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Abstract—In order to verify the authenticity of digital images,

researchers have begun developing digital forensic techniques to

identify image editing. One editing operation that has recently re-

ceived increased attention is median filtering. While several me-

dian filtering detection techniques have recently been developed,

their performance is degraded by JPEG compression. These tech-

niques suffer similar degradations in performance when a small

window of the image is analyzed, as is done in localized filtering

or cut-and-paste detection, rather than the image as a whole. In

this paper, we propose a new, robust median filtering forensic tech-

nique. It operates by analyzing the statistical properties of the me-

dian filter residual (MFR), which we define as the difference be-

tween an image in question and a median filtered version of it-

self. To capture the statistical properties of the MFR, we fit it to

an autoregressive (AR) model. We then use the AR coefficients

as features for median filter detection. We test the effectiveness

of our proposed median filter detection techniques through a se-

ries of experiments. These results show that our proposed forensic

technique can achieve important performance gains over existing

methods, particularly at low false-positive rates, with a very small

dimension of features.

Index Terms—Median filtering, noise residual, image forensics,

autoregressive model.

I. INTRODUCTION

B ECAUSE digital images can be easily edited, it is often

difficult to tell if a digital image has been manipulated.

To combat this problem, researchers have developed a variety of

blind forensic techniques to verify the authenticity of digital im-

ages [1]–[6], [8], [11], [12], [15]–[17], [21], [22]. Many of these

techniques operate by searching for imperceptible traces, known

as fingerprints, that are introduced into an image by editing oper-
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ations. By identifying these fingerprints, a forensic investigator

can determine if and how an image was manipulated. A number

of forensic techniques [22] currently exist to detect the use of re-

sampling [5], contrast enhancement [6], multiple compression

[15], [16], sharpening [21], and blurring [22].

One image editing operation that has received increased

attention from digital forensic researchers is median filtering

[1]–[4], [25]. Median filtering is a nonlinear operation that has

the useful property of preserving edges within an image. It is

commonly used to perform image denoising, remove outlying

pixel values, and to smooth regions of an image. Because of

this, forgers may use median filtering to make their image

forgeries appear more perceptually realistic.

In addition, the median filter’s nonlinear properties make it

useful for removing fingerprints left by other editing operations.

It is has recently been incorporated into anti-forensic algorithms

designed to hide traces of resampling [9] and evidence of com-

pression [7]. Furthermore, median filtering may affect the effec-

tiveness of different steganalysis techniques [1], [14].

While existing techniques have been developed to detect the

use of median filtering [1]–[4], their performance is degraded

in several important scenarios. This is particularly true when

these detectors are held to low false positive rates. For example,

the performance of existing median filtering detectors declines

noticeably when testing on an image that has been JPEG com-

pressed. This is problematic since many images are JPEG com-

pressed during storage, capture, or transmission. Furthermore,

the performance of these techniques degrades severely when

small windows of an image are analyzed for evidence of lo-

calized median filtering. Additionally, existing techniques can

encounter difficulties distinguishing median filtering from other

editing operations at low false positive rates.

In this paper, we propose a new, robust median filtering

forensic technique. It operates by analyzing the statistical

properties of an image’s median filter residual (MFR), which

we define as the difference between an image in question and a

median filtered version of itself [23]. This differs from existing

techniques, which extract median filtering detection features

directly from an image’s pixel values or the pixel difference.

By analyzing an image’s MFR, we are able to suppress image

content which may interfere with median filtering detection.

To capture the statistical properties of the MFR, we fit it to

an autoregressive (AR) model. We then train a support vector

machine (SVM) to use the AR coefficients as features for

median filter detection.

We test the effectiveness of our proposed median filter de-

tection techniques through a series of experiments. Our exper-

imental results show that the MFR can be used to detect me-
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dian filtering in JPEG compressed images with quality factors

as low as 30 and in image windows as small as 32 32 pixels.

It is capable of differentiating 3 3 median filtering from 5 5

median filtering. Additionally, our proposed method can distin-

guish between median filtering and other manipulations, such as

Gaussian filtering, average filtering, and rescaling. Our experi-

mental results demonstrate that our proposed method not only

achieves better performance than existing median filtering de-

tection techniques, but it does so using a substantially smaller

feature set.

