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Abstract

Mediation analysis has many applications in psychology and the social sciences. The most
prevalent methods typically assume that the error distribution is normal and homoscedastic.
However, this assumption may rarely be met in practice, which can affect the validity of the
mediation analysis. To address this problem, we propose robust mediation analysis based on
median regression. Our approach is robust to various departures from the assumption of
homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and
heteroscedastic distributions. Simulation studies show that under these circumstances, the
proposed method is more efficient and powerful than standard mediation analysis. We further
extend the proposed robust method to multilevel mediation analysis, and demonstrate through
simulation studies that the new approach outperforms the standard multilevel mediation analysis.
We illustrate the proposed method using data from a program designed to increase reemployment
and enhance mental health of job seekers.
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The aim of mediation analysis is to determine whether the relation between the independent
variable and the dependent variable is due, wholly or in part, to a mediating variable that
transmits the relation from the independent variable to the dependent variable (Baron &
Kenny, 1986; MacKinnon, 2008). Mediation analysis has many applications in psychology,
sociology, medicine and other fields. Since the seminal Baron and Kenny (1986) article,
extensive research has been conducted on the accuracy of statistical mediation analysis. For
example, MacKinnon and Dwyer (1993) investigated mediation analysis for binary
outcomes. Collins, Graham and Flaherty (1998) provided an alternative framework for
evaluating the mediation effect based on transitions to the values of the mediator and the
outcome variable. Kraemer, Wilson, Fairburn and Agras (2002) outlined an analytic
framework to identify mediators and moderators in randomized clinical trials. MacKinnon,
Lockwood, Hoffman, West and Sheets (2002) compared fourteen methods to test the
statistical significance of the mediation effect. Shrout and Bolger (2002) outlined a series of
steps and emphasized the use of bootstrap approaches to assess mediation for small to
moderate sample sizes (see also Bollen & Stine, 1990; Lockwood & MacKinnon, 1998).

In the context of multilevel modeling, Kenny, Kashy and Bolger (1998) identified two types
of multilevel mediation, namely lower level and upper level mediation. In upper level
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mediation, the independent variable for which the effect is mediated is an upper level
variable, a variable appearing in the upper level of the model hierarchy; and in lower level
mediation, the independent variable is a lower level variable, a variable appearing in the
lower level of the model hierarchy. Krull and MacKinnon (1999, 2001) investigated various
upper level mediation models and compared the performance of these models with that of
single-level mediation models. Kenny, Korchmaros, and Bolger (2003) described a lower
level mediation model in which each upper level unit has an individual mediation effect.
Bauer, Preacher and Gil (2006) extended the work of Kenny et al. (2003), and proposed a
method to yield consistent estimates of the variance components by simultaneously fitting
the two mediation regression equations using a selection variable. Yuan and MacKinnon
(2009) proposed a Bayesian approach for multilevel mediation analysis. For a
comprehensive review of mediation analysis, see MacKinnon (2008).

The basic mediation framework, also known as the single-level mediation model, involves a
three-variable system in which an independent variable causes a mediating variable, which
in turn causes a dependent variable (Baron & Kenny, 1986; MacKinnon, 2008). Under this
causality assumption, relations among the three variables can be expressed as three linear
regression models; although only two of the three equations are required for the estimation
of mediation. The standard mediation analysis fits these regression models using the
ordinary least squares (OLS) or maximum likelihood method, and then, based on the
estimates of regression parameters, draws statistical inference on the mediation effect.
During this OLS-based estimation process, two standard distributional assumptions,
homoscedasticity and normality, are often made on the errors of the regression models.
Homoscedasticity means that the errors share a common variance, and the normality
assumption means that the errors follow a normal distribution. When the homoscedasticity
assumption is violated, the errors are called heteroscedastic.

Unfortunately, the assumptions of homoscedasticity and normality are rarely met in practice.
Much empirical evidence suggests that heteroscedasticity exists in a wide variety of research
areas (Grissom, 2000; Keppel & Wickens, 2004; Micceri, 1989; Tomarken & Serlin, 1986;
Wilcox & Keselman, 2003). Keselman, Huberty, et al. (1998) reported that it is not
uncommon in psychological studies to see a ratio larger than 8:1 when comparing the largest
to the smallest variance across the different covariates, and in some extreme cases, to see a
ratio as large as 566:1. Even in experiments that use randomization, regarded as the gold
standard for comparing different treatments, the experimental variable may cause
differences in variability between groups. Bryk and Raudenbush (1988) provided some
examples of this, and Grissom and Kim (2005) explained why heteroscedasticity is so
common in psychosocial data.

In addition to the occurrence of heteroscedasticity, the normality assumption is also
frequently violated in psychosocial data. The violations of normality commonly encountered
in practice include heavy tails, skewness, outliers, contamination and multimodality. Micceri
(1989) examined 440 large data sets from the psychological and educational literature,
including 125 psychometric measures, such as scales measuring personality, anxiety, and
satisfaction. None of the data sets were found to be normally distributed; instead, the
distributions were frequently heavy-tailed and skewed. Based on Hogg’s (1974) Q measure
and the C ratio of Elashoff and Elashoff (1978), Micceri (1989) classified these distributions
into five categories according to their tail weights or asymmetry: uniform, below Gaussian,
moderate contamination, extreme contamination, and double exponential. Of the 125
psychometric measures, about 23.3% belonged to the double exponential category, 28% had
extreme contamination, and only approximately 13.6% were “about Gaussian.” Micceri’s
findings were based on the marginal distributions of the psychometric variables, which do
not necessarily mean that the errors violated the normality assumption when these variables
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were used as dependent variables in regression. Nevertheless, in practice the violation of
normality in the marginal distribution often provides evidence of the non-normality of the
errors because regressing (or conditioning) on some independent variables typically cannot
completely remove the non-normality of the dependent variables.

In the presence of non-normality and heteroscedasticity, the OLS method, and thus the
standard OLS-based mediation analysis, may break down and contribute to misleading
results, including inefficient estimates, invalid confidence intervals (CIs), distorted type I
error rates, and low power (Erceg-Hurn & Mirosevich, 2008; Grissom & Kim, 2001;
Keselman, Algina, Lix, Wilcox & Deering, 2008; Serlin & Hartwell, 2004; Wilcox, 1998;
among others). Data transformations, such as the square root or logarithm transformation,
are commonly used to bring the errors in estimation closer in line with the assumption of
normality and homoscedasticity. However, data transformation often fails to achieve
normality and homoscedasticity and may not adequately deal with outliers. In addition, data
transformation causes difficulties in interpreting analytic results, as the results are based on
the transformed scale rather than the original scale (Grissom, 2000; Lix, Keselman, &
Keselman, 1996).

