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Abstract

We provide a method for deriving robust solutions to stochastic optimization prob-

lems with general objective, based on mean-covariance information about the distributions

underlying the uncertain vector of returns. We prove that for a general class of objec-

tive functions, the robust solutions amount to solving a certain deterministic parametric

quadratic program. Our approach relies on two key results. First, we prove a general pro-

jection property for sets of distributions with given means and covariances, which reduces

the problem to a deterministic bi-criteria optimization problem. Second, we adapt a result

from Geoffrion [21] to reduce this problem to solving a parametric quadratic program.

In particular we provide closed form solutions for special quantile-based criteria, such as

probability and option-like objectives, value at risk and conditional value at risk. We inves-

tigate applications of our results in financial portfolio management, generalized regression

and multi-product pricing. Finally, we investigate an extension of these results for the case

of non-negative returns.
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1 Introduction

In this paper we provide a general approach for deriving robust solutions for stochastic

optimization programs, based on mean-covariance information about the distributions un-

derlying the return vector.

Consider a decision maker interested in maximizing his expected utility u of a linear

reward function, subject to a given set of convex constraints P on the vector of decision vari-

ables x. The decision maker solves the following general stochastic mathematical program

without recourse:

(P ) maximize E[u(x′R)]

subject to x ∈ P,

Random variables and random vectors will be denoted in bold, to be distinguished from

deterministic quantities. Throughout the paper, we use max and min in the wide sense of

sup and inf , to account for the cases when the optimum is not achieved.

When the distribution of the uncertain return vector R is exactly known, Problem (P)

is a general one stage stochastic program. One obvious case when the solution of Problem

(P) does not depend on the actual distribution of R, except its mean and covariance, is for

quadratic utilities u(r) = ar2 + br + c, in which case it amounts to: max
x∈P

ax′(Σ + µµ′)x+

bx′µ+ c. However, this is only the case for quadratic (or linear) utility functions, explaining

in part why these classes are particularly favored in economics and financial models.

In many applications of stochastic programming, there is considerable uncertainty re-

garding the distribution of R. In many instances, only partial information about this

distribution is available, or reliable, such as means, variances and covariances. A common

approach in the literature is to assume that the underlying distribution is multivariate nor-

mal, and solve the corresponding stochastic program. However, this assumption is hard to

justify unless the randomness comes from a central limit theorem type of process.

Alternatively, the robust approach consists in basing the decision strictly on the available

information, and maximizing the worst case expected utility over all possible distributions

with the given properties. Even if the underlying distribution is actually known, the robust

approach can be used to provide tractable approximations for the solution of Problem

(P), which is typically a very difficult problem. The robust problem is the focus of our
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investigation, and can be formulated as follows:

(G) max
x∈P

min
R∼(µ,Σ)

E[u(x′R)], (1)

where throughout the paper we denote R ∼ (µ,Σ) to represent the fact that the random

vector R has mean µ and covariance Σ. One can think about Problem (G) as a strategic

game, where the first player chooses a decision x while nature picks the worst possible

distribution R (see for example [4] and references therein).

As an example, consider a portfolio manager interested in choosing a portfolio x among

n assets with returns R = (R1, . . . ,Rn) in order to maximize his expected utility, or

payoff, subject to a set of portfolio constraints, such as P = {x ∈ [0, 1]n | x′1n = 1}.
In practice, one seldom has full information about the joint distribution of asset returns,

which are typically assumed multi-variate normal and interpolated from very few data points

(hence are not robust). Very often the only reliable data consists of first and second order

moments. For example, RiskMetrics (www.riskmetrics.com) provides very large data set of

asset covariances, but no additional distributional information. In this case, if the manager

has access only to the mean and covariance matrix of the asset returns, and not to the entire

distribution, he may be interested in the best and worst case return of a given portfolio,

and in the portfolios that would maximize such a worst case return. There is a considerable

amount of literature on robust portfolio optimization (see for example [34, 25, 46, 41, 23]).

We contribute to this stream by studying the porfolio example in detail in Section 4.1.

While the techniques developed in this paper are quite general, we also explore applications

in statistics and pricing.

The robust approach adopted in this paper is very much in the spirit of the max-min

expected utility framework axiomatized by Gilboa and Schmeidler [24]. The concept of

robustness, or incomplete knowledge about distributions, is captured in various ways in the

stochastic optimization literature, the most common ones being uncertainty sets [6] and

moments of the underlying distribution. Our model falls in the second category, and is

related in that sense to Dupačová [18], Gaivoronski [20], Shapiro and Kleywegt [43], Birge

and Maddox [10] etc. While our model has no recourse, there is remarkable literature on

max-min stochastic programs with recourse (see [17, 16, 27, 28, 11] and references therein).

An alternative to the robust approach is provided by Bayesian analysis, whereby a prior

distribution is defined and updated based on additional knowledge. A hybrid approach that
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is widely used in statistical decision analysis is Bayesian robustness, see for example Berger

[7] and references therein.

Contributions and Structure. There are two main steps to our solution to Problem

(G). First, we transform the inner optimization into an equivalent optimization problem

over univariate distributions with a given mean and variance. This reduces the original

problem to a deterministic bi-criteria optimization problem. Second, we reduce this bi-

criteria problem to solving a parametric quadratic problem.

For a given vector x, we refer to the problem

(I) U(x) = min
R∼(µ,Σ)

E[u(x′R)] (2)

as the inner optimization problem and to the function U(x) as the robust objective (or cri-

terion). In Section 2, we show that for a given vector x, we can find sharp upper and lower

bounds on the robust objective U(x) by solving a simple one-dimensional optimization prob-

lem. This type of sensitivity analysis is of interest in many decision analysis applications,

see for example Smith [44].

The first key result of our derivations is a new projection property for classes of multi-

variate distributions R with given mean vector µ and covariance matrix Σ. Based on

this result, we show in Proposition 1 that for any vector x, Problem (I) reduces to an

optimization problem over the class of ”projected” univariate distributions rx with given

mean µx = x′µ and variance σ2x = x′Σx, that is:

U(x) = min
R∼(µ,Σ)

E[u(x′R)] = min
rx∼(µx,σ2x)

E[u(rx)].