The rest of this paper is organized as follows. We review

existing work on median filtering detection in Section II. In

Section III, the median filter residual is introduced and our pro-

posed detection technique is described. In Section IV, we eval-

uate the performance of our proposed algorithm and compare

its performance with state-of-the-art techniques [1], [2], [4]. Fi-

nally, we conclude this paper in Section V.

II. BACKGROUND AND PRIORWORK

The median filter operates by replacing a pixel’s value with

the median value of the pixels in a small window surrounding

it. The most commonly used median filter windows are squares

of size 3 3 and 5 5 pixels. For the purposes of this work, we

assume that median filtering is performed using a square

pixel window, where is odd. Given an image, we can formally

define the median filter as shown in (1), at the bottom of

the page, where is the pixel value at point , , .

A well known property of the median filter is that unlike linear

filters, it is capable of smoothing an image while preserving its

edges. As a result, the median filter is often used as a denoising

filter.

Given a stochastic input to the median filter, the median

filter’s highly nonlinear nature makes it difficult to theoretically

analyze the relationship between its input and output. Bovik

was able to demonstrate that median filtering often produces

constant or nearly constant regions called streaks within an

image [10]. Bovik analyzed this phenomenon quantitatively

and obtained the probability that the median values stemming

from overlapping windows are equal [10].

Early forensic work capable of detecting median filtering

made use of fingerprints left by a digital camera’s color filter

array (CFA) pattern and interpolation coefficients. Swami-

nathan et al. modeled tampering operations as linear filters,

then estimated the tamper filter applied to an image using blind

deconvolution with the CFA pattern and interpolation coeffi-

cients as constraints [11]. Chuang used a similarly constrained

blind deconvolution algorithm to estimate the empirical fre-

quency response of a tampering operation [12]. While these

early techniques can successfully detect median filtering, they

require either an accurate estimate or direct knowledge of the

camera model used to capture an image. As a result, their

performance is sensitive to the training data used.

Kirchner and Fridrich proposed a pair of median filter de-

tectors inspired by the streaking artifacts discovered by Bovik

[1]. To identify the presence of streaking artifacts in an image

, Kirchner and Fridrich examined statistical properties of

the image’s first order pixel difference:

(2)

where

and is the pixel value at point , , . Defining

the histogram of values as ,

they proposed a simple median filtering detector that operates

by comparing the ratio to a decision

threshold. Additionally, they proposed a more robust detector

using subtractive pixel adjacency matrix (SPAM) features.

The set of SPAM features are the set of distributions of a first

order pixel difference conditioned on each possible value of

the neighbor first order difference [15]. Kirchner and Fridrich

demonstrated that SPAM features can be used to detect me-

dian filtering in high to medium quality JPEG compressed

images. The detector’s performance degrades, however, as the

JPEG’s quality factor decreases. This is particularly true at

low probabilities of false positive. Additionally, since a large

number of observations are required to obtain good estimates

of these conditional first order difference distributions, SPAM’s

performance degrades as the number of pixels in an image

or image window decreases which was indicated in [2]. This

is particularly important when performing localized median

filtering detection through block-wise analysis.

Similarly, the authors of [3] proposed detecting median fil-

tering by analyzing the probability that an image’s first order

pixel difference will be zero in textured regions. Furthermore,

they demonstrated that their technique can distinguish median

filtering from rescaling, Gaussian filtering, and average filtering.

While they were able to demonstrate that this technique can very

effectively detect median filtering in uncompressed images, its

performance degrades significantly in JPEG compressed im-

ages.

The median pixel values obtained from overlapping filter

windows related to one another since overlapping windows

share several pixels in common. Yuan proposed detecting

median filtering by measuring the relationships among pixels

within a 3 3 window [2]. This is done by extracting a set of

44 features, known as the median filtering feature set (MFF),

(1)
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Fig. 1. Example showing (a) an image, (b) its first order difference, and (c) its median filter residual.

from an image. These sets include features such as the distri-

bution of the block median pixel value and the distribution

of the number distinct gray levels within a window. Yuan [2]

demonstrated that the MFF method can achieve comparable or

better performance than the SPAM on both high and moderate

quality JPEGs and when detecting median filtering on small

image windows. However, as with the Kirchner and Fridrich’s

technique, the performance of Yuan’s technique decreases

as the JPEG quality factor is lowered or as the image size

examined shrinks.

