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Superconducting quantum systems are promising candidates for quantum information processing due to
their scalability and design flexibility. However, the existence of defects, fluctuations, and inaccuracies is
unavoidable for practical superconducting quantum circuits. In this paper, a sampling-based learning
control (SLC) method is used to guide the design of control fields for manipulating superconducting
quantum systems. Numerical results for one-qubit systems and coupled two-qubit systems show that the
‘‘smart’’ fields learned using the SLC method can achieve robust manipulation of superconducting qubits,
even in the presence of large fluctuations and inaccuracies.

S
uperconducting quantum circuits based on Josephson junctions are macroscopic circuits, but they can
behave quantum mechanically, like artificial atoms, allowing the observation of quantum entanglement and
quantum coherence on a macroscopic scale1–7. These artificial atoms can be used to test the laws of quantum

mechanics on macroscopic systems and also offer a promising way to implement quantum information tech-
nology. Superconducting qubits have been widely investigated theoretically and implemented experimentally in
the last fifteen years due to their advantages, such as scalability, design flexibility and tunability, for solid-state
quantum computation and quantum simulations1–18.

In practical applications, the existence of noise (including extrinsic and intrinsic), inaccuracies (e.g., inaccurate
operation in the coupling between qubits) and fluctuations (e.g., fluctuations in magnetic fields and electric fields)
in superconducting quantum circuits is unavoidable19–25. For simplicity, in this paper we use fluctuations to
represent noise, inaccuracies, and fluctuations. These fluctuations degrade the performance of robustness and
reliability in superconducting quantum circuits. Hence, it is highly desirable, for the development of practical
quantum technology, to design control fields that are robust against fluctuations26–32.

Robustness has been recognized as one of the key properties for a reliable quantum information processor.
Several methods have been developed for enhancing the robustness of quantum systems33,34. One important
paradigm is feedback control, where the signal obtained from the system is fed back to adjust input control fields
aiming at achieving improved robustness as well as other measures of system performance (e.g., stability)35. A
typical example of the feedback paradigm is quantum error correction, where possible errors are corrected based
on detection outcomes36. Usually, feedback control is difficult to implement in practical quantum systems due to
the fast time scale of quantum systems and measurement backaction in the quantum domain. A more feasible
paradigm is open-loop control for improving robustness of quantum systems where no feedback signal is
required. Dynamical decoupling37,38 and optimal control methods32,39–43 can be used to design robust control
fields for manipulating quantum states or quantum gates. In this paper, we develop a ‘‘smart’’ open-loop control
method (i.e., sampling-based learning control) to guide the design of robust control fields for superconducting
quantum systems. The sampling-based learning control (SLC) method includes two steps of ‘‘training’’ and
‘‘testing’’44. In the training step, we obtain some artificial samples by sampling the fluctuation parameters and
construct an augmented system using these samples. Then we employ a gradient-flow-based learning algorithm
to learn optimal fields for the augmented system. The robustness of the control fields is tested and evaluated using
additional samples generated by sampling fluctuation parameters in the testing step. Here we apply the SLC
method to several examples of superconducting qubits, including single-charge qubits, two coupled charge qubits
and two coupled phase qubits with fluctuations. Our results show that the SLC method can efficiently learn
‘‘smart’’ fields that are insensitive to even 40% , 50% fluctuations. The superconducting quantum circuits with
the ‘‘smart’’ fields can run more reliably.
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Results
Single-charge qubits with fluctuations. In superconducting
quantum circuits, the Josephson coupling energy EJ and the
charging energy EC are two significant quantities. Their ratio
determines whether the phase or the charge dominates the
behaviour of the qubit, which can form flux qubits or charge
qubits1. The simplest charge qubit is based on a small
superconducting island (called a Cooper-pair box) coupled to the
outside world through a weak Josephson junction and driven by a
voltage source through a gate capacitance within the charge regime
(i.e., EC?EJ )1. The Hamiltonian of the Cooper-pair box can be
described as1

