural-fuzzy or neuro-fuzzy (NF)
system, was proposed by Jang and Sun [40] by augmenting
the benefits of adaptive neural networks and fuzzy reasoning.
In the NF system, IF-THEN-based fuzzy logic inferences are
constructed to form the learning rules with a defined input-
output dataset and reproduce the output vector with zero
error tolerance. A neural-fuzzy system exploits the fuzzy
input variables and input-dependent nonfuzzy output vari-
ables given by Takagi and Sugeno [41]. For instance,

If the acceleration of the robot’s end − effector is high, then

f tð Þ = c × acceleration of the robot’s end − effector
	 
2

: ð27Þ

In Equation (27), high signifies a fuzzy label with the mem-

bership function (MF), representing the acceleration of the

robot’s end − effector in the rule proposition. The rule subse-
quent with nonfuzzy behavior is formulated according to the

input variable of the premise step, acceleration of the robot’s
end − effector.

4.1. ANFIS Architecture. A neural-fuzzy system inherently
exploits the five layers. The primary network architecture
with two input vectors ðz : x, yÞ and one output vector
ð f ðzÞÞ is considered to show the generalized process of
ANFIS.As shown inFigure5, twokinds of nodes are employed
in the architecture: first, a square node for adaptation of the
parameters, and second, a circular node that behaves as a fixed
node with no parameter. The layer-by-layer development of
the ANFIS structure is given below [42, 43].

Layer 1. This layer acts as a conversion function for the crisp
value of the input vector into an appropriate MF-based fuzzy
language, depicted as follows:

O1
j =ΩA j

xð Þ,

O1
j =ΩB j

yð Þ,
ð28Þ

where O1
j represents the jth node output for the first layer.

ΩA j
ðxÞ and ΩB j

ðyÞ denote the membership weightage of

respective input variables, defined for Aj- and Bj-type MF.

In this work, the generalized bell membership function is
chosen to replicate a proper probability distribution behavior
and expressed as follows:

bell z : aj, bj, cj
	 


=ΩA j
xð Þ =ΩB j

yð Þ =
1

1 + z − cj
	 


/aj
	 
2
h ib j

:

ð29Þ

In Equation (29), “aj” and “bj” signify the width and

shape parameters of the membership function. The value of
“bj” is generally positive; however, it can be considered neg-

ative in case of inverted shape. “cj” indicates the center
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position of the membership function. Having an extra
parameter compared to Gaussian MF, the generalized bell
has the added advantage of tuning the steepness at cross-
over positions.

Layer 2. This layer evaluates the firing strength for every rule
using a product of incoming signals from each circular node.
It is designated by notationΠ in the ANFIS architecture. The
following expression is used to estimate the firing strength
(wj) as follows:

O2
j =wj =ΩA j

xð Þ =ΩB j
yð Þ, j = 1, 2: ð30Þ

Layer 3. In this layer, the normalization of the node’s firing
strength is carried out by dividing the jth rule firing strength
to all rules’ total firing strength. This layer is designated by
notation N in the ANFIS architecture. The firing strength
(�wj) is normalized as follows:

O3
j = �wj =

wj

w1 +w2

, j = 1, 2: ð31Þ

Layer 4. This layer, having the square nodes, is used to
estimate the rule’s involvement by defuzzification of input
variables and produce the respective output as follows:

O4
j = �wj∠j = �wj pjx + qjy + r j

� �

, ð32Þ

where �wj indicates the normalized firing strength and pj, qj,

and r j signify the subsequent limits.

Layer 5. This layer, having circular shape nodes with the
designation ∑, processes the final output using the
summation of all incoming signals from the preceding layer.
Mathematically, it can be expressed as follows:

O5
j =〠

j

�wj∠j =
∑ jwj∠j

∑jwj

: ð33Þ

5. Robust Design of the LQR-Based Neural-
Fuzzy Control

The design procedure of RLQR-NF control is organized into
two parts: first, the offline training of a robust LQR-based
ANFIS training dataset to deal with parametric uncertainties,
and second, the online training of the LQR-based ANFIS
architecture using the adaptive law of weights to compensate
for the external disturbances. In both parts, the effects of
parametric uncertainties and external disturbances are
explicitly considered. Thereafter, the stability of the proposed
control strategy in the presence of PUEDs is addressed by the
Lyapunov theory in the next section.

