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ABSTRACT Median filtering (MF) is frequently applied to conceal the traces of forgery and therefore

can provide indirect forensic evidence of tampering when investigating composite images. The existing MF

forensic methods, however, ignore how JPEG compression affects median filtered images, resulting in heavy

performance degradation when detecting filtered images stored in the JPEG format. In this paper, we propose

a new robust MF forensic method based on a modified convolutional neural network (CNN). First, relying

on the analysis of the influence on median filtered images caused by JPEG compression, we effectively

suppress the interference using image deblocking. Second, the fingerprints left by MF are highlighted via

filtered residual fusion. These two functions are fulfilled with a deblocking layer and a fused filtered residual

(FFR) layer. Finally, the output of the FFR layer becomes input when extracting multiple features for further

classification using a tailor-made CNN. The extensive experimental results show that the proposed method

outperforms the state-of-the-art methods in both JPEG compressed and small-sized MF image detection.

INDEX TERMS Median filtering, convolutional neural networks, robust forensics, JPEG compression,

image deblocking.

I. INTRODUCTION

As the software for image processing improves, malicious

users can now achieve their purposes by easily generating

forged images. As a result, the originality, authenticity, and

integrity of images are increasingly a public concern. Image

forensics aims to restore trust in images and increase the

difficulties when forging images. Recently, many kinds of

forensic techniques for digital images were invented [1],

such as techniques for detecting compositing [2]–[9], and

retouching [10]–[29].

Compositing forensic techniques reveal manipulations

that add or remove objects in composite images. These

approaches use fingerprints, such as inconsistent direc-

tion of illumination [2]–[4], shading and shadows [5], [6],

color [7], [8], and photo response non-uniformity [9] to detect

image compositing. These fingerprints however, can be hid-

den by retouching that improves the visual quality of the

forged images. Thus, compositing forensic techniques face

challenges when detecting retouched composite images.

Retouching forensic techniques are designed to detect the

adjustment of the visual quality of images, such as median

filtering [10]–[23], contrast enhancement [24]–[27], com-

pression [28], and resampling [29]. Each of these types of

adjustments is probably used to conceal traces of image com-

positing. When retouching manipulations appear in images,

they alert users that an image might be altered. Therefore,

retouching forensic techniques identify a type of retouch-

ing manipulation, but also provide indirect evidence when

investigating a composite image subjected to retouching

manipulations.

This paper focuses on median filtering (MF) forensics.

Previous researchers offered a lot of contribution for MF

forensics. There exist three categories of MF forensic meth-

ods, i.e., threshold-based methods [10], [11], SVM-based

methods [12]–[19], and CNN-based methods [20]–[23].

In the threshold-based methods, Kirchner and Fridrich [10]

invented an image feature derived from histogram bins of

the first-order difference image. Cao et al. [11] designed an
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image feature based on the probability of zero values on

the first-order difference map in texture regions. Then they

both employed the features to detect MF images by thresh-

olding classification. While these methods are of splendid

simplicity—just relying on a scalar feature—it turned out that

they cannot detect MF in images which are filtered and then

JPEG compressed.

In order to improve the robustness of MF foren-

sic methods, support vector machine (SVM) [30], [31],

an advanced machine learning technique was combined

with higher dimensional feature sets to detect MF images.

Kirchner et al. [10] combined the subtractive pixel adja-

cency matrix [12] features with SVM to detect MF images.

Yuan [13] found MF significantly affects either the order or

quantity of the gray levels in every filtered image window.

Such a finding motivated his construction of a 44-D median

filtering forensics feature set, which contained five groups of

features over all image blocks. Chen et al. [14] presented the

global probability feature set and local correlation feature set,

relying on the empirical cumulative distribution function and

correlation between adjacent difference pairs in the difference

domain, respectively. Kang et al. [15] utilized the first ten

coefficients of the autoregressive model (AR) for median

filtered residual as a feature set. Zhang et al. [16] applied

the second-order local ternary pattern to investigate MF from

the angle of microtexture structures. Niu et al. [17] fused

local binary patterns and pixel difference matrix to generate

a feature set. Motivated by the work in [15], Yang et al. [18]

combined the 2-D AR coefficients of median filtered residual

(MFR), average filtered residual (AFR), and gaussian filtered

residual (GFR). Wang et al. [19] used the coefficients in

image frequency domain as a feature set. The SVM-based

methods are more robust than the threshold-based methods

when dealing with small size and JPEG compressed MF

images. But their performance still suffers heavy degradation

when the quality factor of JPEG compression was lower than

90.