H~EC n{ng
� �2

{EJ cos w ð1Þ

where the phase drop w across the Josephson junction is conjugate to
the number n of extra Cooper pairs in the box, ng 5 CgVg/2e is
controlled by the gate voltage Vg (Cg is the gate capacitance and 2e
is the charge of each Cooper pair). In most experiments, the Josephson
junction in the charge qubit is replaced by a dc superconducting
quantum interference device (SQUID) to make it easier to control
the qubit. In a voltage range near a degeneracy point, the system
can be approximated as a qubit with the following Hamiltonian

H~f Vg

� �
sz{g Wð Þsx ð2Þ

where f(Vg) is related to the charging energy EC and this term can be
adjusted through external parameters, such as the voltage Vg, and
g(W) corresponds to a controllable term including different control
parameters, such as the flux W in the SQUID.

For superconducting qubits in laboratories, the existence of fluc-
tuations is unavoidable (e.g., fluctuations in the Josephson coupling
energy and the charging energy, or inaccuracies in the magnetic flux).
We assume that possible fluctuations exist in both f(Vg) and g(W).
Suppose that the factors f(Vg) and g(W) can be controlled by adjusting
external parameters. Since EJ could be around ten GHz and EC could
be around one hundred GHz (e.g., the experiment in8 used EJ1 5

13.4 GHz, EJ2 5 9.1 GHz, EC1 5 117 GHz and EC2 5 152 GHz), we
assume f(Vg)/�hg[0, 40] GHz and g(W)/�hg[0, 9.1] GHz. We could
have used 10, instead of 9.1, but we chose 9.1 simply because it was
the number used in one experiment. The practical control terms
are �f Vg

� �
~hzf Vg

� �
and �g Wð Þ~hxg Wð Þ(where the fluctuation

parameters hzg[1 2 Hz, 1 1 Hz] and hxg[1 2 Hx, 1 1 Hx]) due
to possible multiplicative fluctuations. Here the bounds of fluctua-
tions Hz and Hx characterize the maximum ranges of fluctuations in
hz and hx, respectively. The fluctuations can originate from the fluc-
tuations in the magnetic flux W, the voltage Vg, the Josephson coup-
ling energy EJ and the charging energy EC.

As an example, we assume that the initial state is jy0æ 5 jgæ, and the

target state is either jytargetæ 5 jeæ or ytarget

��� E
~

1ffiffiffi
2
p gj iz ej ið Þ. Let

the operation time be T 5 1 ns. Now we employ the sampling-based
learning control method (see the methods Section) to learn an
optimal control field for manipulating the charge qubit system from
the initial state to a target state. The time interval t g [0, 1] ns is
equally divided into 100 smaller time intervals. Without loss of gen-
erality, we assume hx and hz to have uniform distributions and have
the same bound of fluctuations (i.e.,Hx 5Hz). An augmented system
is constructed by selecting Nx 5 5 values for hx and Nz 5 5 values
for hz. The initial control fields are f(Vg)/�h5 sin t1 cos t1 20 GHz
and g(W)/�h5 sin t1 cos t1 5 GHz. The learning algorithm
runs for about 7000 iterations for jytargetæ5jeæ (4000 iterations for

ytarget

��� E
~

1ffiffiffi
2
p gj iz ej ið Þ) before it converges to optimal control

fields. After the optimal control fields are learned for the augmented
system, they are applied to 5000 samples generated by stochastically
selecting the values of the fluctuation parameters for evaluating
the performance. The fidelity between the final state jy(T)æ and
the target state jytargetæ is defined as F(jy(T)æ, jytargetæ)5
jÆy(T)jytargetæj50. The relationship between the average fidelity and
the bounds of the fluctuations is shown in Fig. 1. Although the
performance decreases when increasing the bounds on the fluctua-
tions, the ‘‘smart’’ fields can still drive the system from the initial state
jy0æ5jgæ to a given target state with high fidelity (the average
fidelity is �F~0:9909 for jytargetæ5jeæ, and �F~0:9952 for

ytarget

��� E
~

1ffiffiffi
2
p gj iz ej ið Þ) even though the bound on the fluctuations

is 25% (i.e., 50% fluctuations relative to the nominal value).
We also test the relationship between the number of values Nf for

hx and hz (Nx 5 Nz 5 Nf) and the average fidelity for bounds on the
fluctuationsHz 5Hx 5 15%. The performance is shown in Fig. 2. It is
clear that the performance is excellent for Nf 5 5 or 7. Although it is
possible to improve the performance through using more samples,
too many samples will cost more computation resources and spend