In the context of mediation analysis, Bollen and Stine (1990) provided empirical evidence
that the estimate of a mediation effect could be substantially sensitive to outliers. Finch,
West and MacKinnon (1997) showed that under non-normality, the empirical standard error
(SE) of the standard maximum likelihood estimate of the mediation effect was
overestimated, and the information-based SE estimate was negatively biased. Based on
simulation studies, Lockwood (1999) also showed that the information-based SE estimate
was negatively biased. Recently, Zu and Yuan (2010) proposed using local influence
methods to identify observations that strongly affect the testing of mediation. They also
proposed using robust methods, such as M-estimators, for parameter estimation and
hypothesis testing of the mediation effect. In this article, we propose a robust mediation
analysis method based on median regression. The proposed method is robust to various
departures from normality and homoscedasticity, including heavy tails, skewness, outliers,
and distributional contaminations. Our simulation studies show that when errors are
heteroscedastic and/or non-normal, the proposed approach is more efficient and powerful
than the standard mediation analysis for both single-level and multilevel mediations.

Single-level Mediation Model

Let yi denote the measurement of the dependent (or outcome) variable, xi denote the
measurement of the independent variable, and mi denote the measurement of the mediating
variable (or mediator) for the ith subject, where i=1, …, n. Under the causality assumption
that the independent variable causes the mediating variable, which in turn causes the
dependent variable (see Figure 1), the single-level mediation model can be expressed in the
form of three regression equations (Baron & Kenny, 1986):

(1)

(2)

(3)

where τ quantifies the relation between the independent variable and dependent variable; α
measures the relation between the independent variable and mediating variable; β quantifies
the relation between the mediating variable and dependent variable after adjusting for the
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effects of the independent variable; and τ′ quantifies the relation between the independent
variable and dependent variable after adjusting for the effect of the mediating variable. The
regression equations 1 – 3 are not independent because equation 1 can be derived by
substituting equation 2 into equation 3. Therefore, for the purpose of mediation analysis, we
need to focus on only two equations, 2 and 3.

Under the single-level mediation model, the mediation effect can be defined as two
equivalent forms: αβ or τ − τ′ (MacKinnon, Warsi, & Dwyer, 1995). To estimate the
mediation effect, we first obtain estimates of the unknown regression parameters that
appeared in the mediation equations using the OLS method, and then estimate the mediation
effect by α̂β̂ or τ̂ − τ̂′, where α̂, β̂, τ̂ and τ̂′ are the OLS estimates. In this article, we focus on
estimating αβ as the mediation effect, but the proposed new methodology applies to
estimating τ − τ′ as well. Note that the mediation analysis based on the mediation regression
equations we consider here, i.e., the framework of Baron and Kenny (1986), does not
provide confirming evidence for the causality of the mediation effect, but provides only the
descriptive or explanatory information about the relationship among the independent
variable, dependent variable and mediating variable. Establishing the causality of the
mediation effect requires some additional assumptions of no unmeasured confounders
(VanderWeele & Vansteelandt, 2009) and a different statistical inferential framework, e.g.,
the counterfactual causal model (Rubin, 1974).

In addition to the point estimate α̂β̂, the confidence interval (CI) and test of the mediation
effect are often of interest. The sampling distribution of α̂β̂ is not normal (Lomnicki, 1967;
MacKinnon et al., 2002). Several methods have been proposed to account for this fact when
constructing the CI of α̂β̂. One such method is the distribution of the product method
(MacKinnon, Lockwood & Williams, 2004), which approximates the sampling distribution
of α̂β̂ with the product of two normal random variables with means equal to α̂ and β̂ and

variances equal to  and , respectively, where  and  denote the estimates of  and

 (i.e., the sampling variances of α̂ and β̂). Meeker, Cornwell and Aroian (1981) provided
critical values of the distribution of the product of two normal random variables that can be
used to construct CIs. Alternatively, these critical values can be obtained on the basis of the
empirical distribution of the product of two normal random variables through Monte Carlo
simulation (Bauer et al., 2006; MacKinnon et al., 2004). Let clower and cupper denote critical
values corresponding to the lower and upper bounds of the CI, then the CI of the mediation
effect is given by (α̂β̂ + clower × σ̂α̂β̂, α̂β̂ + cupper × σ̂α̂β̂). The major advantage of the
distribution of the product method is that it uses the standard outputs of linear regression

(i.e., α̂, β̂,  and ) and requires fitting mediation models only once. Therefore, the
distribution of the product method is particularly appealing when the model fitting is time-
consuming, e.g., in the case of complicated multilevel mediation models. Obviously, one

limitation of the distribution of the product method is that it requires valid estimates of 

and  to make correct inference.

Another general approach to constructing the CI without imposing the normality assumption
on α̂β̂ is the bootstrap method based on resampling (Bollen & Stine, 1990; Efron, 1979).
Compared to the distribution of the product method, the bootstrap method is more general

and robust in the sense that it does not require the estimates of  and . However, the
bootstrap method is computationally intensive and requires repeatedly fitting the mediation
models for each bootstrap sample, which could be a concern for complicated mediation
models. In order to construct the CI, the bootstrap method repeatedly resamples the original
data set with replacement, and then estimates the mediation effect for each of the bootstrap
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samples. The resulting collection of estimates forms the empirical distribution of the
mediation effect, which can be used to construct the CI. In the simplest form of
bootstrapping, called the percentile bootstrap, the 100 × (1 − α)% CI of the mediation effect
is given by (qα/2, q1−α/2), where qα/2 and q1−α/2 denote the α/2th and (1−α/2)th percentiles
of the empirical distribution of the mediation effect. Other forms of bootstrapping that aim
to improve its performance have been proposed. One variation that is important for
mediation analysis is the bias-corrected bootstrap (Efron, 1987). The bias-corrected
bootstrap adjusts and removes the potential estimation bias that arises because the true
parameter value is not the median of the distribution of the bootstrap estimates, thereby in
general yielding more accurate CIs than the percentile bootstrap when the mediation effect is
nonzero (MacKinnon et al., 2004). Various R and SAS routines (MacKinnon et al., 2004), as
well as SPSS macros (Hayes, 2012), are readily available to calculate bootstrap confidence
intervals for mediation effects.

Problems with the OLS-based Mediation Analysis

Under the single-level mediation model, the standard mediation analysis is based on the
OLS method, which estimates unknown parameters by minimizing the sum of the squared
errors. For example, in equations 2 and 3, the OLS estimates of α and β are those that
minimize

(4)

and

(5)

respectively. In principle, the OLS method does not require the normality and
homoscedasticity assumptions to yield unbiased point estimates of the regression
parameters. However, in order to construct the CI and conduct hypothesis testing in a valid
and efficient way, homoscedasticity and/or normality assumptions of ε2i and ε3i are often
required, depending on the specific statistical method used.