We show in Proposition 2 that the above problem can be further reduced to optimizing over

a restricted class of two-point distributions, which allows to compute the robust objective

U(x) as a deterministic optimization problem in a single variable. This procedure reduces

the robust stochastic optimization problem (G) to a deterministic bi-criteria problem that

only depends on the mean and variance of the random variable x′R.

Our first set of result relies on the classical theory of moments (see for example [29,

26, 1, 31, 39] ), and does not require any assumption on the objective function u. Sharper

moment type bounds may be obtained in some particular cases, by exploiting functional
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properties of u, such as Jensen’s or Edmundson-Mandanski’s inequalities (see for example

[15, 19, 13] and references therein).

In Section 3, we use results from Geoffrion [21] to show (Proposition 3) that for very

general classes of objective functions the robust Problem (G) is equivalent to solving the

following parametric quadratic program (PQP):

(Pλ) max
x∈P

λx′µ− (1− λ)x′Σx. (3)

In particular, this is true for an increasing and concave utility u. Although our model and

results are motivated by utility maximization, we do not require any a priori assumptions

on the objective function u. In particular, by a simple change of variable u = −u we obtain

the min-max version of Problem (G). All the results in this paper hold for both types of

problems, but for simplicity we restrict the analysis to the max-min case.

In Section 4 we illustrate two applications: financial portfolio management and gen-

eralized regression. These applications motivate the solution of Problem (G) for special

quantile-based objectives such as targets (yield, or probability) or options (stop-loss), and

non-expectation quantile criteria such as value at risk (VaR) and conditional value at risk

(CVaR). We show that these can be cast as deterministic bi-criteria optimization problems

and solved efficiently as PQPs. We discover an unexpected equivalence between the robust

VaR and CVaR criteria. Also, it turns out that the robust target criterion has the same

optimal solution as its multivariate normal counterpart.

In Section 5 we propose two extensions of our results motivated by an application in

multi-product pricing. First, we show that our general model and solution naturally extend

to the case when the distribution R (its mean and covariance) is dependent on the decision

variable x. Second, we attempt to extend our framework to the case of non-negative random

returns. While we prove that bi-criteria solutions are generally not optimal, we provide a

method to compute (weak) bi-criteria bounds on the corresponding robust problems, and

show how they can be solved using parametric quadratic programming. Our conclusions

are summarized in the last section.
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2 The Robust Objective

In this section we focus on Problem (I): for a non-zero vector x, we consider the problem

U(x) = min
R∼(µ,Σ)

E[u(x′R)]. A lower bound on the robust objective U(x) can be obtained by

optimizing over univariate distributions with mean µx and variance σ2x:

U(x) = min
R∼(µ,Σ)

E[u(x′R)] ≥ min
r∼(µx,σ2x)

E[u(r)] . (4)

This is because for any feasible random vector R ∼ (µ,Σ) on the left hand side, the

corresponding projected random variable rx = x′R has mean x′µ = µx and variance x′Σx =

σ2x, hence rx is feasible on the right hand side.

In Proposition 1 below we show that, irrespective of the objective function u, the above

result holds with equality. The central idea behind Proposition 1 is that for any non-zero

vector x, the optimization over random vectors R ∼ (µ,Σ) in Problem (I) is equivalent

to solving the corresponding ”projected” problem over the class of univariate distributions

with mean µx and variance σ2x. We provide a constructive proof for the following stronger

result: for any non-zero vector x and any distribution r ∼ (µx, σ
2
x), there exists a multivari-

ate distribution R ∼ (µ,Σ) such that r = x′R. Let us denote Mn
(µ,Σ) the set of probability

measures on Rn with mean µ and covariance Σ, i.e. the set of possible underlying distribu-

tions for R ∼ (µ,Σ) (the superscript n = 1 will be omitted by default).

Theorem 1 (General Projection Property for Real-Valued Distributions) For any

full rank n × k matrix A, the A-projection mapping r = A′R from n-variate distributions

R ∼ (µ,Σ) to k-variate distributions r ∼ (µA,ΣA) is onto, meaning that every distribution

r in Mk
(µA,ΣA)

can be generated by some distribution R in Mn
(µ,Σ) by r = A′R.

Proof:

Consider z and Z to be the standardized versions of r and R, respectively:

R = µ+Σ
1
2Z , Z ∼ (0, In)

r = A′µ+ (A′ΣA)
1
2 z , z ∼ (0, Ik).

It follows that z = B′Z, where B′ = (A′ΣA)−
1
2A′Σ

1
2 is a rank k matrix.
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We may assume without loss of generality that B ′ = (B′(k)B
′
(n−k)), where B(k) is a full

rank (k × k) matrix. Notice that B ′B = Ik. It follows that

B′(k)B(k) +B′(n−k)B(n−k) = Ik. (5)

Similarly, we write Z′ = (Z′(k)Z
′
(n−k)), where Z(k) and Z(n−k) are k, respectively (n − k)

dimensional vectors. We obtain:

z = B′(k)Z(k) +B′(n−k)Z(n−k). (6)

We first construct Z(n−k) conditionally on z as follows: for any given value ẑ of z, define

Z(n−k)(ẑ) = (Z(n−k)|z = ẑ) to follow any specified distribution with mean B(n−k)ẑ and

second moment matrix In−k. For example, this could be chosen to be a normal distribution:

Z(n−k)(ẑ) ∼ N(B(n−k)ẑ, In−k). The following relations hold:

E[Z(n−k)] = Ez[E[Z(n−k)|z = ẑ]] = E[B′(n−k)z] = 0

E[Z(n−k)Z
′
(n−k)] = Ez[E[Z(n−k)Z

′
(n−k)|z = ẑ]] = Ez[In−k] = In−k

We now define Z(k) conditional on z = ẑ, so as to satisfy Equation (6):

Z(k)(ẑ) = (B′(k))
−1(ẑ −B′(n−k)Z(n−k)(ẑ)).