5.1. Offline Training of the RLQR-NF Dataset for Parametric
Uncertainties. As shown in Figure 6, this subsection is further
presented into two stages: first, the formulation of a robust
LQR-NF dataset by varying mass parameters, and second,
the stepwise layout of offline training of a dataset using
ANFIS parameters to design the robust control strategy.

5.1.1. Stage I: Formulation of the RLQR-NF Training Dataset.
The training dataset, having multiple-input and single-
output (MISO), is formed by employing the concepts of the
LQR control strategy as shown in Equation (25). The LQR
cost function is considered a minimization problem while
applying the optimality conditions and is expressed as fol-
lows [44]:

J =
1

2

ð∞

0

zTQz + ǔT
Rǔ

� �

dt, ð34Þ

where Q and R denote the user-defined state-weight matrix
and control cost matrix, respectively. An appropriate selec-
tion of both matrices directly influences the performance
characteristics of the controller.

The generalized input (ǔ) to the control system is artic-
ulated by regulating the error vector (ℯ) as follows:

ǔ =Kℯ =K zdes −zð Þ, ð35Þ

A1

A2

B1

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

N

N

∑

Π

B2

x

y

w2

w2w1

x

x

y

y

w2f2

w1f1

w2

f (z)

Π

Figure 5: ANFIS architecture.
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where zdes and z represent the desired and actual state vec-
tors, respectively. The optimal state gain matrix (K) can be
expressed in terms of the control cost matrix (R) and the

state-weight factor matrix (B̌) as follows:

K = R
−1B̌

T
P, ð36Þ

where P is the answer for the algebraic form of the Riccati
equation expressed in the form of state-weight factor matri-

ces (Ǎ and B̌), state-weight matrix (Q), and control cost
matrix (R) as given below [44, 45]:

PǍ + Ǎ
T
P −PB̌R

−1B̌
T
P +Q = 0: ð37Þ

It is truly evident from Equation (36) that the state gain

matrix (K) is regulated by Ǎ, B̌, Q, and R matrices where

Ǎ and B̌ are reliant on the mechanical arrangement and
dynamic parameters of the requisite system.

Exploiting the controller’s gain (K), a generalized
dataset (Sd) with the error vector (ℯ) and respective input
(ǔ) to the control system can be created in the following
form [44]:

Sd = ℯ
T ǔ

� �

: ð38Þ

In this work, the dataset ðSdÞ is expanded into a robust
form by evaluating the controller’s gain (Kmt ,mc ,mhf

) for a

bounded variation of the coupled thigh ðmtÞ, calf ðmcÞ, and
heel-foot ðmhf Þ masses of the human-exoskeleton system.
Thereafter, the controller input ðǔmt ,mc ,mhf

Þ for the hip, knee,

and ankle joints is formulated as follows:

ǔmt ,mc ,mhf
=Kmt ,mc ,mhf

ℯ, ð39Þ

where

ǔmt ,mc ,mhf
= ǔHmt ,mc,mhf

ǔKmt ,mc ,mhf

ǔAmt ,mc,mhf

h iT
, ð40Þ

ℯ = ℯθH
ℯθK

ℯθA
ℯ _θH

ℯ _θK
ℯ _θA

h iT
:

ð41Þ

In Equation (40), ǔHmt ,mc,mhf

, ǔKmt ,mc ,mhf

, and ǔAmt ,mc ,mhf

denote the controller output for the hip, knee, and ankle
joints of the exoskeleton device, respectively. In Equation
(41), ℯθH , ℯθK , and ℯθA

signify the hip, knee, and ankle joint

angular errors, respectively. ℯ _θH
, ℯ _θK

, and ℯ _θA
represent the

respective errors of the hip, knee, and ankle joint angular
velocities.

The expanded structure of the robust dataset ðSrdÞ is
finally depicted as below:

Srd = ℯ
T ǔmt ,mc ,mhf

� �

, ð42Þ

where

Srd = S 1ð Þrd S 2ð Þrd S 3ð Þrd
� �T

: ð43Þ

5.1.2. Stage II: Stepwise Layout of Offline Training of the
RLQR-NF Dataset. The layout and execution of the proposed
control strategy for the exoskeleton device are presented in
the following steps.