Specifically, the homoscedasticity assumption is required for the distribution of the product
method, but is not essential for the bootstrap method. This is because the distribution of the
product method requires the homoscedasticity assumption to ensure the validity of the OLS

estimates of  and ; whereas the bootstrap method does not depend on the estimates of 

and . When the homoscedasticity assumption is violated, the OLS estimates of  and 
are biased and thus the distribution of the product method is invalid. To see the bias,
consider a general linear regression model in the matrix form

(6)

where Y is the vector of the dependent variable, X is the design matrix, including all
independent variables, β is the vector of unknown regression coefficients, and ε is the vector
of errors with a covariance matrix Var(ε) = σ2V. Under the OLS method, the estimate of β is
β̂ = (XTX)−1XTY and its associated sampling variance is

(7)

However, the true sampling variance of β̂ is
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(8)

which differs from the OLS estimate (7) when the errors are heteroscedastic (i.e., V is not an
identity matrix). The bias of the OLS estimate of Var(β̂) can be addressed by using
heteroscedasticity consistent (HC) covariance estimates, which remain consistent in the
presence of heteroscedasticity of an unknown form. Long and Ervin (2000) compared
several HC covariance estimates and recommended the following so-called HC3 estimate
for general use:

(9)

where ei = yi − xiβ̂ and  with xi being the ith row of X. Hayes and Cai
(2007) provide SPSS and SAS macros to calculate HC covariance estimates.

Although the normality assumption is not essential for the validity of the bootstrap and the
distribution of the product methods (at least for large samples), it is important for the
efficiency of these methods. In particular, when the errors are normal (and homoscedastic),
the OLS estimates are the maximum likelihood estimates and achieve a well-known
optimality. Research shows that violations of the normality assumption, such as heavy tails,
skewness, outliers and distributional contaminations, often result in inefficient estimates of
α and β with large variances (Schrader & Hettmansperger, 1980), which often translate into
low statistical power for testing mediation effects. The goal of the bootstrap and the
distribution of the product methods is to reflect the true uncertainty of α̂β̂. When the
uncertainty of α̂β̂ is in fact high (i.e., α̂β̂ is an inefficient estimate), for example, caused by
non-normality, neither the bootstrap nor the distribution of the product methods can address
the low efficiency of the estimate, as we demonstrate in stimulation studies in a subsequent
section.

Median Regression

Mean regression models, such as equations 1 to 3, describe how the mean or central location
of the dependent variable changes with independent variables. However, the mean is not
always an appropriate summary of the data distribution. It is well known that the mean is
sensitive to outliers and performs poorly when distributions are skewed or heavy-tailed (Hill
& Dixon, 1982; Wegman & Carroll, 1977). In these cases, the median provides a better
summary of the central location of the data distribution.

Median regression models describe how the median of the dependent variable changes with
the independent variables. As an example, consider a median regression of the mediating
variable mi on the independent variable xi, which can be expressed in a form similar to
equation 2, as follows:

(10)

However, unlike the mean regression model 2, which assumes E(ε2i|xi) = 0 and concerns the
conditional mean function E(mi|xi) = β02 + αxi, the median regression assumes M(e2i|xi) = 0
and models the conditional median function of mi as M(mi|xi) = β02 + αxi, where M(· | ·)
denotes the conditional median. Nevertheless, the median regression models have a well-
defined interpretation for covariate effects that is similar to that of the models based on the
means in the sense that M(mi|xi + 1) − M(mi|xi) = M(mj|xj + 1) − M(mj|xj). This is because
under median regression, the conditional median M(mi|xi) is a linear function of xi, that is,
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M(mi|xi) = β02 + αxi. Therefore, M(mi|xi + 1) − M(mi|xi) = β02 + αxi − β02 − α(xi + 1) = α,
and similarly, M(mj|xj + 1) − M(mj|xj) = β02 + αxj − β02 − α(xj + 1) = α. Note that, other than
independence, median regression does not impose any distributional assumptions on e2i,
such as homoscedasticity or normality.

To estimate the unknown regression coefficients β02 and α in equation 10, median
regression takes the approach of the least absolute deviations (LADs), which minimizes the
following sum of the absolute deviations,

(11)

Compared to the sum of the squared errors, formula 4, the sum of the absolute deviations is
less influenced by large errors. Therefore, the LAD estimates are more robust against large
errors (e.g., outliers) than the OLS estimates. Computationally, the LAD is more challenging
than the OLS because the sum of the absolute deviations, formula 11, is not everywhere
differentiable and it cannot be directly minimized by solving the gradient equation. An
iterative algorithm is needed to solve the LAD. Specifically, formula 11 can be expressed in
terms of an artificial variable ui as

(12)

subject to the constraints

(13)

(14)

Noting that minimizing formula 11 is equivalent to minimizing formula 12 under the
constraints, the LAD problem can be converted into a standard linear programming problem
of optimizing a linear function subject to linear constraints, which can be solved routinely
using any available linear programming package. Koenker (2005) provides more technical
details on this issue.

Under large sample sizes, median regression estimates follow an asymptotic multivariate
normal distribution (Koenker & Bassett, 1978). For example, in formula 11, the median
regression estimates θ̂ = (β̂

02, α̂) follow the limiting bivariate normal distribution

(15)

where  and , with f(·) and F(·)
denoting the conditional density and cumulative density function of mi, respectively. The
covariance matrix of θ̂ has the form of a sandwich estimator, which can be estimated using
the kernel method proposed by Powell (1991).

Robust Single-level Mediation Analysis

Our robust mediation analysis based on median regression is directly applicable to a general
single-level mediation model with multiple mediators and independent variables. For ease of
exposition, we focus on the simple mediation model with only one mediator and
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independent variable (Figure 1). Our approach is based on three median regression
equations:

(16)

(17)

(18)

where the medians of the errors e1i, e2i and e3i equal

To conduct a robust mediation analysis, we fit the median regression equations and estimate
the unknown regression parameters using the LAD method. For example, to estimate β03, β

and τ′, we minimize . After obtaining estimates of regression
parameters α and β, the estimate of the mediation effect is given by α̂β̂.

As mentioned previously, two definitions of the mediation effect, τ − τ′ and αβ, are
equivalent under the standard mediation analysis, in which normality and homoscedasticity
are assumed. Although this property does not generally hold in the proposed robust
mediation analysis, if errors are independently normally distributed, even without the
homoscedasticity assumption, the equivalence of the two definitions also holds for the
robust mediation analysis.

Theorem 1. If e2i and e3i are independent and normally distributed, then the equality τ − τ′
= αβ corresponds to the same equality in the standard mediation analysis.

Proof: Substituting equation 17 into equation 18, the following equations hold for all values
of xi,

(19)

with ei = βe2i + e3i. Because e2i and e3i are independently normally distributed, ei also
follows the normal distribution and

(20)

That is, the conditional median of ei is 0. Therefore, by comparing equation 19 with
equation 16, we have

(21)

When the condition that e2i and e3i are independent and normally distributed is not satisfied,
the value of τ − τ′ may not equal that of αβ. In this case, one may wonder which measure
should be used as the mediation effect. This question is also raised in the standard mediation
analysis involving logistic, multinomial or multilevel models, for which αβ may not equal τ
− τ′. Although subject to debate, we recommend using αβ as the measure of the mediation
effect because it is more in line with the causal interpretation of the mediation effect; that is,
αβ measures how the independent variable causes (or affects) the mediating variable
(measured by α), which in turn causes (or affects) the dependent variable (measured by β;
MacKinnon, Lockwood, Brown, Wang & Hoffman, 2007; Pearl, 2010). This choice has
been adopted by other researchers for multilevel mediation (Bauer, Preacher & Gil, 2006;
Kenny, Korchmaros & Bolger, 2003; Krull & MacKinnon, 1999).
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We have focused on the simple mediation model with only one mediator and independent
variable. Our robust mediation analysis described above is directly applicable to a general
single-level mediation model with multiple mediators and independent variables. For
instance, assume a two-mediator model (with mediators m1 and m2),

(23)

(24)

(25)

To apply the proposed robust method, we first fit median regression models 23, 24 and 25
using the LAD method as previously described and then we can estimate the total mediation
effect by α̂1β̂

1 + α̂2β̂
2, where α̂1, α̂2, β̂

1 and β̂
2 are the estimates of these parameters obtained

from the median regression.