Figure 1 | Average fidelity versus the bounds of fluctuations Hz and Hx for charge qubits. The fluctuation parameters hz and hx have uniform

distributions in [1 2 H, 1 1 H] (i.e., we assume Hz 5 Hx 5 H). Here we consider | y0æ 5 | gæ, and | ytargetæ 5 | eæ (Case 1) or ytarget

��� E
~

1ffiffiffi
2
p gj iz ej ið Þ

(Case 2). Every average fidelity is calculated using 5000 tested samples.
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too much time for learning a set of optimal fields. For example, the
laptop Thinkpad T440p, with a CPU of 2.5 GHz, needs about 13
minutes to find the optimal fields for Nf 5 5; while this laptop
requires about 42 minutes for Nf 5 11. When increasing the number
of fluctuation parameters, the time consuming quickly increases with
the increasing of Nf. Hence, we choose Nf 5 5 for each fluctuation
parameter in all of the following numerical results.

Two coupled qubits with fluctuations. We first consider the
coupled qubit circuit in51 where a symmetric dc SQUID with two
sufficiently large junctions is used to couple two charge qubits (see
Fig. 3). Each qubit is realized by a Cooper-pair box with Josephson
coupling energy EJj and capacitance CJj (j 5 1, 2). Each Cooper-pair
box is biased by an applied voltage Vj through the gate capacitance Cj

(j 5 1, 2). We apply a fluxWs inside the large-junction dc SQUID loop
with two junctions of large EJ0. The Hamiltonian of the coupled
charge qubits can be described as

H~f V1ð Þs 1ð Þ
z zf V2ð Þs 2ð Þ

2 {g W1ð Þs 1ð Þ
x

{g W2ð Þs 2ð Þ
x {x tð Þs 1ð Þ

x s 2ð Þ
x :

ð3Þ

Due to possible fluctuations, we assume that the Hamiltonian for
practical systems is

H~h1f V1ð Þs 1ð Þ
z zh2f V2ð Þs 2ð Þ

z {h3g W1ð Þs 1ð Þ
x

{h4g W2ð Þs 2ð Þ
x {h5x tð Þs 1ð Þ

x s 2ð Þ
x

ð4Þ

where the fluctuation parameters hj g [1 2Hj, 1 1Hj] (j 5 1, 2, 3, 4,
5).

We let g(W1)/�h5g(W2)/�h5 9.1 GHz, the control terms f(V1)/
�hg[0, 40] GHz, f(V2)/�hg[0, 40] GHz, jx(t)/�hj# 0.5 GHz and
h5(t); 1. The operation time T5 2 ns. We assume that the fluc-
tuation parameters hj(j5 1, 2, 3, 4) may be time varying. Hence, h3

and h4 may correspond to time-varying additive fluctuations. The
fluctuations in h1 and h2 may originate from the time-varying errors
in the driving fields. As an illustrative example, we let hj5 1 2 qj cos t,
where each qj has a uniform distribution in the interval [2 Hj,
Hj]. For simplification, we assume h15h2, h35h4 and
H15H25H35H45H. We now consider a controlled-phase-shift
gate operation on an initial state jy0æ5a1jg, gæ1a2jg, eæ1a3je,
gæ1a4je, eæ; i.e., the target state is jytargetæ5a1jg, gæ1a2jg, eæ1a3je,
gæ2a4je, eæ. In particular, we let a15 0.7, a25 0.1, a35 0.7i and a45
0.1i. The time interval tg[0, 2] ns is equally divided into 200 smaller
time intervals. The control fields are initialized as: f(V1)/�h5f(V2)/�h5