Step 1. The state gain matrix (Kmt ,mc ,mhf
) is evaluated by solv-

ing Equations (36) and (37) for a different set of coupled
thigh ðmtÞ, calf ðmcÞ, and heel-foot ðmhf Þ masses, as shown
in Table 2. The parametric variation is incorporated by
increasing the nominal mass values up to 20%, with an
increment of 0.3, 0.15, and 0.06 kg for the thigh, calf, and
heel-foot. After performing several numerical experiments,
the state-weight matrix and control cost matrix are selected
as Q = diag ð400000, 4000, 8000, 800, 8000, 800Þ and R =
eyeð3, 3Þ.

Step 2. Apply Equation (39) to compute the controller input
ðǔmt ,mc ,mhf

Þ for the operating range of state variables in the

error vector as shown in Table 3. The structure of three robust
datasets is formed by exploiting Equations (42) and (43).

Step 3. The training of robust datasets is carried out using the
ANFIS approach. The first six columns of every dataset are
inherently considered the input set. The last column of every
dataset is regarded as the output set. The input set comprises
the error vector ðℯÞ, and the output set contains the controller
input vector ðǔmt ,mc ,mhf

Þ. The three ANFIS architectures are

formed, trained, and saved as anfis1.fis, anfis2.fis, and anfis3.-
fis for three controller inputs. Several simulation runs are

Mathematical
formulation
of RLQR-NF

dataset

De�ning input
and output

training
vectors

Selection of
ANFIS
training

parameters

O�ine
training of
RLQR-NF
controller

Stage I Stage II

Figure 6: Flowchart representation of the stage-wise design procedure.
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performed by varying the number of MF from 1 to 50 and
epochs from 1 to 30. Thereafter, the training parameters
are selected based on the zero error tolerance between
the desired and predicted output vectors. In general,
ANFIS utilizes two optimization methods: backpropagation
and hybrid, to establish the learning between the input and
output vectors. A gradient descent model is employed to
evaluate the node error in the backpropagation method.
In contrast, a least square algorithm along with the gradi-
ent descent model is exploited to regulate the errors in the
hybrid method. In this work, the hybrid method is used
with all three datasets for training the neural-fuzzy net-
works. The complete details of training parameters are
given in Table 4. After generating training files (anfis1.fis,
anfis2.fis, and anfis3.fis) as the desired robust LQR-based
neural-fuzzy controller, the respective signals are inputted to
the nonlinear dynamics of the coupled human-exoskeleton
system.

5.2. Online Training of the RLQR-NF Dataset for External
Disturbances. Considering assumption A1, the control input
with uncertain parameters ðûÞ can be further expressed in
terms of the state feedback ðKzÞ and disturbance observer

ðd̂Þ as

û = Δ + 1ð Þu = d̂ −Kz, ð44Þ

where d̂ denotes the estimated disturbance by ANFIS
architecture, and K signifies the state feedback matrix.

Substituting Equation (44) into Equation (22), the linear-
ized dynamic model can be written as

_z = Ǎ − B̌K
� �

z + B̌ d̂ + d
� �

: ð45Þ

Now, the error dynamics of the control design in the time
domain can be expressed as below:

_ℯ tð Þ = Ǎ − B̌K
� �

ℯ tð Þ + B̌ d̂ tð Þ − f tð Þ
� �

, ð46Þ

where

B̌f tð Þ = _zdes tð Þ − B̌d tð Þ − Ǎ − B̌K
� �

zdes tð Þ: ð47Þ

Employing assumption A2, the f ðtÞ can be considered a
function with an upper limit. Therefore, the effectiveness of
the coupled human-exoskeleton system can be augmented

by estimating the f ðtÞ from d̂ðtÞ. Using the ANFIS architec-
ture mentioned in Section 4, the f ðtÞ is approximated as
follows [46, 47]:

f zð Þ = �W
T
Ω zð Þ + �ϱ zð Þ, ð48Þ

where �W denotes the ideal normalized firing strength matrix;
ΩðzÞ signifies the membership function vector; and �ϱðzÞ
represents an error of approximation with the condition
�ϱðzÞ ≤ ζ, where ζ is a constant factor.

Now utilizing Equations (46) and (48), the error dynam-
ics can be rewritten as

_ℯ tð Þ = Ǎ − B̌K
� �

ℯ tð Þ + B̌ d̂ tð Þ − �W
T
Ω zð Þ − �ϱ zð Þ

� �

: ð49Þ

From the above equation, the disturbance estimator d̂ðtÞ
is defined as follows to design the control law [47]:

d̂i = Ŵ
T

jiΩj zð Þ − ζ sign ℯ
TPB̌i

� �

, i = 1, 2,⋯, p and j = 1, 2,⋯, l,

ð50Þ

where p and l denote the number of inputs and network
nodes in the hidden layer.