Because Z(n−k)(ẑ) ∼ (B(n−k)ẑ, In−k), we obtain that

E[Z(k)] = Ez[(B
′
(k))

−1(Ik −B′(n−k)B(n−k)) z] = 0

E[Z(k)Z
′
(n−k)] = Ez[E[(B′(k))

−1(z−B′(n−k)Z(n−k))Z
′
(n−k) |z = ẑ]]

= (B′(k))
−1Ez[(zz

′B′(n−k) −B′(n−k)In−k)] = 0

Using equation (5), we also obtain that

E[Z(k)Z
′
(k)] = (B′(k))

−1Ez[E[(z−B′(n−k)Z(n−k))(z−B′(n−k)Z(n−k))
′|z = ẑ]](B(k))

−1

= (B′(k))
−1Ez[zz

′ − 2zz′B′(n−k)B(n−k) +B′(n−k)B(n−k)](B(k))
−1

= (B′(k))
−1[Ik −B′(n−k)B(n−k)](B(k))

−1 = Ik.
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This shows that the random vector R = µ + Σ
1
2Z where Z = (Z′(k)Z

′
(n−k))

′ ∼ (0, In) is

defined as above satisfies the desired properties.

The one dimensional projection result (k = 1) of Theorem 1 implies the following result:

Proposition 1 For any real vector x we have the following result:

min
R∼(µ,Σ)

E[u(x′R)] = min
r∼(µx,σ2x)

E[u(r)]. (7)

Based on Proposition 1, the general robust stochastic optimization problem (G) amounts

to maximizing U(x) = min
r∼(µx,σ2x)

E[u(r)], over the domain x ∈ P. The next result shows how

the robust criterion U(x) further simplifies to a deterministic optimization problem in one

variable.

Proposition 2 For any vector x, the robust objective U(x) = min
R∼(µ,Σ)

E[u(x′R)] equals:

U(x) = min
p∈(0,1)

p · u(µx +

√

1− p

p
σx) + (1− p) · u(µx −

√

p

1− p
σx). (8)

Proof:

Since expectation is a linear operator, optimizing E[u(r)] over r ∼ (µx, σ
2
x) is equivalent

to optimizing over the extreme points of the set M(µx,σ2x)
of feasible measures. These are

two point distribution with mean µx and standard deviation σx, which is a consequence

of Caratheodory’s theorem (see e.g. Rogosinski [39] for a detailed proof). Such extremal

two-point distributions assign mass p to the point µx+
√

1−p
p
σx and mass 1−p to the point

µx−
√

p
1−p σx. By optimizing the expected utility over all such distributions we obtain the

desired result.

Example 1. Let u(x) = x − ln(1 + x2). By Propositions 1 and 2, we have that

U(x) = min
p∈(0,1)

U(p, x), where

U(p, x) = µx − p · ln(1 + (µx +

√

1− p

p
σx)

2)− (1− p) · ln(1 + (µx −
√

p

1− p
σx)

2).
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Remark that lim
p→0

U(p, x) = lim
p→1

U(p, x) = u(µx) = µx− ln(1+µ2x), and U(x, p) is decreasing

in p around p = 0 and increasing around p = 1, so the minimum is achieved somewhere

inbetween.

Suppose, for example that for a certain x = x0 we have µx = 0 and σx = 1. Then

U(p, x0) = p ln p + (1 − p) ln(1 − p) which is minimized for p = 1/2 and U(x0) = − ln 2.

While it is not possible to plot U(x) for high dimensional vectors x, we remark that U

only depends on x through the two variables µx and σx. In Figure 1 we plot the bivariate

function V (µx, σx) = U(x).
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Figure 1: V (µ, σ) for µ ∈ [−5, 5], σ ∈ [0, 5].

Example 2. Consider an exponential utility model u(x) = 1− e−ax, with a > 0. By

Propositions 1 and 2, we have that U(x) = min
p∈(0,1)

U(p, x), where

U(p, x) = 1− p · e−a(µx+
√

1−p
p

σx) − (1− p) · e−a(µx−
√

p
1−p

σx)
.

Furthermore, one can easily calculate:

∂U
∂p

(p, x) = −e−a(µx+
√

1−p
p

σx)+e
−a(µx−

√

p
1−p

σx)
+a[e

−a(µx+
√

1−p
p

σx)+e
−a(µx−

√

p
1−p

σx)
] σx

2
√
p(1−p)

.

Note that this has the same sign as g(r) = 1 − r − (1 + r)e−2r, where we denoted r =

aσx

2
√
p(1−p)

. Moreover g(r) is 0-unimodal with g(0) = 0. Since p ∈ (0, 1), it follows that

U(x) = min(lim
p→0

U(p, x), lim
p→1

U(p, x)). We have lim
p→0

U(p, x) = u(µx) = 1 − e−aµx , whereas

lim
p→1

U(p, x) = u(µx)+σ2x lim
q→∞

u′′(µx−qσx), which equals −∞ if σx > 0 and u(µx) otherwise.

Hence U(x) = −∞ for σx > 0 and U(x) = 1− e−aµx otherwise. So for exponential utilities,

the robust solution should focus on setting σx = 0.

Further examples are illustrated in the context of several applications in Section 4.

8



3 Bi-criteria Optimization via PQP

Proposition 2 above shows that the inner optimization Problem (I) can be viewed as a bi-

criteria optimization problem in µx and σx, U(x) ≡ V (µx, σx). In this section we propose

a parametric quadratic programming (PQP) approach to solve this type of bi-criteria prob-

lems. Based on Geoffrion [21], we provide sufficient conditions on the objective function u

under which Problem (G) can be reduced to solving a parametric quadratic program. Our

results show that optimizing the robust counterpart of a very general class of objectives is

equivalent to a one-dimensional mean-variance optimization problem, for a certain trade-off

coefficient.

The following result due to Geoffrion [21] (see also [22]) provides general sufficient con-

ditions for solving bi-criteria problems efficiently as parametric quadratic programs:

Theorem 2 (Geoffrion [21]) Consider the program

max
x∈X

v(p1(f1(x)), p2(f2(x))), (9)

where X ∈ Rn is a convex set. Suppose that f1, f2, p1(f1), p2(f2) are concave on X, p1

and p2 are increasing on the image of X under f1, f2 respectively, and v is non-decreasing

and quasi-concave1 on the convex hull of the image of X under (p1(f1), p2(f2)), and all

functions are continuous. Further assume that the optimal solution x∗(λ) of the parametric

program max
x∈X

λf1(x) + (1 − λ)f2(x) is continuous for λ ∈ [0, 1]. Then the function w(λ) =

v(p1(f1(x
∗(λ))), p2(f2(x

∗(λ)))) is continuous and unimodal on [0, 1]. Furthermore, if λ∗ is

its maximum, then x∗(λ∗) is optimal for (9).