sin t1 cos t1 5 GHz, x(t)/�h5 0.25 sin t GHz. The learning algorithm
runs for about 5000 iterations before the optimal control fields are
found. Then the learned fields are applied to 5000 samples that are
generated by selecting the values of the fluctuation parameters
according to a uniform distribution. The performance is shown in
Fig. 4. Although the performance decreases when increasing the
bounds on the fluctuations, the ‘‘smart’’ fields can still drive the
system from the initial state jy0æ5 0.7jg, gæ1 0.1jg, eæ1 0.7ije, gæ1
0.1ije, eæ to the target state jytargetæ5 0.7jg, gæ1 0.1jg, eæ1 0.7ije, gæ2
0.1ije, eæ with high fidelity (average fidelity 0.9941) even with 40%
fluctuations.

In the two numerical examples of single-charge qubits and two
coupled charge qubits, we use some ideal parameter values to show
the effectiveness and excellent performance of the proposed
method. It is straightforward to extend our method to other sys-
tems. Indeed, our proposed method is very flexible in the selection
of the operation time T and the target state, and is also robust
against fluctuations with different distributions. Here, we consider
another example based on the two coupled phase qubits in Ref. 45.
Each phase qubit is a nonlinear resonator built from an Al/AlOx/Al
Josephson junction, and two qubits are coupled via a modular
four-terminal device (for detail, see Fig. 1 in45). This four-terminal
device is constructed using two nontunable inductors, a fixed
mutual inductance and a tunable inductance. The equivalent
Hamiltonian can be described as

H~
�hv1 tð Þ

2
s 1ð Þ

z z
�hv2 tð Þ

2
s 2ð Þ

z z
�hv3 tð Þ

2
s 1ð Þ

x z
�hv4 tð Þ

2
s 2ð Þ

x

z
�hVc tð Þ

2
s 1ð Þ

x s 2ð Þ
x z

1

6
ffiffiffiffiffiffiffiffiffiffiffi
N1N2
p s 1ð Þ

z s 2ð Þ
z

� � ð5Þ

where N1 and N2 are the number of levels in the potentials of qubits 1
and 246. The typical values for N1 and N2 are N1 5 N2 5 5. Due to
possible fluctuations, we assume that the practical Hamiltonian has
the following form

H~
�hh1v2 tð Þ

2
s 1ð Þ

z z
�hh2v2 tð Þ

2
s 2ð Þ

z z
�hv3 tð Þ

2
s 1ð Þ

x

z
�hv4 tð Þ

2
s 2ð Þ

x z
�hh3Vc tð Þ

2
s 1ð Þ

x s 2ð Þ
x z

1
30

s 1ð Þ
z s 2ð Þ

z

� � ð6Þ

with hj g [1 2 H, 1 1 H] (j 5 1, 2, 3).
We assume that the frequencies v1(t), v2(t) g [0, 5] GHz can be

adjusted by changing the bias currents of two phase qubits, and Vc(t)

Figure 2 | Average fidelity versus the number Nf of values for hx and hz (Nf 5 Nx 5 Nz). Here, Hz 5 Hx 5 15% (i.e., 30% fluctuations), | y0æ 5 | gæ and

ytarget

��� E
~

1ffiffiffi
2
p gj iz ej ið Þ. Every average fidelity is calculated using 5000 samples.
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g [2100, 100] MHz can be adjusted by changing the bias current in
the coupler. Let v3 5 v4 5 2 GHz, the operation time T 5 50 ns,
and each fluctuation parameter hj (j 5 1, 2, 3) in (6) has a truncated
Gaussian distribution in [1 2H, 1 1H]. Assume that the probability
density function of the truncated Gaussian distribution is

p x,m,s,l,rð Þ~w
x{m

s

� 	
s W

r{m

s

� 	
{W

l{m

s

� �
 �� {1

, where m

5 0, s 5 H/3, l 5 2 H, r 5 H, w xð Þ~ 2pð Þ{1=2exp {
1
2

x2

� �
is

the probability density function of the standard normal distribution,
and W(x) is its cumulative distribution function.