Table 2: Variation in lower limb mass parameters of the coupled
human-exoskeleton system.

Thigh, mt (kg) Calf, mc (kg) Heel-foot, mhf (kg)

8.25 3.85 1.50

8.58 4.00 1.56

8.91 4.16 1.62

9.24 4.31 1.68

9.57 4.47 1.74

9.90 4.62 1.80

Table 3: Operating range of the error in state variables.

Variables in the error
vector

Minimum
value

Maximum
value

Units

ℯθH -60 60 Degree

ℯθK -60 60 Degree

ℯθA -30 30 Degree

ℯ _θH -90 90 Degree/sec

ℯ _θK -90 90 Degree/sec

ℯ _θA -60 60 Degree/sec

Table 4: Training parameters of ANFIS architectures.

Training parameters anfis1.fis anfis2.fis anfis3.fis

MF type Gaussian Gaussian Gaussian

MF number 5 12 3

Error tolerance 0.00001 0.0001 0.001

Epochs 10 15 5

Learning model Hybrid Hybrid Hybrid
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In the above expression, the estimated strength matrix

ðŴ jiÞ is updated according to the following law:

_̂W ji = −ΓiΩj zð ÞℯTPB̌i, ð51Þ

where Γi denotes a positive definite matrix with the sym-
metric property.

6. Stability Analysis of the LQR-Based Neural-
Fuzzy Control

In this section, the Lyapunov function is presented to analyze
the global stability of the proposed control scheme under the
effect of parametric uncertainties and external disturbances.
Consider the Lyapunov candidate function as follows:

V =
1

2
ℯ
TPℯ + 〠

p

i=1

~W
T

ji Γ
−1
i

~W ji

� �

, ð52Þ

with

~W ji = Ŵ ji − �W ji, ð53Þ

where ~W ji denotes the estimation error between the estimated

strength matrix and the ideal constant strength matrix.
Differentiating Equation (52) and employing Equations

(49) and (37), one can obtain

_V = −ℯT Q +KT
RK

� �

ℯ + 2ℯTPB̌i

× d̂i − �W
T
ji Ωj zð Þ − �ϱi zð Þ

� �

+ 2〠
p

i=1

~W
T

ji Γ
−1
i

_~W ji

� �

:

ð54Þ

Now utilizing Equation (53), the error difference between
the actual value and the desired value by the designed neural-
fuzzy network can be expressed as

~W jiΩj zð Þ = Ŵ jiΩj zð Þ − �W jiΩj zð Þ: ð55Þ

Moreover, as the firing strength matrix ð �W jiÞ is a con-

stant matrix, Equation (53) holds the following relation after
differentiation:

_~W ji =
_̂W ji: ð56Þ

Reconstituting Equation (54) using Equations (55) and
(56), one can obtain

_V = −ℯT Q +KT
RK

� �

ℯ + 2ℯTPB̌i

× d̂i − Ŵ jiΩj zð Þ + ~W jiΩj zð Þ − �ϱi zð Þ
� �

+ 2〠
p

i=1

~W
T

ji Γ
−1
i

_̂W ji

� �

,

ð57Þ

_V = −ℯT Q +KT
RK

� �

ℯ + 2〠
p

i=1

ℯ
TPB̌i

× d̂i − Ŵ jiΩj zð Þ + ~W jiΩj zð Þ − �ϱi zð Þ
� �

+ 2〠
p

i=1

~W
T

ji Γ
−1
i

_̂W ji

� �

:

ð58Þ

Now substituting Equations (50) and (51) into Equation
(58), one can obtain

_V = −ℯT Q +KT
RK

� �

ℯ + 2〠
p

i=1

ℯ
TPB̌i

× d̂i − Ŵ jiΩj zð Þ − �ϱi zð Þ
� �

≤ −ℯT Q +KT
RK

� �

ℯ

≤ 0:

ð59Þ

Invoking the above equation, it can be concluded that the
error dynamics of the coupled human-exoskeleton system is
asymptotically stable. Therefore, the proposed controller
carries out the asymptotic tracking with error ℯ⟶ 0 (as
t⟶∞) following the disturbance estimator (Equation
(50)) and firing strength adaptation law (Equation (51)). Fur-
thermore, the local stability of the proposed controller can be
analyzed using the pole placement theory, where the conver-
gence rate can be investigated by keeping the poles on the left
side of the s-plane [45].