Propositions 1 and 2 reduced Problem (G) to solving a bi-criteria (mean-variance) deter-

ministic optimization problem. Based on Theorem 2, the following Proposition shows that

under fairly unrestrictive conditions, Problem (G) can be optimized by solving a parametric

quadratic program.

Proposition 3 Suppose that the robust objective function V (µx, σx) = min
r∼(µx,σ2x)

E[u(r)] is

continuous, non-decreasing in µx, non-increasing in σx and quasi-concave. Then Problem

1A real function f defined on a convex set S is said to be quasi-concave if and only if for any λ ∈ [0, 1]

and x, y ∈ S we have f(λx+ (1− λ)y) ≥ min(f(x), f(y)). Equivalently, f is quasi-concave whenever for any

l, the upper level sets Ll = {x ∈ S | f(x) ≥ l} are convex.
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(G) over a convex set P is equivalent to solving the following parametric quadratic program:

(Pλ) max
x∈P

λx′µ− (1− λ)x′Σx. (10)

Specifically, if x∗(λ) denotes the optimal solution of Problem (Pλ), then the function w(λ) =

V (µx∗(λ), σx∗(λ)) is continuous and unimodal in λ ∈ [0, 1]. Moreover, if λ∗ is its maximum,

then x∗(λ∗) is optimal for Problem (G).

Proof:

Let f1(x) = µ′x and f2(x) = −x′Σx, p1(f1) = f1 and p2(f2) = −(−f2)
1
2 , these are all

concave, and the latter two are non-decreasing. In the notation of Theorem 2, we obtain

v(µx,−σx) = v(p1(f1(x)), p2(f2(x))) = min
r∼(µx,σ2x)

E[u(r)] = V (µx, σx). Based on Proposition

2, we can rewrite this as:

v(µx,−σx) = V (µx, σx) = min
p∈[0,1]

p · u(µx +

√

1− p

p
σx) + (1− p) · u(µx −

√

p

1− p
σx). (11)

The assumptions on V insure that v is non-decreasing and quasi-concave, so the result

follows from Theorem 2.

It is reasonable to assume that the robust utility U(x) = V (µx, σx) is non-decreasing in

the mean µx and non-increasing in the standard deviation σx of the underlying return. This

basically says that the decision maker prefers distributions with higher return and lower risk.

Quasi-concavity can be interpreted as a diminishing marginal rate of substitution between

mean and standard deviation, a property shared by most (robust) utility functions. When

the actual utility function u is increasing and concave, as is typically assumed in decision

analysis, these conditions are automatically satisfied:

Corollary 1 Suppose that the function u is non-decreasing and concave. Then the general

utility maximization criterion (G) over a convex set P is equivalent to solving the parametric

quadratic program (Pλ) for a suitable value λ ∈ [0, 1].

The proof is straightforward based on the formulation from Proposition 2. More gen-

erally, for other types of u, monotonicity of V in µx can be ensured by assuming that u

is non-decreasing. One can check monotonicity in σx as well as quasi-concavity using the
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result of Proposition 2. When u is concave then U(x) = V (µx, σx) is concave in x, so alter-

natively, other traditional computational methods for convex programming may be suitable

to solve Problem (G) more directly, based on the result of Proposition 2.

Several algorithms are available for solving parametric quadratic programs (Wolfe [45],

Geoffrion [21, 22], Best [9]). They all yield an optimal solution x∗(λ) that is piecewise

linear in λ/(1− λ). Geoffrion [21] solves Pλ with λ = 1 and decreases λ until the unimodal

function w∗(λ) = v(µx∗(λ),−σx∗(λ)) achieves its maximum on [0, 1]. In our applications,

the intermediate solutions are also of interest, as they yield a portion of the mean-variance

trade-off curve. Recent algorithms for PQP are due to Best [9] and Arseneau and Best [2].

Example 3. In Problem (G), suppose that the constraint set is given by P = {x|∑xi =

1, x ≥ 0}, and let u(x) = x− ln(1+x2) as in Example 1. Since u is increasing and concave,

it follows that

V (µx, σx) = min
p∈(0,1)

µx − p · ln(1 + (µx +

√

1− p

p
σx)

2)− (1− p) · ln(1 + (µx −
√

p

1− p
σx)

2)

satisfies the conditions of Proposition 3. This can also be seen by inspecting Figure 1 in

the previous section. To solve Problem (G), we first compute x∗(λ), the optimal solution

of the PQP:

(Pλ)

max λx′µ− (1− λ)x′Σx

s.t.
∑

xi = 1

x ≥ 0,

and then maximize over λ ∈ (0, 1) the function w(λ) = V (µx∗(λ), σx∗(λ)), which is unimodal.

This can be seen from Figure 2, where we display w(λ) for the following three sets of data:

µ1 = (1 3)′, Σ1 =

(

1 −2

−2 6

)

, µ2 = (0 2 1 − 2)′, Σ2 =











2 −2 1 0

−2 9 −1 −2

1 −1 3 −1

0 −2 −1 2











, respec-

tively µ3 = −µ2,Σ3 = Σ2. The resulting optimal values w(λ∗) are the desired optimal values

of (G), in our case 0.5491, .1512 and 0.4260, achieved at λ∗ = 0.84, 0.67, 1, respectively. The

corresponding solutions of Problem (G) are x∗(λ∗) = (0.25 0.75)′, (0.2140 0.3429 0.4431 0.00)′

and (0, 0, 0, 1)′. All programs were run in MATLAB 5.3 under Windows NT.
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Figure 2: Plots of the unimodal function w(λ).

4 Applications in Finance and Statistics

In this section we present two applications of our results, one in financial portfolio manage-

ment, the other in generalized regression. These applications prompt us to analyse a set of

special quantile-based criteria, such as probability (target), option-type, VaR (fractile) and

CVaR (tail expectation).

The first application considers a risk-sensitive portfolio manager optimizing the expected

reward from his real-valued return. In particular we investigate target and commission based

reward systems, and combinations thereof.