Simulation Study of Single-level Mediation Analysis

Simulation description

We conducted two simulations (A and B) to evaluate the performance of the proposed
method. Simulation A compares the proposed robust mediation analysis with the standard
mediation analysis under various conditions. Specifically, we manipulated three factors:
effect size, sample size and error distribution. Following MacKinnon et al. (2002) and Yuan
and MacKinnon (2009), we considered three values of α, β and τ′ by setting α = β = τ′ =
0.14, 0.39 and 0.59, corresponding approximately to small, medium and large effect sizes,
respectively, and five values of sample size, n = 50, 100, 200, 500 and 1000. To determine
the type I error rates, we also considered the null case of no mediation effect with αβ = 0 by
setting α = 0 and β =0.39. We focused on four distributions for errors e2i and e3i that are
commonly encountered in psychosocial data (Micceri, 1989; Hill & Dixon, 1982). (1) The
standard normal distribution N(0, 1). Based on Micceri’s survey, only 13.6% of
psychometric measures approximately follow normal distributions. (2) A heavy-tailed
distribution, i.e., tdf=2, a t-distribution with 2 degrees of freedom. This distribution has
C95=3.61, where C95 is a measure of the distribution tail weight and defined as the ratio of
the 95th percentile point to the 75th percentile point (Elashoff & Elashoff, 1978). According
to Micceri’s classification, this heavy-tailed distribution belongs to the double exponential
category. Micceri (1989) reported that about 23.2% of the psychometric measures and
60.0% of the criterion mastery measures fall into that category. (3) A contaminated normal
distribution, 0.9 × N(0,1) + 0.1 × N(0, 102), i.e., the standard normal distribution N(0, 1)
contaminated by N(0, 102), a normal distribution with a much larger variance. This
distribution has C95=3.07, and thus belongs to the category of extreme contamination based
on Micceri’s classification. Micceri (1989) reported that about 28.0% of the psychometric

measures fall in that category. (4) A normal heteroscedastic distribution, . We will
consider skewed error distributions in Simulation B. To simulate data under each parameter
setting, we first generated xi from the standard normal distribution; then conditional on the
values of xi, we simulated mi and yi according to equations 17 and 18. Without loss of
generality, we assumed that β02 = β03 = 0 for convenience. We generated a total of 10,000
data sets under each parameter setting.

For each simulated data set, we estimated the mediation effect using the proposed robust
mediation analysis and the standard mediation analysis. To compare the performance of the
two methods, we calculated the empirical bias, mean squared error (MSE), type I error rate
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and power for testing the null hypothesis, αβ = 0. Letting α̂jβ̂
j denote the estimate of the

mediation effect based on the jth simulated data set, we obtained the empirical bias and
MSE using the following formulae:

(26)

(27)

We also calculated the relative root mean squared error (RRMSE), defined as

, as a standardized version of the MSE. The type I error rate (or
power) was calculated as the proportion of CIs that do not contain 0 across 10,000
simulations when the mediation effect αβ = 0 (or αβ ≠ 0). Both the distribution of the
product method and the bias-corrected bootstrap method were used to construct the CI and
test the mediation effects. For the standard mediation analysis, two variations of the
distribution of the product method were examined: the distribution of the product based on
the OLS estimate of variance, equation 7, and the distribution of the product based on the
HC3 estimate of variance, equation 9. For the bias-corrected bootstrap method, we used a
total of 1,000 bootstrap samples to calculate the bootstrap CI and rejection rate. Recently,
Biesanz, Falk and Savalei (2010) showed that the approach of testing a hypothesis based on
the CI was not guaranteed to produce accurate type I error rates and power in finite samples,
and other methods, in particular hierarchical Bayesian Markov chain Monte Carlo (MCMC)
methods, often yielded more accurate results. A comparison of the present approach with the
MCMC method will be an interesting topic for future research.

Simulation B was designed to investigate the following question: At what degree of
departure from normality does the standard mediation analysis become problematic such
that the proposed robust method is preferred? We simulated errors e2i and e3i from a family
of distributions with an increasing degree of heavy tails, skewness or heteroscedasticity, and
then compared the relative performance of the robust method to that of the OLS method.
Specifically, we simulated e2i and e3i in mediation equations 17 and 18 from the Tukey g-
and-h distributions, which are a family of distributions generated by transforming the
standard normal variable z according to

(28)

In the Tukey g-and-h distribution, the parameter g ≥ 0 controls asymmetry or skewness, and
h ≥ 0 controls elongation or the extent to which the tails are stretched (relative to the
standard normal distribution). Because (egz − 1) / g = z + gz2 / 2!+ g2z3 / 3!+□, in the case in
which g = 0, equation 28 reduces to Tg,h = z exp(hz2 / 2), a symmetric distribution; and in
the case in which g = h = 0, Tg,h follows a standard normal distribution. A larger value of g
(or h) indicates more severe skewing of the distribution (or heavier tails). To investigate the
effects of skewed distributions, we set h = 0 and gradually increased the value of g from 0 to
1.5 with increments of 0.05, thereby generating a family of skewed distributions with
skewness increasing from 0 to 17. To investigate the effects of heavy tails, we set g = 0 and
gradually increased the value of h from 0 to 0.6 with increments of 0.05 to obtain a series of
distributions with increasingly heavy tails, with C95 ranging from 2.43 to 4.79. Those heavy-
tailed distributions stretch the pth quantile of the standard normal distribution, say zp, to

. For example, when h = 0.5, the resulting heavy-tailed distribution stretches the
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90th percentile of the standard normal distribution from 1.28 to 1.93. When h = 1, the
corresponding distribution provides a close approximation of the Cauchy distribution.

In addition to skewness and heavy tails, the effects of heteroscedasticity were examined by
simulating e2i and e3i from a heteroscedastic normal distribution,

(29)

Under this distribution, the variances of y and m depend on the independent variable x. A
large value of δ induces stronger heteroscedasticity, and δ = 0 corresponds to a
homoscedastic distribution. We gradually increased the value of δ from 0 to 1.5 with
increments of 0.1 to simulate a family of increasingly heteroscedastic distributions. In
simulation B, we assumed a sample size of 200 and a median effect size of α = β = τ′ = 0.39.
Under each parameter setting, we simulated 10,000 replications.