The authors in [24] calculated the edge based prediction ma-

trix (EBPM) of different kinds of image edges and obtained

72 dimensions of prediction coefficients to differentiate median

filtering. They use a prediction model of the pixel values in

image regions with different gradients and capture statistical re-

lationships between nearby pixels to perform median filtering

detection. In their recent work [4], they exploited cumulative

distribution function of 1st-order and 2nd-order image differ-

ence as fingerprints to construct the global probability feature

set (GPF). They also used the local correlations between dif-

ferent adjacent image difference pairs to construct the local cor-

relation feature set (LCF). They finally used GPF and LCF to

construct a new feature set GLF of 56 dimensions. Their method

achieved good performance for low resolution and JPEG com-

pression.

III. AR MODEL OF MEDIAN FILTER RESIDUAL

Existing median filtering detectors extract their detection fea-

tures directly from the pixel values or the pixel difference of the

image being examined. As a result, image content such as edge

or texture information and the block artifacts from JPEG com-

pression may interfere with attempts to capture statistical traces

of median filtering. Take for example the first order pixel dif-

ference used by several detectors [1], [3], [4].Fig. 1 shows an

image along with its first order pixel difference taken in the hor-

izontal direction. We can clearly see in this figure that the first

order difference contains a great deal of the image’s edge con-

tent. This edge information and the block artifacts may affect the

conditional first order difference distributions used by SPAM to

detect median filtering. We note that while the MFF feature set

does not include first order pixel differences, the MFF features

are similarly affected by edge content.

To suppress both image content and block artifacts, and de-

velop a more robust median filtering detection technique, we

propose extracting detection features from the difference be-

tween a median filtered version of an image and the image itself.

We refer to this difference as an image’s median filter residual

(MFR), which we formally define as

(3)

where is original pixel value at point and

is median filtered value of . In this work, we use

when calculating an image’s MFR. We can see from Fig. 1(c)

that the median filter residual contains less edge information

than the first order pixel difference.

To understand how the MFR can be used to detect median

filtering in an image , let us examine properties of the MFR

when is unaltered and when has been median filtered. Me-

dian filtering detection can be framed as differentiating between

the following two hypotheses:

: is not a median filtered image, i.e., , where

is an unaltered image.

: is a median filtered image, i.e., .

We note that the median filter window size used to obtain the

MFR need not be the same as the median filter window size

used when altering the image.

Under hypothesis , is equal to an unaltered image ,

therefore

(4)

and

(5)

In this scenario, the value of could potentially be equal to

the value of for any that lies in the median

filter window surrounding . An example of this is shown
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Fig. 2. Example showing (a) the median filter window of the MFR of a pixel under hypothesis , and (b) the overlap between of the median filter windows

of the MFR (in red and blue) under hypothesis along with (c) the modifying median filter window (in red) and the effective

median filter window of the MFR (in blue) of a pixel under hypothesis , and (d) the overlap between the median filter windows of the MFR (in red and blue)

under hypothesis . In this example, and .

in Fig. 2(a), where the pixel value (shown in red) can be

equal to the value of any in the dashed red box. Because

of this, any two distinct MFR values and

could have terms corresponding to the same value as long

as , . This is illustrated in Fig. 2(b), where two

windows with less than pixels displacement will overlap.

Under hypothesis , is equal to a median filtered version

of , i.e.,

(6)

As a result

(7)

and

(8)

The value of can be equal to the value of for any

that lies in the median filter window surrounding

. However, the value can be equal to the value of

for any that lies in the median filter window

surrounding . As a result, value of can be equal to

the value for any in the

window surrounding . An example of this is shown in

Fig. 2(c). Because of this, under hypothesis any two distinct

MFR values and could have terms

corresponding to the same value as long as , .

This phenomenon is shown in Fig. 2(d).

Let us refer to the window over which the term of two dif-

ferent values can correspond to the same value as the shared

value window. Examining the shared value window under each

hypothesis, we can observe the following:

: The MFR’s shared value window is of size .

: The MFR’s shared value window is of size

.

Because the size of the shared value window changes under each

hypothesis, the relationship between and its neighbors

will also change under each hypothesis.