We now consider a CNOT operation. In particular, we let the

initial state be y0j i~
1ffiffiffi
2
p g,gj iz e,gj ið Þ and the target state be a

maximum entangled state ysarget

��� E
~

1ffiffiffi
2
p g,gj iz e,ej ið Þ. In the train-

ing step, the fluctuations are uniformly sampled. However, in the
testing step the samples are selected by sampling the fluctuation
parameters with a truncated Gaussian distribution. For simplicity,
we let h1 5 h2. The initial vaules are v1 5 v2 5 sin t 1 cos t 1

0.5 GHz and Vc(t) 5 50 1 50 sin t MHz. Other parameter settings
are the same as those in the example of coupled charge qubits. The
performance is shown in Fig. 5 and a set of ‘‘smart’’ fields is shown in
Fig. 6 for H 5 25% (i.e., 50% fluctuations). The ‘‘smart’’ fields can
drive the system from jy0æ to jytargetæ with high fidelity (average
fidelity 0.9970) even with 50% fluctuations.

Discussion
In numerical examples, a small number of samples for each possible
fluctuation parameter is used to construct an augmented system. It is
possible to achieve improved performance by using more samples.

However, an increase in the number of samples in the training step
will consume more computation resources. The tradeoff between
resource consumption and performance that can be achieved should
be investigated for specific tasks. In the SLC method, we employ a
general gradient-flow-based algorithm to learn ‘‘smart’’ fields and the
algorithm is usually much more efficient than other stochastic search
algorithms (e.g., genetic algorithms) for control design of quantum
systems39. The ‘‘smart’’ fields are ‘‘optimal’’ to the control landscapes
of different samples since they are found by simultaneously optim-
izing the fields for these samples. It may be possible to use a similar
theory to the quantum control landscape theory developed in39 to
analyze these optimal properties. As examples, we only consider that
each possible fluctuation parameter has several specific distributions
in the testing step. However, the proposed method also works well for
other time-varying or time-invariant distributions. Numerical
results show that, in the training step, sampling fluctuation para-
meters according to simple uniform distributions can achieve excel-
lent performance for these cases where the fluctuation parameters
have other distributions. In our numerical examples, we only con-
sider three classes of superconducting quantum systems with several
specific parameter settings. Our method is also applicable to other
superconducting qubits, such as the ‘‘Xmon’’ and ‘‘gmon’’ qubits47–49,
since its performance is insensitive to the parameter settings and
possible fluctuations.

In conclusion, we use a sampling-based learning control method
to design robust fields that are insensitive to possible fluctuations.
Numerical results show that the method can efficiently find
‘‘smart’’ fields for superconducting qubits even in the presence of
40% , 50% fluctuations in different parameters. The proposed
method has potential for robust quantum information processing
and can contribute to the design of more reliable quantum
devices.

Figure 3 | A coupled-qubit circuit with a biased-current source of impedance Z(v)51. Two charge qubits are coupled by the dc SQUID with two

junctions with large EJ0.

Figure 4 | Average fidelity versus the bound on the fluctuations H for two coupled charge qubits with a biased-current source. The fluctuation

parameters hj 5 1 2 qj cos t (j 5 1, 2, 3, 4), where each qj has a uniform distribution in [2H,H]. Here we assume h1 5 h2 and h3 5 h4. The initial state | y0æ
5 0.7 | g, gæ 1 0.1 | g, eæ 1 0.7i | e, gæ 1 0.1i | e, eæ and the target state | ytargetæ 5 0.7 | g, gæ 1 0.1 | g, eæ 1 0.7i | e, gæ 2 0.1i | e, eæ. Each average fidelity is calculated

using 5000 samples.
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Methods
Sampling-based learning control (SLC). The SLC method was first proposed for the
control design of inhomogeneous quantum ensembles44. In this method, several
artificial samples, generated through sampling possible inhomogeneous parameters,
are used to learn optimal control fields and then these fields are applied to additional
samples to test their performance. In this paper, we develop an SLC method for
guiding the design of robust control fields for superconducting quantum systems with
fluctuations.