The second application provides a robust approach of fitting a multiple linear regression

among a set of variables, given limited information about their distributions (means and

covariances). In a robust setting, we look at general deviation measures (see Rockafellar,

Uryasev and Zabarankin [36]) such as VaR and CVaR.

4.1 Financial Portfolio Management and Incentives

Consider the example described in the introduction: a portfolio manager is interested in

a robust portfolio among a set of n assets with random returns R1, ...,Rn. Suppose that

the manager does not know the distribution of the random returns, but estimates them

to have means µ and covariance structure Σ. The manager is thus interested in a robust

portfolio that maximizes his worst case expected utility of the return u(r), where r is the

achieved return of herhis portfolio at the end of the evaluation period. This problem can

be formulated as follows:

(GF ) max
x∈PF

min
R∼(µ,Σ)

E[u(x′R)].

12



The underlying feasible set may have different forms, according to the type of portfolio

problem of interest. For example, PF = {x ∈ Rn | A′x ≤ b} or in particular PF = {x ∈
[0, 1]n | x′1n = 1}.

According to Proposition 3, whenever the function V (µx, σx) = min
R∼(µ,Σ)

E[u(x′R)] is

quasi-concave, non-increasing in µx and non-decreasing in σx, the Problem (GF ) amounts

to solving the PQP (10) over the portfolio choice set PF for a suitable value λ∗, which is

equivalent to solving for a certain parameter κ∗ ≥ 0 the following quadratic optimization

program:

max
x∈PF

µ′x− κ∗x′Σx.

This is a deterministic mean-variance portfolio problem that can be solved by standard

methods. This robust optimization approach associates with each utility function a worst

case risk-return trade-off factor k∗ = (1 − λ∗)/λ∗, obtainable by the methods of Theo-

rem 2 and 3, such that solving the robust optimization problem is equivalent to solving a

deterministic problem with quadratic utility uκ∗(x) = µ′x− κ∗x′Σx.

Consider for comparison purposes the alternative approach, based on the assumption

that the underlying distribution of returns is multi-variate normal. In this case the problem

does not appear to be tractable by other than numeric methods :

(NF ) max
x∈PF

E[u(rx)] = max
x∈PF

∫

u(x)
1√
2π

e−
(x−µ′x)2

x′Σx dx.

We investigate three criteria of interest with respect to the portfolio managers’ incentive

scheme: targets, commissions and target plus commission based systems.

4.1.1 The Target Criterion

Portfolio managers, and generally sales managers, are often incentivised by a fixed salary

plus a bonus, contingent on the realization of a certain preset performance target, denoted

α. In this case, the manager’s objective is to maximize the probability of achieving the

given target α.

When the distribution of returns is known, this problem, often referred to as the satisfic-

ing problem or the stochastic problem of maximum probability, is simply max
x∈P

P (x′R ≥ α).
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In the case of normal returns and linear constraints, this problem has received significant at-

tention, especially in the 1960’s operations research literature, see Markovitz [33], Kataoka

[30], Charnes and Cooper [12], Geoffrion [21, 22], Dragomirescu [14]. One can easily prove

(see [12]) in this case that the target criterion is equivalent to solving the following stan-

dardized Z-statistic criterion:

TN (α) = max
x∈P

x′µ− α√
x′Σx

= max
x∈P

µx − α

σx
.

This is a linear fractional programming problem, for which several solution procedures are

known (see for example Bazaara, Sherali and Shetty [5]).

In the robust setting, the manager maximizes his worst case probability of achieving

the target α, over all distributions with given mean µ and covariance structure Σ. The

corresponding maximization problem can be formulated as the following target-objective

robust stochastic program:

T (α) = max
x∈P

min
R∼(µ,Σ)

P (x′R ≥ α) = max
x∈P

min
r∼(µx,σ2x)

P (r ≥ α), (12)

where the last equality follows by Proposition 1. The proof of the following result is provided

in the Appendix.

Proposition 4 The robust target criterion (12) is equivalent to max
x∈P

(µx − α)2+
(µx − α)2 + σ2x

, which

has the same solution as max
x∈P

(µx − α)+
σx

. These objectives satisfy the conditions of Propo-

sition 3.

It is interesting to notice that, if µx ≥ α is feasible, then the robust criterion produces

the same optimal solution as the normal distribution assumption. This can be interpreted as

follows: consider two portfolio managers incentivised by the same target α, who have access

to the same set of assets with known means µ and covariance Σ. The first manager believes

that stocks follow a multivariate normal distribution with these parameters, whereas the

other manager ignores the distribution and adopts a worst case approach. This result

says that the two managers, despite their different beliefs, will choose the same portfolio

(provided that they have access to at least one portfolio whose return exceeds the target

level α).
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4.1.2 Option-type Criteria

It is often argued that fixed target bonus systems are unappealing because managers have no

direct incentive to over-perform the target. As a remedy, managers are offered a commission

for over-achieving a preset target level α, which amounts to an option-type payoff u(x) =

(x − α)+. The corresponding robust criterion of interest involves maximizing the (worst

case) expected over-achievement of a given target α, and is mathematically formulated as

follows:

O+(α) = max
x∈P

min
R∼(µ,Σ)

E[(x′R− α)+] = max
x∈P

min
r∼(µx,σ2x)

E[(r− α)+], (13)

where the last equality follows by Proposition 1.

Similarly, Ross [40] suggests an incentive system whereby managers can be penalized

for not reaching a lower benchmark target level α, which amounts to a different option-type

payoff u(x) = (α−x)+. The corresponding robust problem amounts to minimizing the worst

case penalty from not meeting the target:

O−(α) = min
x∈P

max
R∼(µ,Σ)

E[(α− x′R)+] = min
x∈P

max
r∼(µx,σ2x)

E[(α− r)+]. (14)

These kinds of objectives are ubiquitous in operations research and economics, appearing

for example in option-prices in finance (Lo [32]), the classical newsboy problem in inventory

control (Scarf [42]), PERT in reliability theory. The proof of the following result can be

found in the Appendix.

Proposition 5 The robust option criteria (13) and (14) are equivalent to solving:

max
x∈P

(µx − α)+, and respectively max
x∈P

(α− µx) +
√

σ2x + (α− µx)2.

In particular, based on Proposition 3, the latter can be solved as a PQP.