To capture this effect using a feature set of low dimension-

ality, we fit the MFR to an autoregressive (AR) model. Because

an AR model essentially performs linear prediction, the values

of the AR coefficients depend heavily on how the MFR values

of nearby pixels relate to one another. Since the shared value

window of the MFR is smaller under hypothesis than under

, the coefficients of the AR model will be substantially dif-

ferent if the image in question has been median filtered. As a

result, we use the AR coefficients of the MFR as features when

performing median filtering detection.

To further reduce the dimensionality of ourmodel, we assume

that an image’s statistical property is the same in the horizontal

and vertical directions. Using this assumption along with the

fact that median filter windows are symmetric, we fit the MFR

to a one dimensional AR model in the row direction

(9)

and in the column direction

(10)
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Fig. 3. Plot of the first three AR coefficients of the MFR for (a) unaltered images (red) and the 3 3 median filtered images (blue); (b) JPEG 70 compressed

images (red) and the 3 3 median filtered then JPEG 70 compressed image (blue) in UCID database.

Fig. 4. Average AR coefficients of the MFR from unaltered images (red), the 3 3 median filtered images (blue), and the 5 5 median filtered images (green),

respectively.

where and are the prediction errors [20] in

the row direction and column direction respectively, refers to

order of AR model and and are the AR coefficients

in the row direction and column direction respectively. We then

average the AR coefficients in both directions to obtain a single,

one dimensional AR model.

Fig. 3(a) shows the first three AR coefficients of

the MFR extracted from both unaltered and median filtered ver-

sions of images in the Uncompressed Color Image Database

(UCID) [18]. Fig. 3(b) shows the first three AR coefficients of

the MFR extracted from the same images after they have under-

gone JPEG compression with quality factor of 70. From these

figures, we can clearly see that the unaltered and median filtered

images can be separated on the basis of the MFR’s AR coeffi-

cients. Furthermore, these figures show that JPEG compression

has little effect of the ability to separate median filtered from

unaltered images on the basis of their MFR’s AR coefficients.

This demonstrates the robustness of the MFR’s AR coefficients

to JPEG compression.

Fig. 4 shows the average value of thefirst 30ARcoefficients of

each image in theUCID. From this figure, we can see that theAR

coefficient valuesdiffer onaverage for roughly thefirst 10ARco-

efficients. After this point, theAR coefficients are approximately

the same regardless of whether or not an image was median fil-

tered. Additionally, this figure shows that the largest AR coeffi-

cientoccurs at different ’s dependingonwhether ornot an image

wasmedianfiltered.This reinforces the notion that theARcoeffi-

cients aregood features formedianfilteringdetection.
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To identify median filtering, we use a support vector machine

trained on the first 10 AR coefficients of the MFR. While we

have experimentally found that using 10 AR coefficients results

in a desirable tradeoff between detection accuracy and the di-

mensionality of the feature space in the detection of both 3 3

and 5 5 median filtering, we have observed that 3 3 median

filtering detection can still be accurately performed using as few

as 4 AR coefficients. We note that the SPAM features proposed

by Kirchner and Fridrich are 686 dimensions [1], the GLF [4]

features are 56 dimensions, and the MFF features proposed by

Yuan [2] are 44 dimensions. Since our method uses only 10 fea-

tures, we are able to achieve a 1 to 2 order of magnitude reduc-

tion in the dimensions of the feature vector.

Our complete median filtering detection technique can be

summarized as follows

1. Calculate an image’s MFR using (3).

2. Fit the MFR to an AR model of order 10 in the row direc-

tion and in the column direction using all MFR values.

3. Average corresponding AR coefficients across each model

acquired in Step 2 to obtain a single AR model.

4. Input the AR coefficients to an SVM trained to classify

between median filtered and unaltered images.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of our proposedmedian filtering

detector and to compare its performance to existing median fil-

tering detection techniques, we tested our proposed technique

along with several others on UCID [18] and a composite image

database which contains 6690 different kinds (such as raw im-

ages, rescanned images and rescaled images) of images from

UCID, the BOSS RAW database (BR) [25], the BOWS2 image

database (BOWS2) [26], the Dresden Image Database (DID)

[27] and the NRCS Photo Gallery (NRCS) [28]. Each database

(UCID, BR, BOWS2, DID, NRCS) contributes 1338 images

with size of 512 384 to compose the composite image data-

base. These databases are widely used to evaluate the perfor-

mance of forensic techniques [2]–[7], and they are described in

detail in [2] and [4]. The UCID database consists of 1338 un-

compressed RGB images of size 512 384. The images in the

other four databases (BR, BOWS2, DID, NRCS) are cropped

to the size of 512 384 from the center of its full size source

images. Then all color images were first converted to gray scale

images before further processing. Median filtered images were

generated by performing 3 3 median filtering and 5 5 me-

dian filtering on the unaltered gray-scale images. Each unal-

tered and median filtered image was then saved in both its un-

compressed state and JPEG compressed state using a variety of

quality factors ranging between 90 and 30.