Simulation Results

Tables 1 through 3 show the results of simulation A, including the RRMSE (×1,000), type I
error rates and power for testing the null hypothesis of no mediation effect under four
different error distributions. Both the OLS and proposed robust methods had minimal bias
(thus results are not shown), but performed differently in terms of efficiency (i.e., RRMSE;
see Table 1). When the error distributions were normal and homoscedastic, the OLS
estimate was the maximum likelihood estimate and thus was more efficient than the robust
method, as reflected by the smaller RRMSEs. However, as described previously, in practice
error distributions are rarely normal and homoscedastic, and instead are often heavy-tailed
and/or contaminated. In these cases, the proposed robust estimate can be substantially more
efficient than the OLS estimate. For instance, across different effect sizes, the RRMSEs of
the robust estimates were about one third (or less than one half) of those for the OLS
estimate when the error distributions were heavy-tailed (or contaminated). Comparatively,
heteroscedastic errors had less effect on the efficiency, and the RRMSEs were generally
comparable between the OLS and robust methods. However, the impact of the
heteroscedastic errors on the type I errors was profound, and is described as follows.

For type I errors (see Table 2), albeit with some variation, both the distribution of the
product and bootstrap methods generally controlled the type I error rate below the nominal
value (i.e., 5%) for OLS, HC3 and robust approaches when the error distributions were
normal, heavy-tailed or contaminated. However, when the error distributions were
heteroscedastic, the distribution of the product and bootstrap methods led to different
performances. Specifically, for the OLS approach, the distribution of the product method
based on the OLS estimate of variance led to high type I error rates ranging from 15.9 % to
26.5%; whereas the distribution of the product method based on the HC3 estimate of
variance yielded reasonable type I error rates (under 5%). Such differences were due to the
use of different variance estimates in these two methods. The distribution of the product

method based on the OLS estimate of variance used the OLS estimates of  and , which
were biased when the error distributions were heteroscedastic and thus led to high type I
error rates. By contrast, the distribution of the product method based on the HC3 estimate of

variance utilized the HC3 estimates of  and , which were consistent when the error
distributions were heteroscedastic and therefore yielded valid inference. As expected, under
the OLS approach, the bootstrap method performed well because it is a nonparametric

approach that does not involve estimating  and . As long as the point estimate of the
mediation effect is consistent, the bootstrap method is generally valid.
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In terms of power, when the error distributions were normal, as expected, the OLS approach
was optimal and outperformed the robust approach. However, when the error distributions
were heavy-tailed or contaminated, as is often the case in practice, using the proposed robust
approach can be substantially more powerful (see Table 3). For example, given a medium
effect size and n = 200, and using the bootstrap method, the power of the robust approach
was 36% or 55.3% higher than that of the OLS approach when the error distributions were
heavy-tailed or contaminated. These results show that although it has been promoted as a
desirable method for testing mediation effects in a standard mediation analysis, the bootstrap
method cannot entirely address the low efficiency problems of the OLS method when the
errors are not normally distributed. Combining the bootstrap method with the proposed
robust method was more powerful than using the bootstrap method with the OLS method.
The performance of the bootstrap method relative to that of the distribution of the product
method differed when used in combination with the OLS or the proposed robust methods.
For the robust method, the bootstrap method substantially outperformed the distribution of
the product method with substantially higher power (i.e., can be more than 30% higher);
whereas for the OLS method, the power of the bootstrap method was only slightly better
than the power of the distribution of the product method based on the OLS estimate of
variance (i.e., typically <10% improvement) and was comparable to the power of the
distribution of the product method based on the HC3 estimate of variance. Note that when
the error distributions were heteroscedastic, for the OLS approach, the bootstrap method led
to considerably lower power than the distribution of product method, but that is because the
latter method had inflated type I error rates.

In summary, simulation A shows that the proposed method is robust to various departures
from the standard normality and homoscedasticity assumptions, and yields more efficient
estimates and powerful tests than the OLS method in these cases. For the proposed
approach, the bootstrap method performs better than the distribution of the product method
with relatively higher power. It is worth noting that although the bootstrap method or the
distribution of the product method based on the HC3 estimate of variance can improve the
performance of the OLS approach, they cannot fully resolve the problems when the errors
are not normally distributed. Combining the bootstrap method with the proposed robust
method improves the power of mediation analysis.

We now turn to the results of simulation B, which examines the scenario in which the
proposed robust method outperforms the standard OLS-based mediation analysis. These
results provide some guidance as to which method should be adopted when the assumptions
are violated. Figure 2 shows the effects of skewness (i.e., the value of g) on the mean
squared error (MSE) and power of the standard and robust mediation analyses. When the
skewness (or the value of g) was close to 0, the standard mediation analysis performed
slightly better than the robust method with a smaller MSE and higher statistical power.
However, when the skewness was greater than 2 (i.e., g > 0.55), the proposed robust method
outperformed the standard mediation analysis with smaller MSEs. For testing the mediation
effect, when the bootstrap method was used, the robust mediation analysis was more
powerful than the standard mediation analysis when the skewness was larger than 1.8 (i.e., g
> 0.5). Micceri (1989) reported that about 18.4% of psychometric measures and 57.1% of
criterion mastery measures had levels of skewness greater than 2. In these cases, using the
robust method can yield more efficient estimates and more powerful tests.

The performance of the mediation analysis methods under different heavy tails of the
distribution is depicted in Figure 3. Compared to the standard mediation analysis, the robust
mediation analysis yielded smaller MSEs when h > 0.15 (corresponding to C95>2.89) and
higher power when h > 0.11 (corresponding to C95>2.77). Micceri (1989) reported that
about 51.2% of psychometric measures and 91.4% of criterion mastery measures have
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extremely heavy tails with C95>2.80. Therefore, in many practical cases, we expect the
proposed robust method would perform better than the standard mediation analysis.

As for the effects of the heteroscedastic distributions, Figure 4 suggests that when δ > 0.87,
the standard mediation method is inferior to the proposed robust method with larger MSEs.
For hypothesis testing, as discussed previously, the main deleterious effect of
heteroscedastic distributions is inflated type I error rates; thus in this case we focused on
type I error rates rather than power. As shown in Figure 4, for the distribution of the product
method based on the OLS estimate of variance, the type I error rate dramatically inflated
when δ > 0.4. For instance, when δ=1, the type I error rate of the standard mediation analysis
was 18.1% higher than that of the robust mediation analysis when the distribution of the
product method based on the OLS estimate of variance was used. In contrast, the
distribution of the product method based on the HC3 estimate of variance and bootstrap
methods were not sensitive to heteroscedasticity, and differences in the type I error rates
between the standard and robust mediation analyses were typically small. This result
suggests that in the case of heteroscedastic errors, researchers should use the distribution of
the product method based on the HC3 estimate of variance and the bootstrap method.

Example

We illustrate the robust mediation methods using a data set collected from a randomized
experiment that investigated the efficacy of a job training intervention program to increase
the reemployment rate and enhance the mental health of job seekers (Vinokur & Schul,
1997). A total of 1,801 unemployed workers were randomized to intervention and control
groups. Those randomized to the intervention group participated in workshops designed to
enhance their job search skills and to provide coping strategies for dealing with setbacks in
the job search process. The unemployed workers randomized to the control group received a
booklet of job search tips. At the follow-up, the participants’ depressive symptoms were
measured using the Hopkins Symptom Checklist. One research topic of interest for this
study was to investigate whether the effects of the intervention (i.e., independent variable x)
on the participants’ depression symptoms (i.e., dependent variables y) were mediated by the
participants’ job search self-efficacy (i.e, mediating variable m). Both the depression
symptoms and job search self-efficacy were measured as Likert items and took the form of
composite scores. More descriptions of the study can be found in the original article by
Vinokur and Schul (1997).