7. Results and Discussion

In this section, the simulation results and analyses are pre-
sented to evaluate the effectiveness of the proposed control
strategy (RLQR-NF) for an exoskeleton device during pas-
sive gait rehabilitation measures. The block representation
for the proposed control strategy is schematically shown
in Figure 7. At first, the performance of the proposed con-
trol strategy is compared with a contrast control strategy
without parametric uncertainties and external disturbances.
In this work, the exponential reaching law-based sliding
mode (ERL-SM) control is used as a contrast control strat-
egy [48]. Thereafter, two cases are contemplated to demon-
strate the controller’s robustness: the first case, increasing
the coupled segment masses by 20% with a trigonometric
form of disturbances, and the second case, increasing the
coupled segment masses by 30% with a random form of
disturbances.

7.1. Simulation Results without Parametric Uncertainties and
External Disturbances. In this subsection, a comparative
analysis between the RLQR-NF and ERL-SM control strate-
gies is presented for desired gait tracking during passive gait
rehabilitation measures. In the absence of parametric uncer-
tainties and external disturbances, i.e., Δ = 0 and d = 0 in
Equation (25), the nominal mass values of lower limb seg-
ments ðmt = 8:25,mc = 3:85, andmhf = 1:5Þ are taken into
account for drawing the state of comparison. Using Equation
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(36), the optimal state gain matrix for the nominal mass
parameters ðK8:25,3:85,1:5Þ is calculated as below:

K8:25,3:85,1:5 =

448:63 −2:72 −0:57 17:84 −0:31 −0:127

7:65 12:40 2:49 3:20 20:27 0:82

8:72 −1:92 20:17 0:33 −2:56 6:40

0

B

B

@

1

C

C

A

:

ð60Þ

In the ERL-SM control strategy [48], the control law
parameters are used as c = diag ð50, 50, 50Þ, ε = 0:5 × I3, and
ke = I3. As shown in Figure 8, the healthy gait trajectory is
tracked by incorporating the kinematic and dynamic param-

eters into the proposed control (RLQR-NF) and ERL-SM
control strategy. A time period of 2 seconds is considered
to complete one gait cycle. The starting Cartesian position
(X, Y : 0.25m, -0.60m) of the desired gait trajectory is illus-
trated in black color. The actual trajectories in the Cartesian
coordinate frame are presented by the dashed blue line
(RLQR-NF) and the green line (ERL-SM).

Figures 9(a) and 9(b) depict the tracking error in both
directions, i.e., X- and Y-directions (ℯx and ℯy). The maxi-

mum absolute deviation in the X-direction ðjℯxjmaxÞ for the
ERL-SM and RLQR-NF control schemes is 0.013m and
0.008m, respectively. In the Y-direction, the respective devi-
ation ðjℯyjmax

Þ is observed to be 0.009m and 0.006m for the

ERL-SM and RLQR-NF control strategies.
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Figure 7: Schematic representation of the implemented proposed RLQR-NF controller.
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The tracking of desired joint angles with applied control
strategies is illustrated in Figures 10(a)–10(c). The angular
deviations (ℯθH , ℯθK , and ℯθA

) from desired joint trajectories

are shown in Figures 11(a)–11(c). Considering the hip joint,
it is observed that the maximum absolute deviation ðjℯθH jmax

Þ

for respective controllers is 0.78° (ERL-SM) and 0.51°

(RLQR-NF). In the knee joint, the deviation ðjℯθK jmax
Þ is

found to be 1.15° and 1.16° for the system with the ERL-SM
and RLQR-NF control strategies, respectively. For the ankle
joint, the respective deviations ðjℯθA jmax