We compared our proposed AR method with the SPAM

method [1], the MFF method [2], and the GLF method [4].

We performed SVM training and testing for each of the four

methods in the same manner. To perform classification, we

used a -SVM with a Gaussian kernel [19]

During cross-validation, once a training set was selected, we

found the best kernel parameters for the SVM by performing an

additional five-fold cross-validation in conjunction with a grid

search. The grid search for the best parameters was performed

on the multiplicative grid .

Once the best parameters were identified, we used those param-

eters to get the classifier model on the entire training set. We

then use the trained classifier model to perform a classification

on the testing set.

Experimental results were reported on the UCID database in

items A)-D), and on the composite database in items E). Four-

fold cross validation was used to evaluate the effectiveness of

each approach when testing on the UCID database. Specifically,

the images in the UCID database were randomly divided into

four folds of nearly equal size. In each repetition, the training

set was composed of three folds (about 1003 images), while the

remaining fold was used as the testing set (about 335 images).

After four-fold cross-validation testing, we can obtain the detec-

tion results and ROC curve of all 1338 images in UCID data-

base.

In real world scenarios, an investigator must often perform

detection with a low probability of false positives. Because of

this, each detector’s performance at low false positive rate is

critical. To take this into account, we report the performance

of each detection technique at a low false positive rate such as

1%. Additionally, we report the minimal average decision error

of each technique under the assumption of equal priors and

equal costs,

(11)

where and denote the false positive (FP) and true posi-

tive rates (TP), respectively.

A. Detecting Globally Applied Median Filtering

To measure the performance of our proposed method under

ideal conditions, we performed median filtering detection on the

set of uncompressed images. The results of this experiment are

shown in Fig. 5(a) and (b)which show ROC curves obtained for

each detection technique when tested against images modified

using 3 3 and 5 5 median filters respectively. In Fig. 5(a),

“Original VS MF3” denotes that the original unmodified image

set versus the 3 3 median filtered image set. From these re-

sults, we can see that all four methods have comparable perfor-

mance and achieve perfect or nearly perfect detection.

Next, we tested each technique’s ability to detect 3 3

median filtering in images that were JPEG compressed using

quality factors ranging between 90 and 30. ROC curves

obtained from these experiments are shown in Fig. 6 and

significant results are listed in Table I.“MF3+JPEG70” denotes

the composite operation of median filtering followed by JPEG

compression with quality factor (QF) 70. For each JPEG

quality factor test, our detector achieved a lower than all

other three methods. Additionally, the ROC curves show that

our detector achieved a higher than all other detectors at all

Rates. This is especially true at low false positive rates. At

, our detector achieved a when testing

on images compressed using a quality factor of 70, while the

MFF detector achieved a , and the GLF detector
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Fig. 5. ROC curves showing 3 3 median filtering (a) and 5 5 median filtering (b) detection performance on uncompressed images.

TABLE I

AND AT FOR MEDIAN FILTERING DETECTORS AGAINST JPEG COMPRESSION.

(THE BEST RESULT FOR EACH TRAINING–TESTING PAIR IS DISPLAYEDWITH BOLD TEXTS.)

achieved a and the SPAM detector achieved

a . This corresponds to improvements of

41.4%, 22.0% and 70.6% respectively. Similarly for images

compressed using a quality factor of 50, our detector achieved

a at , while the MFF, GLF and

SPAM detectors achieved , , and

respectively. This corresponds to improve-

ments of 55%, 47.1%, and 86.9% respectively. These results

demonstrate that our proposed detection method is more robust

to JPEG compression than existing techniques. It can also be

observed from Table I and Fig. 6 that our detection method’s

advantage over the other three methods increases as the JPEG

quality factor decreases.