In recent years, motivated by the successful instances

applying convolutional neural networks (CNNs) [32], [33]

in image forensics [34]–[40], some researchers proposed

CNN-basedmethods to detectMF images and achieved better

performance. Chen et al. [20] first attempted to introduce

CNNs into MF forensics. They added a MFR layer in front of

a classical CNN to make it suit to MF forensic tasks. Bayar

and Stamm [21], [22] designed a constrained convolutional

layer for general forensic purpose. Jin et al. [23] explored

the dark channel residual and a generative adversarial

network [41] to detect RGB color MF images.

The abovementionedmethods focus to improve the robust-

ness when dealing with small size and JPEG compressed MF

images. In daily life, we often save images as JPEG format.

Thus, median filtered images are probably performed JPEG

compression. In addition, the tampering localization relies on

the detection of small size MF images. Existing MF forensic

methods however, just depend on high dimensional feature

sets or trendy machine learning techniques to improve their

JPEG-robustness, without analyzing how the manipulation of

JPEG compression affects median filtered images. As shown

in Fig. 2 (c), the manipulation of JPEG compression gen-

erates the visible blocking artifacts extending all over the

compressed image. MF classifiers confuse the blocking arti-

facts with the image texture, while the latter contains the

key image features in MF forensic tasks. Therefore, the MF

image features cannot be accurately extracted, resulting in

poor performance onMF detection under JPEG compression.

In order to improve the robustness of MF forensic methods,

we propose to detect MF not only in small size images,

but also in JPEG compressed ones. The main strategy relies

on image deblocking methods [42]–[46], which significantly

reduce the blocking artifacts caused by JPEG compression.

Besides powerful preprocessing methods, selecting appro-

priate machine learning techniques is also important. Among

existing MF forensic methods, CNN-based methods are the

most advanced, because they extract multiple features auto-

matically and outperform other methods. However, when we

choose classical CNNs to learn MF image features, it is

necessary to modify the networks, because they were tai-

lored for target recognition [20]–[23]. Therefore, in our work,

we propose a fused filtered residual (FFR) layer to combine

MFR, AFR, and GFR into a filtered residual image, which

helps our CNN extract more accurate features. Additionally,

we elaborately design a CNN framework, making it available

to perform our MF tasks.

In this paper, we propose a novel robust MF forensic

method using image deblocking and filtered residual fusion.

In our proposedMF forensic CNN, we add a deblocking layer

and FFR layer in front of a tailor-made CNN framework. The

main contributions of our work are summarized as follows:

1) Unlike existing MF forensic methods, our method

starts from the analysis of the influence on median

filtered images caused by JPEG compression and then

effectively reduces the influence via image deblock-

ing. This strategy can be used for other JPEG-robust

forensic tasks.

2) Thanks to our proposed FFR layer, our CNN extracts

more accurate features and achieves performance

improvement.

3) Our method outperforms the existing MF forensic

methods in detecting both small size and JPEG com-

pressed MF images.

II. MEDIAN FILTERING FORENSIC CNN

A. OVERALL ARCHITECTURE

In our preliminary experiments, we accepted potentially-

filtered images directly as the input of classical CNNs, such as

AlexNet and VGG, but did not get the expected performance.

There are three reasons causing the poor results: Classi-

cal CNNs were tailored for recognizing objects in images,

but MF just changes the texture of an image, rather than
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FIGURE 1. Overall architecture of our proposed MF forensic CNN. Layer types and parameter
sizes (choices) are displayed inside boxes. Sizes of convolution kernels in the boxes follow (number of
kernels) × (height × width). To increase the convergence rate and decrease the information loss when
information travels through multiple layers, every convolutional layer is followed by rectified linear
unit (ReLU) activations [46]. The first and second fully connected layers both have 4096 neurons and are
equipped with a ‘‘dropout’’ function [32] that inhibits overfitting. The last fully connected layer has two
neurons. Its output feeds into a two-way softmax layer, to produce class probabilities. Using the group
technique [32], the training module was divided into two groups. The weights in the network are
initialized with Gaussian initialization, Stochastic Gradient Descent (SGD) optimizer is used as the
optimization solver.