Þ are estimated as

0.81° (ERL-SM) and 0.32° (RLQR-NF).
Figures 12(a)–12(c) demonstrate the generated control

signals (uH, uK, and uA) following the desired trajectory

through repetitive gait rehabilitation exercises. With the
ERL-SM control scheme, the peak values of the hip, knee,
and ankle signals are estimated as 32.98V, 19.88V, and
1.8V. On the other hand, with the RLQR-NF control
scheme, the respective values of control signals are found
to be 30.25V, 18.1V, and 1.25V. It is evident from the
results that the proposed control strategy (RLQR-NF) out-
performs the contrast control strategy (ERL-SM) to track
the desired gait trajectory, however, with a marginal differ-
ence. Therefore, to demonstrate the effectiveness of the pro-
posed control when dealing with PUEDs, variations in mass
parameters and the form of disturbances are considered
further.
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Figure 9: Position tracking error for ERL-SM and RLQR-NF control schemes with nominal mass values. (a) X-direction. (b) Y-direction.
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Figure 10: Joint angle tracking for ERL-SM and RLQR-NF control schemes with nominal mass values. (a) Hip joint. (b) Knee joint. (c) Ankle
joint.
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7.2. Simulation Results for Parametric Variations and
External Disturbances. In order to realize the robust-
ness of the proposed control strategy (RLQR-NF), the
root mean square error (RMSE) is computed and
compared with the ERL-SM control strategy for para-
metric uncertainties and external disturbances. More-
over, based on RMSE values, the performance index
(PI) is calculated to analyze the improvement of the

proposed control scheme over the contrast control
scheme.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
〠
N

a=1

ℯak k2

s

,

PI =
RMSEERL‐SM − RMSERLQR‐NF

RMSEERL‐SM

× 100%,

ð61Þ
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Figure 11: Joint tracking error for ERL-SM and RLQR-NF control schemes with nominal mass values. (a) Hip joint. (b) Knee joint.
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where ℯa : ℯθ represents the error between the desired
and actual joint angles, and N is the size of the error
vector. RMSEERL‐SM and RMSERLQR‐NF signify the root

mean square errors related to ERL-SM and RLQR-NF
control strategies.

Considering the first case of PUEDs (Case I), where the
system masses are increased by 20% ðmt = 9:90,mc = 4:62
, andmhf = 1:80Þ along with a trigonometric form of dis-
turbances ðD1 = ð6 sin ð4πtÞÞ,D2 = ð5 sin ð3πtÞÞ, andD3 =
ð3 sin ð2πtÞÞÞ, the joint angular errors (ℯθH , ℯθK , and ℯθA

)

for the applied control strategies are shown in
Figures 13(a)–13(c). For the hip joint, RMSEERL‐SM and
RMSERLQR‐NF are estimated as 0.578° and 0.283°, respec-

tively. The respective RMSE values for the knee joint are
found to be 0.672° and 0.42°. In ankle joint tracking, the

RMSE values for the control strategies are recorded as
0.321° and 0.224°.

Considering the second case of PUEDs (Case II), where

the system masses are increased by 30% ðmt = 10:73,mc =

5:00, andmhf = 1:95Þ along with a random form of distur-

bances ðD1 = ð5 × randomð1ÞÞ,D2 = ð3 × randomð1ÞÞ, and
D3 = ð2 × randomð1ÞÞ, the joint angular errors (ℯθH , ℯθK , and

ℯθA
) for the proposed and contrast control strategies are

shown in Figures 14(a)–14(c). For the hip joint, the values

of RMSEERL‐SM and RMSERLQR‐NF are found to be 0.613°

and 0.287°, respectively. The respective RMSE values related

to the knee joint tracking are obtained as 0.742° and 0.434°.

The following RMSE values for the ankle joint are found to

be 0.334° and 0.228°.
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Figure 13: Joint tracking error for ERL-SM and RLQR-NF control schemes with the first case of PUEDs. (a) Hip joint. (b) Knee joint. (c)
Ankle joint.
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Table 5 presents the performance index (PI) of the pro-
posed control over the contrast control. The proposed con-
trol is promising in desired gait tracking compared to the
contrast control, subjected to PUEDs. Moreover, as observed
from Table 5, the performance index (PI) is improved by
2.15%, 4.01%, and 1.52% in Case II as compared to Case I.
During rehabilitation exercises, this performance investiga-
tion allows the lower limb exoskeleton system to carry out
repetitive movements with greater accuracy under the pres-
ence of PUEDs.

The convergence of both control schemes is investigated
by evaluating the settling time, i.e., the time lapsed for the
error to drop within 2% of the final value. The settling time
for the error in the hip, knee, and ankle joints for every set
of mass values is presented in Table 6. The low values of
settling time indicate the faster convergence of the proposed
controller (RLQR-NF) over the contrast controller (ERL-SM)
before achieving the full stable state.