A similar improvement in performance over the state-of-

the-art MFF and GLFmethods were observed when we repeated

the experiment using 5 5 median filtering. Detailed results

of this experiment are shown in Table I. From Table I, we can

see that our proposed method achieved a larger

at than the other three methods for images com-

pressed with a quality factor of 30. These experimental results

show that the performance of the AR classifier remains strong

when the JPEG compression quality factor is as low as 30 in

detection of 5 5 median filtering.

B. Detecting Median Filtering in Low-Resolution Images and

Image Windows

The ability to detect median filtering in low-resolution images

and image windows is essential for detecting forgeries when a

portion of a median filtered image is inserted into a nonmedian

filtered image. To test each detector’s performance on small

image windows, we created a database to test image blocks by

cropping a block of size 128 128, 64 64 and 32 32 from

the center of an image. The state of the art median filtering de-

tectors when operating on small image windows are the MFF

method [2] and the GLF method [4]. For the sake of brevity, we

only compared our method with both the MFF method and the

GLF method on JPEG 70 compressed images. ROC curves ob-

tained from this experiment are shown in Fig. 7.

From Fig. 7, we can see that the performance of our pro-

posed AR detector is stronger than that of the MFF and GLF

detectors for blocks with sizes as low as 32 32. Our AR

method achieved a at when testing

on 128 128 pixel blocks compressed with a quality factor

of 70, while the GLF and MFF methods achieved a of

28.6% and 9.8% respectively at . This corresponds

to improvements of 41.1% and 59.9% compared with GLF



KANG et al.: ROBUST MEDIAN FILTERING FORENSICS USING AN AUTOREGRESSIVE MODEL 1463

Fig. 6. ROC curves showing 3 3 median filtering detection performance on (a) JPEG 90 compressed images, (b) JPEG 70 compressed images, (c) JPEG 50

compressed images, and (d) JPEG 30 compressed images. Different scales were applied on axis and axis for clear demonstration.

Fig. 7. ROC curves showing 3 3 median filtering detection performance on JPEG compressed images of size 128 128 (left), 64 64 (middle), 32 32 (right).

and MFF. For blocks of size 64 64, our detector achieved

a at . For 32 32 pixel blocks, our

detector achieved a at . We obtained

similar results when testing on blocks from images modified by

5 5 median filtering.

An example of a cut-and-paste image forgery and corre-

sponding forensic detection results were shown in Fig. 8.

Fig. 8(a) shows the 3 3 median filtered image from which

an object (the woman on the left) was cut. Fig. 8(b) shows

the unaltered image into which the cut object was pasted.

Fig. 8(c) shows the composite image, which had been JPEG

compressed using a quality factor of 70. In order to detect

the forgery, the composite image was first segmented into

128 128 pixel blocks, then each block was tested for evi-

dence of locally applied median filtering. In this example, each

detection method tested was trained on 128 128 pixel blocks

from images in UCID database that had been compressed using

a quality factor of 70. Blocks corresponding to median filtering

detections are boxed and outlined in red. Fig. 8(d) shows the

result of blockwise detections on the composite image using

our proposed AR method. In this example, each of the outlined

blocks contains pixels corresponding to the inauthentic object

and the pasted object can be detected correctly using our

proposed AR method. Fig. 8(e) shows the result of blockwise

detections on the composite image using the GLF method. In

this example, multiple false alarms occur and the detection rate
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Fig. 8. Cut and paste forgery detection example showing (a) the median filtered image from which an object is cut, (b) the unaltered image into which the cut

object is pasted, (c) the composite image which is JPEG compressed using a quality factor of 70. Blocks detected as median filtered are outlined in red boxes:

(d) blockwise detections using the AR method, (e) blockwise detections using the GLF method, and (f) blockwise detections using the MFF method.

is decreased. Fig. 8(f) shows the result of blockwise detections

on the composite image using the MFF method. In this case,

the inauthentic object cannot be located with the MFF method

correctly. This example shows that our method achieves the

best performance in the cut-and-paste forgery detection.

C. DistinguishingMedian Filtering From Other Manipulations

Identifying the particular operation used to alter an image

is an important forensic problem. This can be difficult in the

case of median filtering, because several other operations such

as linear smoothing and resizing leave behind similar forensic

traces.