the image content, as shown in Fig. 2 (b). In other words,

in a potentially-filtered image, image content becomes redun-

dant information passively with strong influence on CNNs

when training on MF image features. Secondly, as shown

in Fig. 2 (c), JPEG compression produces the block-ing

artifacts and therefore strongly confuses classifiers. Thirdly,

the frameworks of classical CNNs need to be optimized for

MF forensic tasks. Hence, we designed a deblocking layer,

a FFR layer and a tailor-made framework as described in

detail in Section B and C, based on the three following

ideas: The FFR layer suppresses the interference caused by

image content, so the fingerprints left by MF are success-

fully exposed. Secondly, the deblocking layer import-antly

reduce the blocking artifacts in potentially-filtered images

after JPEG compression. Last but not least, the opti-mized

CNN framework increases the efficiency and perfor-mance

of our method. Figure 1 shows the overall architecture and

parameters of the proposed MF forensic CNN.

As shown in Fig. 1, the workflow preprocesses input

images in the deblocking and FFR layers. A tailor-made

CNN learns image features from the processed images; three

groups of convolutional modules and a classification module

comprise the tailor-made CNN. In the classification module,

the softmax function, which returns the class probability,

is defined as

σ (zj) =
ezj

∑K
k=1 e

zk
for j = 1, ...,K (1)

where K is the number of classes, z is the vector consisting of

K output values of the last layer, and the softmax probability

of the j-th class, σ (zj), is in the range of [0, 1].

Our network is optimized by minimize the following

objective loss function

L = −

K
∑

j=1

yj log σ (zj) (2)

where yj ∈ {0, 1} is the ground truth label of the j-th class.

Unlike classical CNNs, the first module of our CNN is a

pre-processing module containing the deblocking and FFR

layers.

B. DEBLOCKING LAYER

Median filtering, an order statistic operation is implemented

by replacing each pixel value in an image with the median of

its neighboring pixels. When performing MF, the values of

neighboring pixels in filtered images are non-linear mapping

to closer values, and therefore the image is strongly smooth-

ed [48]. This results a wide gap between the image texture of

MF images and original images, as shown in Fig. 2 (a)-(b).

Thus, image texture contains the key MF image features.

JPEG compression is a block-based transform coding [49],

which usually introduces annoying blocking artifacts in com-

pressed images [42]–[46]. As seen in Fig. 2 (c), there are

visible blocking artifacts extending all over the compressed

images. MF classifiers confuse the blocking artifacts with the

image texture, and therefore extract inaccurateMF image fea-

tures, resulting in poor performance on MF detection under

JPEG compression.

In order to reduce the blocking artifacts in JPEG com-

pressed images while preserving image quality, we designed

a deblocking layer that accepts a potentially-filtered image as

input and outputs its deblocked version.
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FIGURE 2. The influence on an original image caused by median filtering, JPEG compression,
and image deblocking. (a) an original image; (b) its 3 × 3 median filtered image;
(c) a compressed image generated by performing JPEG compression on the filtered image with a
quality factor (QF) of 70; (d) this compressed image were performed image deblocking.

Image deblocking aims to restore a JPEG compressed

image by approximating its original image, and therefore can

reduce the blocking artifacts in JPEG compressed images

while preserving image quality. In this paper, we solved the

problem of image deblocking through maximum a posteri-

ori (MAP) framework. Given an original image O and its

JPEG compressed image J , O can be obtained by

Õ = argmax
O

p(O |J ) (3)

Based on the Bayesian rule, Eq. (1) can be expressed as

Õ = argmax
O

In(p(J |O )) + In(p(O)) (4)

where J = In(p(J |O )) is the likelihood function, describing

the relationship between J and O, O = In(p(O)) is the

prior probability. Adopting the Gaussian quantization noise

model [42] to depict the first term in Eq. (4), we can formulate

it as

In(p(J |O )) = −
1

2σ 2
e

‖O− J‖22 (5)

where σe is the variance of Gaussian model, estimated by the

following empirical formulation [45]:

σ 2
e = 1.195 ∗ (ṡ)0.6394 + 0.9693, ṡ =

1

9

3
∑

i,j=1

M
q
[i,j] (6)

whereMq is the 8 × 8 quantization matrix.