8. Conclusions

In this work, a robust LQR-based neural-fuzzy control has
been proposed to follow the natural gait trajectory using an
exoskeleton system during passive rehabilitation measures.
Primarily, a linearized state-space form of the nonlinear
human-exoskeleton has been established via the input-
output feedback linearization method. Employing the LQR

state gain matrix, robust ANFIS training datasets have been
formed with a variation of system parameters. The operating
range of the error vector and control responses have been
regarded as the training input and output vectors. The
ANFIS architectures have been trained offline to deal with
the effect of parametric uncertainties. Thereafter, the online
adaptation law of firing strength in ANFIS architectures has
been incorporated to deal with external disturbances. The
asymptotic stability of the coupled dynamics while applying
the proposed control has been ensured using the Lyapunov
theory. Finally, the effectiveness of the proposed controller
has been investigated by comparing it to the exponential
reaching law-based sliding mode control. The robustness
analysis has been carried out by varying mass parameters
and inducing different forms of external disturbances. The
simulation results have shown the potential of the proposed
robust tracking control for passive gait rehabilitation using
an exoskeleton system. In the future, the effect of human
involvement will be considered to design an “assist-as-
needed” control strategy during active rehabilitation.

Appendix

The elements of the state-weight factor matrices ðA,BÞ can
be evaluated using the following derived formulations.

For the A matrix,

α41 = −12l1l2l3g 2m2
2 + 4m1m2 + 3m1m3 + 2m2m3

	 


,

~α41 = 2l2l3 12l21m
2
2 + 12l21m2m3 + 16l21m1m2 + 12l21m1m3

	

− 48l2l3m2m3 − 36l2l3m
2
3Þ,

α42 = 72l1l2l3g m2
2 +m2

3 + 2m2m3

	 


,

~α42 = ~α41,

α43 = −18gl1m2m3,

~α43 =
~α41
2l2l3

,

α51 = 12g 6l1m2 + 3l1m3 + 4l2m2 + 3l2m3ð Þ

� l1m2 + l1m3 + l2m3 +
l1m1

2
+
l2m2

2
+
l3m3

2

� �

,

Table 5: Comparative performance analysis of the proposed control over the contrast control.

Joint name RMSE (ERL-SM) (deg) RMSE (RLQR-NF) (deg) PI (%)

Case I: with a 20% increment in mass parameters and a trigonometric form of external disturbances mt = 9:90,mc = 4:62, andmhf = 1:80ð Þ
D1 = 6 × sin 4πtð Þð Þ,D2 = 5 × sin 3πtð Þð Þ, andD3 = 3 × sin 2πtð Þð Þð Þ

Hip 0.578 0.283 51.04

Knee 0.672 0.420 37.50

Ankle 0.321 0.224 30.21

Case II: with a 30% increment in mass parameters and a random form of external disturbances mt = 10:73,mc = 5:00, andmhf = 1:95ð Þ
D1 = 6 × random 4ð Þð Þ,D2 = 5 × random 3ð Þð Þ, andD3 = 3ð × random 2ð Þð Þ

Hip 0.613 0.287 53.19

Knee 0.742 0.434 41.51

Ankle 0.334 0.228 31.73

Table 6: Settling time of ERL-SM and RLQR-NF control schemes
for convergence analysis.

Control
scheme

Lower
limb joint

Settling time (sec)
Nominal

system mass
Case I of
PUEDs

Case II of
PUEDs

ERL-SM

Hip 1.971 1.986 1.993

Knee 1.962 1.974 1.988

Ankle 1.927 1.943 1.969

RLQR-NF

Hip 1.951 1.967 1.991

Knee 1.946 1.959 1.987

Ankle 1.914 1.933 1.958
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~α51 = ~α51′′ = ~α52′ = ~α52′′ = ~α53 = ~α53′′ = ~α63 = ~α52 = ~α53′

= ~α63′′ =
~α41
2l3

,

α51′ = 6g l2m2 + 2l2m3 + l3m3ð Þ

� 4l21m1 + 12l21m2 + 3l21m3 + 4l22m2 + 3l22m3 + 12l1l2m2

	

+ 6l1l2m3 − 12l2l3m3Þ,

~α51′ =
l2~α41
2l3

,

α51′′ = 6gm3 6l21l2m1 + 3l22l1m2 + 9l21l2m2 + 4l21l3m1

	