Consider a quantum system with Hamiltonian H(u, h, t) and the evolution of its
state jy(t)æ is described by the following Schr̈odinger equation:

i�h _y tð Þ
�� E

~H u,h,tð Þ y tð Þj i ð7Þ

where u represents the control field and h characterizes possible fluctuations. In the
SLC method, we first generate N artificial samples by selecting different values of h

(e.g., the N samples correspond to h 1ð Þ,h 2ð Þ, � � � ,h Nð Þ). Using these samples, an aug-
mented system is constructed as follows

i�h

_yh 1ð Þ tð Þ
�� E

_yh 2ð Þ tð Þ
�� E

..

.

_yh Nð Þ tð Þ
�� E

0
BBBBBBB@

1
CCCCCCCA

~

H u,h 1ð Þ,t
� 	

yh 1ð Þ tð Þ
�� �

H u,h 2ð Þ,t
� 	

yh 2ð Þ tð Þ
�� �

..

.

H u,h Nð Þ,t
� 	

yh Nð Þ tð Þ
�� �

0
BBBBBBB@

1
CCCCCCCA
: ð8Þ

The performance function J(u) for the augmented system is defined as

J uð Þ : ~
1
N

XN

n~1

Jh nð Þ uð Þ~ 1
N

XN

n~1

yh nð Þ Tð Þ
��ytarget

D E��� ���2 ð9Þ

where jytargetæ is the target state and yh nð Þ Tð Þ
�� �

is the final state for one sample
(corresponding to h(n)) at the time T. The task in the training step is to find an optimal
control field u* that maximizes the performance function defined in Eq. (9).

In the testing step, we apply the optimized field u* to additional samples generated
by randomly sampling the fluctuation parameters and evaluate the performance in
terms of the fidelity. If the average fidelity for the tested samples are good enough, we
accept the designed field and complete the design process. Otherwise, we should go
back to the training step and learn another optimized control field (e.g., restarting the
training step with a new initial field or a new set of samples).

Sampling. In order to construct an augmented system, we need to generate N
artificial samples. We assume that there are two fluctuation parameters hx and hz. We
may choose some equally-spaced samples in the hx – hz space. For example, the
intervals [1 2 Hx, 1 1 Hx] and [1 2 Hz, 1 1 Hz] are divided into Nx 1 1 and Nz 1 1
subintervals, respectively, where Nx and Nz are usually positive odd numbers. Then,
the number of samples N 5 NxNz, where hx

m and hz
n can be chosen from the

combination of (hx
m , hz

n) as follows

hx
m[ hx

m~1{Hxz
2m{1ð ÞHx

Nx
,m~1,2, . . . ,Nx

n o
,

hz
n[ hz

n~1{Hzz
2n{1ð ÞHz

Nz
,n~1,2, . . . ,Nz

n o
:

8><
>: ð10Þ

Gradient-flow-based learning algorithm. In order to find an optimal control field u*
for the augmented system (8), a good choice is to follow the direction of the gradient
of J(u) as an ascent direction. Assume that the performance function is J(u0) with an
initial field u0. We can apply the gradient flow method to approximate an optimal
control field u*. This can be achieved by iterative learning using the following
updating (for details, see, e.g.,44)

ukz1 tð Þ~uk tð Þzgk+J ukð Þ, ð11Þ

where gk is the updating stepsize for the kth iteration and =J(u) denotes the gradient
of J(u) with respect to the control u. The calculation of =J(u) is described in44,52. For
practical implementations, we usually divide the time interval [0, T] equally into a
number of smaller time intervals Dt and assume that the control fields are constant
within each time interval Dt. In the algorithm, we assume u(t) g [V2, V1]. If uk11 #

V2, we let uk11 5 V2. If uk11 $ V1, we let uk11 5 V1. In numerical computations, if
the change of the performance function for 100 consecutive training steps is less than
a small threshold E (i.e., J ukz100ð Þ{J ukð Þj jvE for some k), then the algorithm con-
verges and we end the training step. In this paper, we let E~10{4 for all numerical
results.
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