We tested the ability of our proposed AR method, along with

the SPAM,GLF andMFFmethods, to differentiate betweenme-

dian filtering and other popular tools, including 3 3 Gaussian

filtering with (GAU), 3 3 average filtering (AVE),

upscaling (UpRes) and downscaling (DownRes). Bilinear inter-

polation was used to perform both upscaling and downscaling.

The upscaling factor was set to 1.1, while the downscaling factor

was 0.9.

To achieve a baseline measure of the performance of each

technique, we first evaluated their ability to distinguish median

filtering from other operations in uncompressed images. Our ex-

perimental results show that under these ideal conditions, each

technique was able to distinguish median filtering from other

operations perfectly (i.e., each technique achieved a ).

Next, we evaluated the performance of each technique on

images that had been JPEG compressed using a quality factor

of 70. This experiment reflects conditions more likely to be

encountered by a forensic examiner in a real world scenario.

ROC curves displaying the performance of method are shown

in Fig. 9 for 3 3 median filtering. Additionally, detection re-

sults showing the and at are displayed in

Table II for both 3 3 and 5 5 median filtering.

These experimental results show that our method can dis-

criminate between median filtering and other operations with

high accuracy. As can be seen in Table II, the worst value

achieved by our detector among the four manipulations was

only 2.3%. Furthermore, these results show that our method can

achieve substantial performance gains over the other techniques

at low false positive rates. For example, when testing against im-

ages which had been modified by Gaussian blurring and down-

scaling, our method achieved a and

respectively at for 3 3 median filtering. At the

same false positive rate, the best results of other three methods

were achieved by GLF and its , 69.3% respec-

tively.

In practical settings, it is likely that an investigator will need

to distinguish between median filtering and a collection of other

operations rather than a single, known operation. To evaluate

our proposed forensic technique’s ability to do this, we pooled

all of the images used in the previous experiments that were

JPEG compressed with a quality factor of 50 into two different

classes. Class1 contained the 13383 3 median filtered images,

while Class2 was made up of 1338 images randomly chosen

from the sets of unaltered images and images modified by av-

erage filtering, Gaussian filtering, upscaling, and downscaling.

We then used the proposed AR method along with MFF, GLF
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Fig. 9. ROC curves showing each technique’s ability to discriminate 3 3 median filtering fromGaussian filtering (top left), average filtering (top right), upscaling

(bottom left), and downscaling (bottom right) in JPEG compressed images using a quality factor of 70. Different scales were applied on axis and axis for clear

demonstration.

TABLE II

AND AT OF DISTINGUISHING MEDIAN FILTERING FROM OTHER MANIPULATIONS.

(THE BEST RESULT FOR EACH TRAINING–TESTING PAIR IS DISPLAYEDWITH BOLD TEXTS.)

and SPAMmethods to distinguish between the two classes. The

four-fold cross validation method was also used in this experi-

ment.

ROC curves displaying the experimental performance of each

technique with different image sizes are shown in Fig. 10. In

Fig. 10, “ALL VS MF3 + JPEG 70” denoted that the images in

both Class 2 and Class 1 were JPEG compressed with a quality

factor 70. These results show that our proposed AR method

can distinguish between median filtering and other operations

better than other three techniques, especially on small sized im-

ages. On image sizes of 128 128 at a false positive rate of

, our proposed technique achieved a .

By contrast, the SPAM, the GLF and MFF techniques achieved

, and 51.1% respectively. This cor-

responds to improvements of 64.5%, 18.0% and 39.0% respec-

tively.
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Fig. 10. ROC curves showing each technique’s ability to discriminate median filtered images from nonmedian filtered images with size of 512 384 (left) and

128 128 (right).

Fig. 11. ROC curves showing each technique’s ability to discriminate 3 3

median filtering (MF3) from 5 5 median filtering (MF5) on JPEG compressed

images using a quality factor of 70.

D. Differentiating 3 3 Median Filtering From 5 5 Median

Filtering

Once a forensic investigator has identified that an image has

been median filtered, they may wish to determine the window

size used during median filtering. We have found that our AR

method can differentiate between 3 3 and 5 5 median fil-

tering with high accuracy. To experimentally verify this, we cre-

ated 1338 3 3 and 1338 5 5 median filtered versions of each

image in the UCID, and then JPEG compressed them with a

quality factor of 70. Next, we used our proposed method along

with the MFF, the GLF and SPAM techniques to distinguish be-

tween 3 3 and 5 5 median filtering. ROC curves showing

the results of this experiment are displayed in Fig. 11. From

these results, we find that at a false positive rate of ,

our ARmethod achieved amuch higher than other

three methods. The MFF, GLF and SPAM techniques achieved

, and respectively.