Incorporating the above quantization noise model, the non-

convex low-rank prior model [43], [44] and the quantization

constraint prior model [50] into Eq. (4), it is formulated as an

optimization problem

(Õ, Z̃Gk ) = arg min
O,ZGk

1

2σ 2
e

‖O− J‖2F

+
α

2σ 2
s

K
∑

k=1

∥

∥RGkO− ZGk
∥

∥

2

F

+β

K
∑

k=1

F(ZGk ) s.t. O ∈ � (7)

where ZGk is a low-rank matrix, RGk is a matrix operator that

extracts patch fromO,F(ZGk ) is a non-convex surrogate func-

tion,� is the restricted solution space. Using the alternatively
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minimizing strategy [45], we get the closed-form solution, i.e.

Ȯ = (I +
σ 2
e α

σ 2
s

K
∑

k=1

RTGkRGk )
−1(J +

σ 2
e α

σ 2
s

K
∑

k=1

RTGkZGk ) (8)

where I is the identity matrix. By applying the projection

operation, we find the optimal feasible solution, that is

Õ = A−1P(A(Ȯ), l̂, û) (9)

where A is a block discrete cosine transform (DCT) matrix

operator, A−1 represents the inverse process, l̂ is a lower

bound vector, û is a upper bound vector [45].

Algorithm 1 Algorithm in the Deblocking Layer

1: Input: potentially-filtered images stored in JPEG format

2:Initialization:

3: Get J , Mq from the input images;

4: Set parameters α, β;

5: Set O(0) = J ;

6: Calculate σe by Eq. (6);

7: Determine the feasible solution space �;

8: For t = 1, ...T

9: Calculate Ȯ(t) by Eq. (8);

10: Update O(t) by Eq. (9);

11: End For

12: Output: Final deblocking result Õ = O(T )

In light of all derivations above, a detailed description of

algorithm in the deblocking layer is provided in Algorithm 1.

After five iterations, the optimized result is the final output

of the deblocking layer. As seen in Fig. 2 (d), the blocking

artifacts disappear after image deblocking.

C. FFR LAYER

After a compressed potentially-filtered image is processed

through the deblocking layer, the blocking artifacts are signif-

icantly reduced. The redundant image content (as described

in Section A) in the processed image however, needs to be

removed, as it heavily affects CNNs when training on MF

image features. Motivated by Yang et al. [18], we designed

a FFR layer for the output images of deblocking layer to

suppress the interference caused by image content, so the

fingerprints left by MF are successfully exposed.

At first, the FFR layer extracts the MFR, AFR, and GFR

of an input image, which can be described as

Rf (x, y) = I (x, y) − Îf (x, y) (10)

where Îf ∈ {median filtered image , average filtered

image , gaussian filtered image}, the subscript f is the index

of the filtered image, I is the original image.

Then, the three filtered residual images are combined into

a fused filtered residual image. The fusion procedure can be

formulated as the following energy function [51]:

Fi =





S
∏

f=1

Eτ (R
(f )
i )





1/S

(11)

where R(f ) is the f -th image in S input images with identical

size of all images N = Nx × Ny, Fi is the i-th pixel value in

fused image, i = 1, 2, ...,N , Eτ is defined as

Eτ (R) = − logmax(ψmin, 1 +
R

2(1 − τ )
−

1

2(1 − τ )
)

(12)

where ψmin is set by users. Setting a minimal value ψmin

prevents the nodes from becoming fixed to certain decisions.

We record an individual threshold τ
(f )
i for each pixel in

input images, and update it as follows:

τ
(f )
i =











τ (1)

τ
(f−1)
i + δ if f > 1 and R

(f−1)
i ≤ τ

(f−1)
i ,

τ
(f−1)
i − δ if f > 1 and R

(f−1)
i > τ

(f−1)
i ,

(13)

where τ (1) is an initial value, δ is the strength of the threshold

drift. The above algorithm in the FFR layer is summarized in

Algorithm 2.

Figure 3 shows the output image of the FFR layer. We first

compress an original image with a quality factor of 70 and

then perform image deblocking on the compressed image.

In contrast, the original image is first median filtered and

then JPEG compressed, finally performed image deblocking.