To assess the normality assumption for errors, in Figure 5, we display the normal quantile-
quantile plot for the residuals of y after regressing on m and x and the residuals of m after
regressing on x. These plots suggest violations of the normality assumption with skewness
and heavy tails. For this randomized study, the residuals are essentially homoscedastic with
similar variances between the control and treatment groups.

We applied the proposed robust mediation analysis to this data set and compared the results
with those obtained from the standard OLS mediation analysis (Table 4). Under the standard
mediation analysis, the 95% CIs based on the bootstrap and distribution of the product
methods all included 0, suggesting that the mediation effect was not significant. In contrast,
the proposed robust method appeared to be more powerful and detected a (marginally)
significant mediation effect: the 95% CIs obtained by the distribution of the product
excluded 0, and the 95% CIs based on the bootstrap method marginally excluded 0 with the
upper confidence limit equal to zero.
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Robust Multilevel Mediation Analysis

Multilevel mediation analysis provides a framework for analyzing mediation effects in
correlated data, such as clustered data and longitudinal data. Multilevel mediation analysis is
based on multilevel models, which assume that there are at least two levels in the data, an
upper level and a lower level (Hox, 2002; Raudenbush & Bryk, 2002). The lower or first-
level units (e.g., individuals) are often nested within the upper or second-level units (e.g.,
groups). Multilevel models account for the correlation among the lower level observations
by introducing random effects. An important aspect of multilevel models is that they allow
for making inference at the first (lower) level and second (higher) level separately.

Various multilevel mediation analysis methods have been proposed in the literature (Bauer,
Preacher & Gil, 2006; Kenny, Kashy & Bolger, 1998; Kenny, Korchmaros & Bolger, 2003;
Krull & MacKinnon, 2001; Yuan & MacKinnon, 2009; among others). Almost all of the
available methods assume that errors at each level of the model follow normal distributions.
However, as pointed out by Kenny et al. (2003), this normality assumption poses a major
limitation for multilevel mediation methods. Unlike single-level models, multilevel models
are not appropriate for the OLS method because of the correlation among observations.
Likelihood-based approaches, e.g., maximum likelihood or Bayesian methods, are typically
used to estimate mediation effects in multilevel models. Because the form of the likelihood
is directly tied to the assumed distributional assumption, if the normality assumption is
violated, the resulting likelihood and the related inference can be invalid. For this reason,
violation of the normality assumption is often of more concern for multilevel mediation
analysis than for the OLS-based single-level mediation analysis, in which the likelihood is
not directly used.

For notational simplicity and clarity, we focus on a two-level mediation model. Let i
subscripts refer to the units of the first level (e.g., individuals) and j subscripts refer to the
units of the second level (e.g., groups) with j =1, …, N and i =1, …, nj. The proposed two-
level robust mediation model based on median regression can be expressed as follows for
the first level,

(30)

(31)

where γj and δj are random intercepts, and αj, βj and  are random slopes. The random
intercepts and slopes allow different second-level units, say groups, to have different
regression intercepts and slopes. Unlike the majority of the available multilevel mediation
analysis methods, which assume that the first-level errors emij and eyij follow normal
distributions, we do not herein impose any distributional assumptions on these errors. We
assume only that emij and eyij are independent and their conditional median is equal to 0, that
is, M(emij|xij) = M(eyij|mij, xij) = 0.

The second level of the proposed model describes the distributions of the random effects,

(32)

(33)
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(34)

(35)

(36)

where α and β are population (or average) slopes that respectively specify the average effect
of the independent variable on the mediating variable, and the average effect of the
mediating variable on the dependent variable after controlling the independent variable. The
parameters γ and δ are population (or average) intercepts. For multilevel models, depending
on the model levels in which the independent, dependent and mediating variable are located,
different types of mediation effects can be identified (Kenny, Kashy & Bolger, 1998;
MacKinnon, 2008). Here we focus on the population (or average) mediation effect defined
by αβ.

For convenience, we assume that the second-level errors uγj, uαj, uδj, uβj, and uτ′j are
independent and follow normal distributions with a mean of zero and unique variances

, and , respectively. However, this second-level normality assumption is
not critical. Verbeke and Lesaffre (1997) showed that even when the normality assumption
of the second-level errors is violated, the maximum likelihood estimates of α, β and τ′
remain consistent.

The estimation of multilevel median regression models is substantially more complicated
than that of the single-level median regression model. We illustrate the estimation procedure
using the m-equations, i.e., equations 30, 32 and 33, which specify the effect of the
independent variable x on the mediating variable m. To do that, it is convenient to substitute
equations 32 and 33 into equation 30 and re-express the m-equations as follows,

(37)

(38)

(39)

The unknown regression coefficients in the m-equations are estimated by minimizing the
following l2 penalized absolute deviations (Geraci & Bottai, 2007; Yuan & Yin, 2010),

(40)

in which the first term is the sum of the absolute deviations coming from median regression
equation 37, and the second and third terms are the l2 penalty induced by the random effects
uγj and uαj in equations 38 and 39.

Before describing a method to minimize the l2 penalized absolute deviations, we introduce a
relationship between the absolute deviation and the Laplace distribution (also known as a
double exponential distribution). This relationship will be utilized to maximize the l2
penalized absolute deviations and obtain the estimates of the unknown parameters. The
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Laplace distribution has a density function  where θ and λ
are location and scale parameters, respectively. For our purpose, we focus on the Laplace
distribution with a scale parameter of 1, that is,

(41)

Setting θ = γ + αxij + uγj + uαjxij, the negative logarithm of the Laplace density function is

(42)

which is equivalent to the first term of formula 40, that is, the absolute deviations. We call
two functions equivalent if they differ by only a constant. For example, equation 42 and the
first term of formula 40 are equivalent because they differ only by a constant of log(2).
Given this relationship, and also noting that the last two terms in formula 40 are equivalent
to the negative logarithm of the standard normal distribution random effects uγj and uαj, it
follows that the l2 penalized absolute deviations are equivalent to the negative log likelihood
of the following two-level “working” model (Yuan & Yin, 2010)

(43)

where LD(θ) denotes a Laplace distribution with a location parameter of θ. Therefore
minimizing the l2 penalized absolute deviations, formula 40, is equivalent to maximizing the
likelihood function of working model 43. In other words, by utilizing the relationship
between the absolute deviation and the Laplace distribution, we cast the problem of
minimizing the l2 penalized absolute deviations into a familiar problem of maximizing the
likelihood of working model 43. Note that model 43 is just a “working” model; the
distributional assumption we assumed on mij is completely artificial and is used solely to
match the l2 penalized absolute deviations. The model we actually assume is depicted in the
m-equations 30, 32 and 33.