An alternative reward system is a mix of a bonus b and commission rate a for output

above the target α, which amounts to u(x) = a(x − α)+ + b1(x≥α). The corresponding
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robust criterion of interest is mathematically formulated as follows:

TO(α) = max
x∈P

min
R∼(µ,Σ)

aE[(x′R− α)+] + bP (x′R ≥ α)

= max
x∈P

min
r∼(µx,σ2x)

aE[(r− α)+] + bP (r ≥ α),
(15)

where the last equality follows by Proposition 1. The proof of the following result is provided

in the Appendix.

Proposition 6 The robust target-option criterion (15) is equivalent to optimizing the cor-

responding linear combination of the robust target and option criteria, i.e.:

max
x∈P

a(µx − α)+ + b
(µx − α)2+

σ2x + (µx − α)2
.

This problem can be solved as a parametric quadratic program.

4.2 Robust Regression with General Deviation Measures

In multiple linear regression, a random variable X0 is approximated in terms of other

variables X1, . . . ,Xn by a linear function a+ b1X1 + . . .+ bnXn. Typically, the regression

coefficients are determined by minimizing the mean squared error, i.e. E[(X0− (a+ b1X1+

. . .+ bnXn))
2]. Rockafellar, Uryasev and Zabarankin [36] propose a concept of generalized

regression, whereby other, more general deviation measures than the standard deviation σ

are optimized. They argue why such general measures may be more appropriate in certain

application settings, by better reflecting losses, fat tails and distinguishing between upside

and downside risk. The generalized regression problem for a general deviation measure D
can be stated as follows:

min
a,bi

D(X0 − (a+ b1X1 + . . .+ bnXn))

s.t. E[a+ b1X1 + . . .+ bnXn] = E[X0].
(16)

In particular, the classical regression problem amounts to taking D = σ above.

Denote X = (X0, . . . ,Xn) and b = (−1, b1, . . . , bn), and suppose that only the mean

and covariance of the random vector X are known. For a general deviation measure D, the
problem of determining a robust set of regression coefficients (a, b) can be formulated in our

framework as follows:
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min
a, b

a+ b′µ = 0

max
X∼(µ,Σ)

D(b′X− a) = min
b

max
X∼(µ,Σ)

D(b′(X− µ)) = min
b

max
x∼(0,σ2

b
)
D(x), (17)

where the last relation follows by Proposition 1.

The case when D represents the standard deviation is trivial. For the purpose of this

paper, we will focus on two quantile-based deviation measures of interest: value at risk

(VaR) and conditional value at risk (CVaR). Notice that the corresponding objectives are

not expectations (although they involve expectations), thereby extending in some sense our

general framework.

4.2.1 The Value at Risk (VaR) Criterion

Value at risk is a percentile-based deviation measure defined as the negative of the fractile

criterion for the corresponding loss distribution:

V aR(α;x) = min{z|P (x ≤ −z) ≤ α} = −max{z|P (x ≥ z) ≥ 1− α}.

For normal returns, Charnes and Cooper [12] prove that this is equivalent to optimizing:

V aRN (α) = −µx − Φ−1(α)σx,

where Φ is the standard normal cdf.

The general robust problem (G) with VaR criterion can be formulated as follows:

V aR(α) = −max
x∈P

z

s.t. min
R∼(µ,Σ)

P (x′R ≥ z) ≥ 1− α.
(18)

Proposition 7 The robust VaR criterion is equivalent to solving min
x∈P

√

1− α

α
σx−µx. This

objective satisfies the conditions of Proposition 3.

This result has been proved by El Ghaoui, Oustry and Oks [23] in the context of robust

portfolio value at risk. Our approach yields the same solution, provided in the Appendix.
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The robust regression problem (17) with VaR objective can be formulated as follows:

min
a,b

z = min
b

z

s.t. max
X∼(µ,Σ)

P (b′X− a ≤ −z) ≤ α s.t. max
x∼(0,σ2

b
)
P (x ≤ −z) ≤ α

a+ b′µ = 0

(19)

This is a special case of the robust VaR criterion (18). By Proposition 7, the optimal robust

regression coefficients are (a = −µ′b, b), where b minimizes σ2b = b′Σb.

4.2.2 The Conditional Value at Risk (CVaR) Criterion

The VaR criterion, while commonly used in the financial industry, has been criticised in

the academic literature for a set of considerable drawbacks: it is non-convex, it is also not

a coherent deviation measure in the sense of Rockafellar, Uryasev and Zabarankin [37], nor

a coherent measure of risk as argued in Artzner, Delbaen, Eber and Heath [3]. Rockafellar

and Uryasev [38] propose an alternative tail measure, called the α-conditional value at risk

and defined as the negative expectation of the lower α-tail of a risk x:

CV aR(α;x) = −E[x|x ≤ z , P (x ≤ z) = α].

We define the concept of robust CVaR as follows:

CV ar(α) = min
x∈P

max
R∼(µ,Σ)

E[−x′R|x′R ≤ z]

s.t. P (x′R ≤ z) = α.
(20)

The proof of the following result is provided in the Appendix:

Proposition 8 In the robust case, the CVaR criterion is equivalent to the VaR criterion,

and amounts to solving min
x∈P

√

1− α

α
σx− µx. This satisfies the conditions of Proposition 3.

Recall that deviation measures are defined with respect to centered random variables

x−E[x]. Our results show that the robust VaR and CVaR deviation measures are equivalent

to the standard deviation measure, showing in some sense that standard deviation is a

generic robust deviation measure.
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5 A Multi-Product Pricing Application and Extensions

In this section we consider the optimal pricing decision of a firm (or sales manager) setting

prices for a line of products so as to maximize the expected utility of profits (respectively,

of his expected compensation). In this case the random returns are the demands for each

product, which are non-negative and depend on the set prices. This setting indicates two

possible extensions of our original problem, which we address in this section: (1) we incor-

porate dependence of the random vector R on the decision variable x, and (2) we analyse

the case of non-negative random vectors R. We extend Proposition 3 to address the first

issue, and we provide weak bounds for non-negative random variables to address the second.

Consider a firm setting a vector of prices p for a set of n products with random demands

D(p) = (D1(p), ...,Dn(p)) in order to maximize the expected utility of profits, given by u(r),

where r is the total profit. Suppose that the demands for the n products are correlated due

to substitution and/or complementarity effects, and depend on the prices of all products.