As seen in Fig. 3, the interference caused by image content

FIGURE 3. An original image and the output images of FFR layer following the deblocking layer.
(a) an original image; (b) the FFR of the image which is JPEG compressed with a QF of 70 and then
performed image deblocking; (c) the FFR of the image which is 3 × 3 median filtered in JPEG compression
with a QF of 70, and then performed image deblocking.
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Algorithm 2 Algorithm in the FFR Layer

1: Input: the output images of deblocking layer

2: Initialization:

3: Calculate the MFR, AFR, and GFR of input images by

Eq. (10);

4: Set parameters δ, ψmin, and τ
(1);

5: For f = 1, ...S

6: Update τ (f ) by Eq. (13);

7: Calculate E (f ) by Eq. (12);

8: End For

9: Calculate F by Eq. (11);

10: Output: Final FFR result F

FIGURE 4. ROC curves of the proposed and four existing methods for
distinguishing the median filtered images from the non-filtered images in
64 × 64 blocks. (a) JPEG90 vs MF3-JPEG90; (b) JPEG90 vs MF5-JPEG90;
(c) JPEG70 vs MF3-JPEG70; (d) JPEG70 vs MF5-JPEG70.

is eliminated in the output images of FFR layer, and the

difference between the median filtered image and unfiltered

image can be investigated.

III. EXPERIMENTAL RESULTS

In this section, extensive experiments are performed to

evaluate comprehensively the performance of the proposed

method, with comparing to the state-of-the-art MF forensic

methods.

A. DATABASE AND EXPERIMENTAL SETUPS

To perform the experiments, we used the grayscale ver-

sion [10]–[22] of 10000 images randomly selected from

five frequently-used databases as the Original dataset.

The UCID database [52], the BOSS RAW database [52],

the Dresden Image Database (DID) [53] and the NRCS

Photo Gallery (NRCS) database [54] contribute 1000 images,

FIGURE 5. ROC curves of the proposed and four existing methods for
distinguishing the median filtered images from the non-filtered images in
32 × 32 blocks. (a) JPEG90 vs MF3-JPEG90; (b) JPEG90 vs MF5-JPEG90;
(c) JPEG70 vs MF3-JPEG70; (d) JPEG70 vs MF5-JPEG70.

FIGURE 6. ROC curves of the proposed and four existing methods for
distinguishing between 3 × 3 and 5 × 5 median filtering.
(a) MF3-JPEG90 vs MF5-JPEG90 in 64 × 64 blocks; (b) MF3-JPEG90 vs
MF5-JPEG90 in 32 × 32 blocks; (c) MF3-JPEG70 vs MF5-JPEG70 in
64 × 64 blocks; (d) MF3-JPEG70 vs MF5-JPEG70 in 32 × 32 blocks.

respectively, and the BOSSbase 1.01 [52] contributes

6000 images. Then, these images were processed as follows:

1) The Original dataset was compressed into JPEG for-

mat with quality factors (QFs) QF1 ∈ { 90, 70}.
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FIGURE 7. An example of a composite image detection. (a) A RAW image from which an object (the buck)
is cropped; (b) A RAW image into which the cropped object is pasted; (c) An composite image compressed
with a QF of 70. The detected blocks are marked (d) using the method in [13]; (e) using the method
in [15]; (f) using the method in [18]; (g) using the method in [20]; and (h) using the proposed method.

These com-pressed images comprised the JPEG90,

and JPEG70 datasets. Each of them contained

10000 images.

2) 3×3MF and 5×5MF were performed on the Original

dataset. These filtered images comprised the MF3 and

MF5 datasets, respectively. Each of them contained

10000 images.

3) The MF3-JPEG90, MF3-JPEG70, MF5-JPEG90, and

MF5-JPEG70 datasets were obtained by JPEG com-

pression performed on the MF3 and MF5 datasets with

quality factors QF2 ∈ { 90, 70}, respectively.

The methods in [13], [15], [18], and [20] were used for com-

parison with our proposed method. For the method in [20]

and the proposed MF forensic CNN, all experiments were

performed on a modified Caffe toolbox [56]. For the other

methods, we used C-SVM as classifiers.

B. MEDIAN FILTERING DETECTION IN JPEG

COMPRESSED AND SMALL SIZE IMAGES

In order to detect the MF in JPEG compressed and

small size images, we prepared four positive-negative

pairs: {JPEG90, MF3-JPEG90}, {JPEG70, MF3-JPEG70},
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{JPEG90, MF5-JPEG90}, and {JPEG70, MF5-JPEG70}.

The image blocks consisting of 64 × 64, and 32 × 32 pixels

were cropped from the center of every image in the positive-

negative pairs. For each pair, the training set contained half

number of images, while the other half of images composed

the testing set. The receiver operating characteristic (ROC)

curves were generat-ed for evaluation. The overall perfor-

mance of the classifier is summarized by the area under the

ROC curve (AUC).