Along the same lines, the y-equations, i.e., equations 31, 34, 35 and 36, are estimated by
minimizing the l2 penalized absolute deviations

(44)

which can be cast as the problem of fitting the following two-level working model,

(45)

One convenient way to fit these working models is the Bayesian approach (Yuan & Yin,
2010). As discussed by Yuan and MacKinnon (2009), the Bayesian approach is particularly
appealing for complex multilevel mediation analysis because once the model is fitted, the
inference about the mediation effect is straightforward and exact without relying on large-
sample approximation. Specifically, to fit working model 43, we assign independent
noninformative flat priors to γ and α of the form γ ∞ 1 and α ∞ 1, and independent vague

inverse gamma priors IG(10−6, 10−6) to variances  and . We then fit the model using a
Gibbs sampler, an iterative algorithm that simulates the posterior distributions of unknown
parameters by sequentially sampling unknown parameters from their conditional
distributions; that is, we sample each parameter from the distribution of that parameter
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conditioned on the data and all other parameters. As the output of the Gibbs sampler,
posterior samples of α, say {α(t), t = 1, …, T}, are obtained from T iterations. Similarly, the
posterior sample of β, say {β(t), t = 1, …, T}, is estimated by fitting working model 45
through the Gibbs sampler with independent noninformative flat priors for γ, β, and τ′ (i.e., γ
∞ 1, β ∞ 1, and τ′ ∞ 1) and independent vague inverse gamma priors IG(10−6, 10−6) for

variances  and .

The inference of the population mediation effect αβ is based on the posterior samples of αβ,
which can be easily obtained by multiplying the posterior samples of α with the posterior
samples of β, that is, {α(t)β(t), t = 1, …, T}. Then an estimate of the population mediation
effect αβ is the posterior mean of αβ, given by

(46)

and the 95% credible interval of αβ is given by (q0.025, q0.975), where q0.025 and q0.975 are
0.025 and 0.975 sample percentiles of the posterior samples of αβ.

Simulation Study of Multilevel Mediation Analysis

Simulation description

We conducted a simulation study to evaluate the performance of the proposed robust
multilevel mediation analysis. Loosely following the simulation setting of Bauer et al.

(2006), we set γ = δ = 0,  and . We
manipulated three design factors: (1) the effect size of the average indirect effect; (2) the
sample size; and (3) the distributions of the level 1 errors. For the first factor, we set α = β =
0.3 or α = β = 0.6 to represent a small and large average indirect effect. To investigate the
type I error rate, we also considered the null case of no mediation effect (i.e., αβ = 0) with α
= 0 and β = 0.3. For the second factor, we set the number of level-two units to N = 25, 50,
100 or 200, and set the number of observations per level-two unit to nj = 4, 8 or 16. For the
third factor, the distributions of the level-one errors eyij and emij, we considered four
different distributions: (a) the standard normal distribution, N(0, 1); (b) a heavy-tailed t-
distribution, tdf=2; (c) a contaminated normal distribution, 0.9 × N(0, 1) + 0.1 × N(0, 102);

and (d) a normal heteroscedastic distribution, . Together, these three design factors
yielded 192 scenarios in a factorial design. Under each scenario, we simulated 1,000
samples of data. We compared the proposed method with the standard maximum likelihood
approach. For the latter approach, we fitted the multilevel model using SAS PROC MIXED
and used the variance formula derived by Bauer et al. (2006) to construct the CI. Under each
simulation scenario, we calculated the empirical bias (×1,000), RRMSE (×1,000), coverage
rate of the 95% CI, and rejection rate based on 1,000 replications.

Simulation results

Across different error distributions, the MLE and proposed robust estimates both had
minimal bias (results not shown), but displayed different levels of efficiency in terms of
RRMSE (Table 5). Because the RRMSEs were very similar for small and large effect sizes,
Table 5 shows the results for only the small effect size. When the error distributions were
normal and homoscedastic, the MLE estimates were optimal and outperformed the robust
estimates. The loss of efficiency from using the robust estimates was minor, and the
RRMSEs were roughly comparable between the MLE and robust estimates. However, if the
normality assumptions were not satisfied, the gain from using the proposed robust method
could be substantial. Specifically, when the error distributions were heavy-tailed, the
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RRMSE of the robust estimates was often less than one third of that of the MLE; and when
the error distributions were contaminated, the RRMSE of the robust estimates was typically
less than one half of that of the MLE. The MLE estimate was not sensitive to the
heteroscedasticity and yielded RRMSEs comparable to those of the robust estimate when the
error distributions were heteroscedastic.

In terms of hypothesis testing, the MLE and proposed robust methods were able to control
the type I error rates below the nominal value of 5% (results not shown), but possessed
different power (see Table 6). When the error distributions were normal, as expected, the
MLE was the most efficient method and led to higher power than the robust method.
However, when the error distributions were heavy-tailed, the robust method could be
substantially more powerful than the MLE. For example, when N=100 and nj=4, the power
of the robust method was 80% while that for the MLE was only 1.8%. Similarly, when the
error distributions were contaminated, the power of the robust method was often 5 to 10
times higher than that of the MLE. When the error distributions were heteroscedastic, the
performance of the two methods was comparable, suggesting that heteroscedastic errors may
not be of particular concern for multilevel models.

Discussion

We have proposed a robust mediation analysis method based on median regression. Unlike
the standard OLS or maximum likelihood approaches, the median regression minimizes the
absolute deviations and thus is robust to the violation of homoscedastic and normal
assumptions. The simulation studies show that the proposed mediation analysis is robust to
various departures from the standard normal and homoscedastic assumptions, including
heavy-tailed, skewed, outlier contaminated, and heteroscedastic error distributions. In these
cases, the resulting estimates are more efficient than the standard OLS estimates and yield
better statistical power to test mediation effects. We further extended the robust method to
multilevel models to accommodate correlated data. We used a Bayesian approach to
estimate the proposed multilevel mediation model. The simulation study demonstrated that
the proposed method outperformed the standard maximum likelihood-based approach and
resulted in a smaller MSE and higher statistical power.

Another interesting finding of this study is that the widely advocated bootstrap method
cannot fully address the problems of the standard OLS method when the error distributions
are heavy-tailed, skewed, or outlier contaminated. Although in such cases the bootstrap
method performs better than other methods, such as the distribution of the product method,
its performance is not satisfactory. Combining the bootstrap method with the proposed
robust method can substantially improve the power of testing the mediation effect. As
shown in the simulation study, in some cases, this approach doubles the power obtained by
using the bootstrap method with the OLS method.

Compared to the standard OLS method, making estimations using the proposed robust
method is more involved and needs an iterative fitting procedure. Fortunately, many
available statistical software packages provide functions to efficiently implement median
regression, which substantially facilitates the application of the proposed robust mediation
analysis. We have implemented the proposed robust mediation analysis for a single-level
model using a SAS macro (SAS 9.1, SAS Institute, 2003) and R (an open source statistical
computing and graphics software; R Development Core Team, 2008), which are available
for free downloading from the authors’ website. The SAS macro is provided in the
Appendix.