Demand is estimated to have mean µ(p) and covariance structure Σ(p). The variable cost

per product is given by the vector c. The problem of the firm looking for a ”robust” pricing

scheme for the n products can be formulated as follows:

(GP ) max
p∈PP

min
D∼(µ(p),Σ(p))

E[u((p− c)′D(p))].

The marketing constraints on the feasible set of prices can be assumed to be of the following

form: PP = {p ∈ Rn
+ | A′p ≤ b , pmin

i ≤ pi ≤ pmax
i }.

5.1 Returns Dependent on the Decision Variable

The above problem (GP ) is not a special case of the robust problem (G) studied in this

paper, since the random return (in this case the demand), together with its mean and

variance, actually depend on the decision variable (in this case the price p). While the

results of this section are presented in the context of the specific pricing application, one

can naturally extend them to the general setting.

First, it can be easily seen, that the results of Propositions 1 and 2 do not change. Denote

the mean and variance of the profit by µp = (p− c)′µ(p) and σ2p = (p− c)′Σ(p)(p− c). The

robust solution can be obtained by solving max
p∈PP

min
r∼(µp,σ2p)

E[u(r)].
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We now provide conditions for solving the above problem as a parametric quadratic

program. Based on Theorem 2, it is easy to see that the conditions described below are

sufficient for extending Proposition 3, and thereby solving Problem (GP ) as a parametric

quadratic program:

(C1) the expected profit µp = (p− c)′µ(p) is concave in price;

(C2) the standard deviation of the profit σp =
√

(p− c)′Σ(p)(p− c) is convex in price;

(C3) the robust objective function V (µp, σp) = min
r∼(µp,σ2p)

E[u(r)] is quasi-concave, non-

decreasing in the first argument and non-increasing in the second.

Alternatively, conditions (C2) and (C3) may be structured to involve the variance instead

of standard deviation:

(C2’) the variance of the profit σ2p = (p− c)′Σ(p)(p− c) is convex in price;

(C3’) the robust objective function V (µp, σ
2
p) = min

r∼(µp,σ2p)
E[u(r)] is quasi-concave, non-

decreasing in the first argument and non-increasing in the second.

Let us argue why these assumptions make practical sense. The concavity of the (ex-

pected) profit function with respect to price is a universally accepted assumption in the

pricing literature. The convexity of the standard deviation (or variance) intuitively means

that revenue is more variable under randomized or differential pricing. In particular, this is

true when demand variability is not affected by price i.e. Σ(p) = Σ, or when the demands

are uncorrelated among products Σ(p) = σ2(p)In and demand variability for each product

σ2i (pi) is increasing and convex in price. Finally, the quasi-concavity condition requires that

the marginal rate of substitution between the mean and variance (or standard deviation)

of the profit decreases with price.

5.2 The Problem with Non-Negative Returns

In the above pricing application, we are ignoring a salient feature of demand distributions,

namely the fact that demand may only take non-negative values. A natural question to

investigate is how our results for real-valued returns extend when the underlying return

vector is restricted to the non-negative orthant. The following problem is the focus of this
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section:

(G+) max
x∈P

min
R∼(µ,Σ)+

E[u(x′R)], (21)

where R ∼ (µ,Σ)+ means that the inner optimization is over all non-negative random

vectors R with mean µ and covariance Σ. We denote Mn
(µ,Σ)+ the set of measures on Rn

+

with mean µ and covariance Σ (for n = 1, the superscript will be omitted by default). Let

us first notice that the problem of deciding whether the setMn
(µ,Σ)+ is non-empty is already

a difficult problem (NP-hard, see [35]). To avoid this issue, we explicitly assume that (µ,Σ)

are given so that Mn
(µ,Σ)+ is non-empty.

The following result extends Propositions 1 and 2, by providing bounds on the inner

part of problem (G+):

Proposition 9 Suppose R ∼ (µ,Σ)+, and for any non-zero vector x ≥ 0 denote µx = x′µ

and σ2x = x′Σx. We have the following result:

min
R∼(µ,Σ)+

E[u(x′R)] ≥ min
r∼(µx,σ2x)

+
E[u(r)]

max
R∼(µ,Σ)+

E[u(x′R)] ≤ max
r∼(µx,σ2x)

+
E[u(r)]

. (22)

Furthermore, the right hand side bounds are equivalent to optimizing over h ≥ σ2x
µx

the

objective:

σ2x
h2 + σ2x

u(µx + h) +
h2

h2 + σ2x
u(µx −

σ2x
h

). (23)

Proof :

Consider the first inequality: for the minimizing R∗ on the left hand side, the corre-

sponding projection r∗ = x′R∗ is feasible and yields the same objective value on the right

hand side. Similarly, the reverse inequality is trivial for the second inequality.

The right hand side bounds are equivalent to optimizing over the class of extreme mea-

sures ofM(µx,σ2x)
+ . Following a similar approach to Rogosinskii [39] (see [35] for a full proof),

one can show that these are non-negative 2-point distributions with mean µx = x′µ and
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variance σ2x = x′Σx. In particular, they can be parametrized by h ≥ σ2x
µx

as follows:

δµx,σx(h) =







µx + h with probability σ2x
h2+σ2x

µx − σ2x
h

with probability h2

h2+σ2x

.

A natural question to ask is whether the bounds in Proposition 9 are exact, i.e. whether

set of measures Mn
(µ,Σ)+ projects through a non-negative linear mapping R

x≥0−→ r = x′R

onto the set M(µx,σ2x)
+ of univariate measures with non-negative support, mean µx and

variance σ2x. It turns out that this is not true. Popescu [35] completely characterized the

set of projected measures corresponding to non-negative random vectors with given mean

and covariance structure. This characterization unfortunately indicates that the robust

objective under non-negative returns is not generally expressible as a bi-criteria problem,

since the projected set of measures depends not only on µx and σx, but also on the values of

x′Σi
µi

. Nevertheless, based on Proposition 9, one can compute simple (non-sharp) bi-criteria

bounds for problems with non-negative returns.