MF detection ROC curves are shown in Figure 4 and

Figure 5. It indicates that the performance of proposed

method was still excellent and outperformed the methods

in [13], [15], [18], and [20], even if the positive samples

contained the small size images which were median filtered

and then JPEG compressed. This experiment suggests that the

proposed method is strongly robust when dealing with JPEG

compression in small size images. In addition, the results

for the network without the new layers have been reported

in Fig. 4 and Fig. 5. The ‘‘withoutD’’ denotes that the net-

work with the FFR layer but without the deblocking layer,

‘‘withoutD+F’’ denotes that the network without the FFR

and deblocking layer. The results show that our proposed

deblocking layer and FFR layer play a key role. Our method

got a remarkable performance progress using the new layers.

Notably, a little improvement is also important under high

performance.

C. DIFFERENTIATION BETWEEN 3 × 3 AND

5 × 5 MEDIAN FILTERING

Once forensic investigators have identified that an image

has been median filtered, they may wish to determine the

window size used during median filtering. So, differenti-

ating between 3 × 3 MF and 5 × 5 MF is also a valu-

able work. In order to test the performance of the proposed

method in this scenario, we prepared two positive-negative

pairs: {MF3-JPEG90, MF5-JPEG90}, and {MF3-JPEG70,

MF5-JPEG70}. The image blocks consisting of 64× 64, and

32 × 32 pixels were cropped from the center of every image

in the positive-negative pairs. For each pair, the training set

contained half number of images, while the other half of

images composed the testing set.

MF detection ROC curves are shown in Figure 6. It is

shown that our proposed method works well and outperforms

the methods in [13], [15], [18], and [20]. We can conclude

that our proposed method has an excellent capability to

distinguish between 3 × 3 MF and 5 × 5 MF.

D. COMPOSITE IMAGES DETECTION

Figure 7 shows the stages when generating composite images

and the corresponding forensic detection results based onMF.

Fig. 7 (a) is the image from which the object (the buck)

was cropped. Fig. 7 (b) is the image into which the cropped

object was pasted. Fig. 7 (c) is the composite image. Median

filtering with a filtering window size of 5× 5 was performed

on Fig. 7 (a) to adjust the inconsistent smoothness between

Fig. 7 (a) and Fig. 7 (b). The object cropped from Fig. 7 (a)

was then pasted into Fig. 7 (b). Finally, the composite image

was stored in JPEG format with a QF of 70. In order to locate

the composite positions, the test image was segmented into

several blocks consisting of 32 × 32 pixels, and each block

was detected one by one. The detection results of the methods

in [13], [15], [18], and [20] and proposed method are shown

in Fig. 7 (d) to Fig. 7 (h) respectively. The figures show that

comparing with the methods in [13], [15], [18], and [20],

our method achieves much lower false alarm probability and

almost the same correct detection probability.

E. COMPUTATIONAL COMPLEXITY

The MF detection workflow is implemented on our com-

puter, with an Intel i7 core CPU, 64GB memory, and two

NVIDIA Titan X GPUs. The first step in this workflow is

the image deblocking which reduces the blocking artifacts

in potentially-filtered images after JPEG compression. The

deblocking layer takes 8 seconds to generate the deblocked

version of an image block consisting of 64 × 64 pixels, and

takes 2 seconds to generate the deblocked version of an image

block consisting of 32 × 32 pixels. Secondly, the FFR layer

costs 30 milliseconds to produce a fused filtered residual.

Thirdly, our network takes less than 20 minutes to train on

two NVIDIA Titan X GPUs. Then, our trained model takes

around 10 milliseconds to detect a potentially-filtered image.

IV. CONCLUSION

We proposed a robust MF forensic method using image

deblocking and filtered residual fusion. Unlike existing MF

forensic methods, our method begins with the analysis of

the influence on median filtered images caused by JPEG

compression and then effectively reduces the influence via

image deblocking. On top of that, we suppress the interfer-

ence caused by image content, so the fingerprints left by MF

are successfully exposed. Experimental results demonstrate

that our proposedmethod achieves remarkable improvements

in both JPEG compressed and small sizeMF image detection.

Furthermore, we believe that the preprocessing strategy of our

method provides reference for other forensic tasks.
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