+ 12l21l3m2 + 3l21l3m3 − 12l23l2m3 − 18l22l3m3

+ 6l1l2l3m2 + 3l1l2l3m3Þ,

α52 = 6g l2m2 + 2l2m3 + l3m3ð Þ

� 6l1m2 + 3l1m3 + 4l2m2 + 3l2m3ð Þ,

α52′ = 6g l2m2 + 2l2m3 + l3m3ð Þ

� 4l21m1 + 12l21m2 + 3l21m3 + 4l22m2 + 3l22m3

	

+ 12l1l2m2 + 6l1l2m3 − 12l2l3m3Þ,

α52′′ = α51′′ = α53 = α63,

α53′ = 6gl3m3 6l1m2 + 3l1m3 + 4l2m2 + 3l2m3ð Þ,

α53′′ = 6gl3m3 4l21m1 + 12l21m2 + 3l21m3 + 4l22m2 + 3l22m3

	

+ 12l1l2m2 + 6l1l2m3 − 12l2l3m3Þ,

α61 = 6g l2m2 + 2l2m3 + l3m3ð Þ 6l21l2m1 + 3l22l1m2 + 9l21l2m2

	

+ 4l21l3m1 + 12l21l3m2 + 3l21l3m3 − 12l23l2m3 − 18l22l3m3

+ 6l1l2l3m2 + 3l1l2l3m3Þ,

~α61 = ~α61′ = ~α62 = ~α62′ = ~α63′ =
l2~α41
2

,

α61′ = 6g 3l21l
2
2m

2
2 + 12l21l

2
2m2m3 + 4l21l

2
2m1m2 + 12l21l

2
2m1m3

	

+ 18l21l2l3m2m3 + 12l21l2l3m1m3 + 12l21l
2
3m2m3

+ 3l21l
2
3m

2
3 + 4l21l

2
3m1m3 − 12l32l3m2m3 − 36l32l3m

2
3

− 36l22l
2
3m

2
3 − 12l33l2m

2
3Þ,

α61′′ = 36gl1 l2m2 + 2l3m2 + l3m3ð Þ

� l1m2 + l1m3 + l2m3 +
l1m1

2
+
l2m2

2
+
l3m3

2

� �

,

~α61′′ = ~α62′′ =
~α41
2

,

α62 = α61,

α62′ = α61′ = α63′ ,

α62′′ = 36gl1 l2m2 + 2l3m2 + l3m3ð Þ l2m3 +
l2m2

2
+
l3m3

2

� �

,

α63′′ = 18gl1m3 l2m2 + 2l3m2 + l3m3ð Þ: ðA:1Þ

For the B matrix,

β41 = 96l2l3m2 + 72l2l3m3,

~β41 = ~α41,

β42 = − 144l1l3m2 + 72l1l3m3 + 96l2l3m2 + 72l2l3m3ð Þ,

~β42 =
~β43 =

~β41,

β43 = 72l1l2m2 + 144l1l3m2 + 72l1l3m3,

β51 = − 72l1m2 + 36l1m3 + 48l2m2 + 36l2m3ð Þ,

~β51 =
~β41

2l3
,

β52 = 48l21m1 + 144l21m2 + 36l21m3 + 48l22m2 + 36l22m3

+ 144l1l2m2 + 72l1l2m3 − 144l2l3m3,

~β52 =
l2
~β41

2l3
,

β53 = − 72l21l2m1 + 36l22l1m2 + 108l21l2m2 + 48l21l3m1

	

+ 144l21l3m2 + 36l21l3m3 − 144l23l2m3 − 216l22l3m3

+ 72l1l2l3m2 + 36l1l2l3m3Þ,

~β53 =
l2
~β41

2
,

β61 = 36l1 l2m2 + 2l3m2 + l3m3ð Þ,

~β61 =
~β41

2
,

β62 = β53,

~β62 =
~β53,

β63 = 36l21l
2
2m

2
2 + 144l21l

2
2m2m3 + 48l21l

2
2m1m2 + 144l21l

2
2m1m3

+ 216l21l2l3m2m3 + 144l21l2l3m1m3 + 144l21l
2
3m2m3

+ 36l21l
2
3m

2
3 + 48l21l

2
3m1m3 − 144l32l3m2m3 − 432l32l3m

2
3

− 432l22l
2
3m

2
3 − 144l33l2m

2
3,

~β63 =
l2l3m3

~β41

2
: ðA:2Þ
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