6 Conclusions

This paper demonstrated a general approach for solving robust max-min and min-max

stochastic optimization problems (without recourse), based only on mean-covariance infor-

mation on the random vector of returns. We provided a two-step approach that reduced

this problem to solving a parametric quadratic program. First, we prove that the inner

optimization problem is equivalent to a problem over univariate distributions, due to a new

projection result for multivariate distributions. This result holds for arbitrary objective

functions u, and simplifies the initial problem to solving a bi-criteria optimization problem.

Second, we provided some intuitive conditions on the robust objective function that reduce

the problem to solving a parametric quadratic program.

We provided extensions to handle dependence of the return distribution on the decision

variable, as well as non-negative distributions. We also showed how our results can be

used to solve problems with non-differentiable quantile-based objectives, such as probability,

option, VaR and CVaR criteria. While we illustrated our results with applications in finance,

statistics and pricing, we expect our approach to be relevant in a wide variety of contexts.
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Appendix

Proof of Proposition 4: By Propositions 1 and 2 (or alternatively by applying the

optimal one-sided Chebyshev inequality ([29], [8])), we obtain the following bound:

min
R∼(µ,Σ)

P (x′R ≥ α) = 1− max
r∼(µx,σ2x)

P (r ≤ α) =











(µx − α)2

(µx − α)2 + σ2x
, if α < µx

0 , otherwise

. (24)

If there is no feasible x ∈ P with µx ≥ α, then the objective is zero. Otherwise, the

target criterion amounts to optimizing µx−α
σx

for µx ≥ α, x ∈ P. This gives the desired result.

Both functions
(µx − α)2

(µx − α)2 + σ2x
and

µx − α

σx
are non-decreasing in µx, non-increasing in σx

and quasi-concave on [α,∞)× [0,∞), so the results of Proposition 3 apply.

Proof of Proposition 5: For the maximization problem, it is easy to see that min
r∼(µx,σ2x)

E[(r−
α)+] = (µx − α)+.

The minimization case is a consequence of Proposition 2. Using the change of variable

h = σx
√

p
1−p ≥ 0 in the formulation (8), the robust minimization bound amounts to

minimizing over x ∈ P the objective :

max
r∼(µx,σ2x)

E[(r− α)+] = max
h≥0

h2

h2 + σ2x
(µx +

σ2x
h
− α)+ +

σ2x
h2 + σ2x

(µx − h− α)+. (25)

First, if h is such that α ≤ µx−h or α ≥ µx+
σ2x
h
, the bound we obtain is (µx−α)+. In the

remaining case, only the first term in (25) is non-zero. By optimizing h2

h2+σ2x
(µx + σ2x

h
− α)

we obtain h = µx − α+
√

σ2x + (µx − α)2 > (µx − α)+. The desired bound is obtained:

max
r∼(µx,σ2x)

E[(r− α)+] =
1

2

[

(µx − α) +
√

σ2x + (µx − α)2
]

. (26)

Letting z1 = −µx and z2 = −σx, minimizing the criterion (26) amounts to maximizing

v(z1, z2) = z1+α−
√

(z1 + α)2 + z22 . This is non-decreasing in both arguments when z2 ≤ 0.

We also show that v is quasi-concave, i.e. the upper level sets Ll = {(z1, z2)|v(z1, z2) ≥ l}
are convex. We want to show that λ(z1, z2)+(1−λ)(w1, w2) ∈ Ll for any (z1, z2), (w1, w2) ∈
Ll and λ ∈ [0, 1], which amounts, after some simplification, to checking

l(l − 2(λz1 + (1− λ)w1 + α)) ≥ (λz2 + (1− λ)w2)
2.
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The conditions (z1, z2), (w1, w2) ∈ Ll imply that l(l − 2(z1 + α)) ≥ z22 and respectively

l(l − 2(w1 + α)) ≥ w22. From these two conditions and convexity of f(x) = x2 we obtain:

l(l − 2(λz1 + (1− λ)w1 + α)) ≥ λz22 + (1− λ)w22 ≥ (λz2 + (1− λ)w2)
2.

Therefore, Proposition 3 applies.

Proof of Proposition 6: The robust target-option maximization problem amounts to

optimizing over x ∈ P the criterion min
r∼(µx,σ2x)

E[a1(r≥α) + b(r− α)+], which equals

min
q≥0

a

1 + q2
[1(µx+qσx≥α) + q21(µx− 1qσx≥α)

] +
b

1 + q2
[(µx + qσx − α)+ + q2(µx −

1

q
σx − α)+].

This follows by Proposition 2 with the change of variable q =
√

(1− p)/p. There are three

possible cases, depending on the value of α relative to µx − 1
q
σx and µx + qσx. The only

relevant case (that yields a non-zero value) is when α falls between the two and µx ≤ α,

producing the desired result. Monotonicity and quasi-concavity in the non-trivial case

(µx ≤ α) can be shown by inspection.

Proof of Proposition 7: Using the proof of Proposition 4, the robust VaR minimization

problem (18) amounts to solving:

−max
x∈P

z

s.t.
(µx − α)2

(µx − z)2 + σ2x
≥ 1− α

z ≤ µx .

The optimum is achieved when equality holds in the first constraint. By solving for z, we

obtain the equivalent robust VaR criteria −z∗ = −µx+
√

1−α
α

σx.Minimizing this over x ∈ P

is the same as maximizing µx −
√

1−α
α
σx, which is non-decreasing in µx, non-increasing in

σx and quasi-concave.

Proof of Proposition 8: Based on Rockafellar and Uryasev [38], the CVaR for a random
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variable x can be alternatively computed as follows:

CV aR(α;x) = −E[x|x ≤ z , P (x ≤ z) = α] = min
β

β +
1

α
E[(−x− β)+].

This shows that the robust CVaR can be calculated as:

CV aR(α) = max
r∼(µx,σ2x)

min
β
{β +

1

α
E[(−r− β)+]}

= max
q≥0

min
β
{β +

1

α(1 + q2)
[(−µx − qσx − β)+ + q2(−µx +

1

q
σx − β)+]},

where the last equality follows by Proposition 2 with the change of variable q =
√

(1− p)/p.

There are three possible cases, depending on the value of β relative to −µx + 1
q
σx and

−µx− qσx. The only relevant case is when β falls between the two. In this case, the desired

result is obtained.
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