This corresponds to improvements of 83.9%, 54.1% and 36.0%

respectively. These results show that our proposed technique

can identify the median filter’s window size more accurately

than existing techniques.

E. Detection Results on a Composite Database

In addition, we evaluated the performance of our detector

on the previously mentioned composite database consisting of

6690 images of size of 512 384 pixels. When testing on this

database, the training set was chosen to contain 2676 images

(40% of the database size) while the testing set contained

the remaining 4014 images. Because the training and testing

sets were sufficiently large, four-fold cross validation is not

applied on the composite database. The setup is similar to

Items A)-D).

First, we evaluated each technique’s ability to detect 3 3

median filtering in images that were JPEG compressed using

quality factor 70. The results of this experiment are shown in

Fig. 12(a). From this figure, we can see that our AR method

outperforms all other three methods. At a false positive rate of

, the AR, GLF, SPAM and MFF methods achieved

true positive rates of , ,

and respectively. Next, we repeated this exper-

iment on images sized 128 128 pixels. These small images

were cropped from the center of each full sized image in the

composite database. The results of this experiment are shown in

Fig. 12(b). These results demonstrate that our method is able to

outperform all other techniques on small images and image win-

dows. At , our method achieved a . This

corresponds to a improvement of 10.5% over the second

best performing GLF method.

All previous experiments using JPEG compression applied

JPEG postcompression, that is, JPEG compression performed

after median filtering. As JPEG compression is a popular image

format, we tested whether JPEG compression before median fil-

tering affected the performance of each detection technique. In

this experiment, images in the Class 1 were first JPEG com-

pressed using a quality factor of 90, then 3 3 median filtered,

and finally saved in JPEG format with a quality factor of 70. Im-

ages in the Class 2 were JPEG compressed using a quality factor

of 70. We then used each technique to perform median filtering

detection and used the results to obtain the ROC curves shown

in Fig. 12(c). In Fig. 12(c), Class 1 and Class 2 are denoted as

“JPEG +MF3+JPEG 70” and “JPEG” respectively. From these

results, we can observe that our proposed method is more robust

against JPEG precompression and achieves best performance

among all four methods. JPEG precompression has little effect

on our proposed method in differentiating the two classes when

comparing Fig. 12(a) with Fig. 12(c).
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Fig. 12. ROC curves show each technique’s performance on the composite database for 3 3 median filtering detection on (a) images of size 512 384 and

(b) images of size 128 128. Plots in (c) demonstrates each method’s ability to detect 3 3 median filtering when images of size 512 384 were preprocessed

by JPEG compression with .

V. CONCLUSION

In this paper, we have proposed a new, robust median filtering

detection technique. To reduce interference from an image’s

edge content and the block artifacts from JPEG compression,

we proposed gathering detection features from an image’s me-

dian filter residual. Specifically, we built a one dimensional AR

model of an image’s MFR and used the AR coefficients as me-

dian filtering detection features. Our AR features achieved a one

to two order of magnitude reduction in the dimensionality of the

detection feature space used by existing techniques such as the

SPAM and MFF methods. We then used these features to train

a support vector machine to perform median filtering detection.

Through a series of experiments, we have demonstrated that

our proposed median filtering forensic technique outperforms

existing detectors under a variety of scenarios. Our experimental

results have shown that our technique can detect median fil-

tering in images that have been JPEG compressed using quality

factors as low as 30. We have demonstrated that our technique

can identify median filtering in small image blocks. Using these

results, we have shown that our proposed detector can be used to

identify cut-and-paste forgeries. Additionally, our experimental

results show that our proposed technique can more reliably dis-

tinguish between median filtering and rescaling editing opera-

tions than existing median filtering forensic techniques.

Our experimental results have shown that our detector

achieves substantial performance gains over existing forensic

techniques when the false positive rate is held low (e.g.,

). Because median filtering detection must often be

performed at low false positive rates, these results demonstrate

that our proposed technique is better suited for use in real world

scenarios than existing techniques.
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