Yuan and MacKinnon Page 18

Psychol Methods. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The standard OLS or maximum likelihood approaches are optimal when the assumptions of
heteroscedasticity and normality hold, whereas the proposed robust method performs better
when these assumptions are violated. In order to determine which procedure to use (the OLS
or robust methods), researchers should examine the extent to which the assumptions have
been violated. As a rule of thumb, the robust method should be seriously considered under
the following scenarios: if there are outliers, if the skewness of the error distribution is larger
than 2, or if heavy tails exist for which the 90th percentile of the standardized errors is larger
than 1.45. Barnett and Lewis (1994) provided various methods to identify and test whether a
data point is an outlier. However, we want to emphasize that this rule of thumb is just a
rough guideline, and our intention here is not to develop a new method to replace the
standard OLS and maximum likelihood methods, but to propose a (robust) method that is
supplementary to the standard methods. When violations of normality and homoscedasticity
assumptions are detected, instead of choosing a single method to use, we prefer to apply
both the standard and robust methods and then compare their results as a form of sensitivity
analysis. That is, if the results from the two methods are consistent (e.g., both methods
suggest significant or insignificant mediation effects), we obtain more confidence in the
standard method; and if the results from the two methods differ (e.g., one method yields
significant results and the other yields insignificant results), we then should acknowledge
potentially large uncertainties inherent in the analysis results, and probably use simulation
studies to assess which method may be more reliable for a specific application setting.

In the multilevel mediation model, we assume that the second-level errors are independent
and follow normal distributions. Although this normality assumption is far less restrictive
than that of the first-level error distributions in the standard mediation analysis (Verbeke &
Lesaffre, 1997), relaxing this distributional assumption may further improve the robustness
of the proposed method, especially when the sample size is small or moderate. One possible
approach is to model the distributions of the second-level errors as a mixture of normal
distributions in order to handle possible deviations from the normal distribution. We can
also relax the independence assumption by allowing for correlations among the second-level
errors (or random effects). However, although theoretically appealing, such an extension can
be problematic in practice because the observed data typically contain little information
regarding the correlations among the random effects, and consequently the resulting
estimates can be rather unstable or even not estimable (Bauer et al., 2006). In practice, the
assumption of independence among random effects is often reasonable and useful to
improve the estimation stability of the model.

This paper focused on a new method to assess mediation that is more accurate for the actual
distribution of variables obtained in research studies. In the application of this new method
as well as other mediation methods, it is important to keep in mind that the mediation model
is a causal model and is longitudinal in that x causes m and m causes y. Statistical analysis of
any three variables by itself does not provide evidence confirming true mediation or other
third-variable effects like confounding (MacKinnon, Krull, & Lockwood, 2000). More
information on recent developments in causal inference for mediation models can be
obtained elsewhere (Imai, Keele, & Tingley, 2010; Jo et al., 2011; Muthen, 2011; Pearl,
2010; VanderWeele, 2010; West, 2011). Assumptions and prior knowledge of empirical and
theoretical relations are needed to justify the sequence x to m to y. For example, if x
represents a random assignment, then x comes before m and y. The precedence of m to y
compared to y to m is based on theory and prior research. We agree that ideally the change
in m is used to predict the change in y in a longitudinal study. As for many developments in
mediation analysis, we feel it is clearer to start with the simplest mediation model, with one
mediator to develop and describe the results from the first principles. The most reasonable
approach is to investigate mediation within a program of research with information from a
variety of research studies and designs, including qualitative studies and clinical judgment.
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A program of research is how mediating variables have been identified in past research, e.g.,
cognitive dissonance theory in psychology and the genetic theory for how the characteristics
of the parents are related to those of the offspring. Mediation analysis based on median
regression is an important tool in this endeavor because it can most easily handle
distributional problems and, most important for applied researchers, can handle outlier
observations in a reasonable way.
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Appendix

Herein we provide the SAS macro for conducting the proposed robust mediation analysis for
the single mediation model. This macro utilizes a SAS procedure called lav, which is
available in the standard SAS system, to conduct median regression. The percentile and
bias-corrected bootstrap methods are used to construct the confidence interval.

To use the macro, data should be organized in the standard format: columns are variables of
interest (say y, m and x), rows are study units, and “․” denotes missing values. For input
parameters, y is the dependent variable; m is the mediating variable, x is the independent
variable; dataset is the name of the dataset containing the above variables, nboot is the
number of replicates used to calculate the bootstrap confidence interval; and alphalev is the
type I error. As the output of the macro, A and B are the estimates of α and β; AB is the
estimate of mediation effect αβ, ab_lb and ab_ub are the lower and upper bounds of the 95%
confidence interval when alphalev=.05 (the default value). Assuming that the data set is
named meddata, the robust mediation macro is called with the statement

%robustmed(y, m, x, meddata, nboot=1000, alphalev=.05);

Below is the SAS macro for conducting the robust mediation analysis:

%macro robustmed(y, m, x, dataset, nboot=1000, alphalev = .05);

/* robust mediation analysis for the sample*/

proc iml ;

use &dataset;

read all;

one = J(nrow(&x),1);

mcovariate = one ‖ &x ;

ycovariate = one ‖ &m ‖ &x;

opt= {.0. 1};

call lav(rc1, xr1, mcovariate, &m,,opt); /* median regression of m on x */

call lav(rc2, xr2, ycovariate, &y,,opt); /* median regression of y on m and 

x */

ab = xr1[2]||xr2[2]||xr1[2]*xr2[2];

CREATE abest from ab[COLNAME={a b ab}];

APPEND from ab;

quit;

data _NULL_;

set abest;

call symput('sampest', ab);

run;

/* calculate bootstrap confidence interval */

/* generate bootstrap samples */

ods listing close;

proc surveyselect data= &dataset out=bootsample seed = 1347 method = urs 

samprate = 1 outhits rep =
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&nboot;

run;

/* fit bootstrap samples */

proc iml;

use bootsample;

read all;

one = J(nrow(&x),1);

mcovariate = one ‖ &x ;

ycovariate = one ‖ &m ‖ &x;

opt= {.0. 1};

n = nrow(&x)/&nboot;

r1 = 1;

r2 = n;

abboot = j(&nboot, 1, −99);

do rep=1 to &nboot;

call lav(rc1, xr1, mcovariate[r1:r2,], &m[r1:r2,],,opt); /* median 

regression of m on x */

call lav(rc2, xr2, ycovariate[r1:r2,], &y[r1:r2,],,opt); /* median 

regression of y on m and x */abboot[rep, 1] = xr1[2]*xr2[2];

r1 = r1 + n;

r2 = r2 + n;

end;

CREATE estimates from abboot[COLNAME={ab}];

APPEND from abboot;

quit;

/* calculate confidence interval using the percentile bootstrap method*/

%let lpct = %sysevalf(&alphalev/2*100);

%let upct = %sysevalf((1 − &alphalev/2)*100);

proc univariate data = estimates;

var ab;

output out=pboot mean = r2hat pctlpts=&lpct &upct pctlpre = ab pctlname = 

_lb _ub ;

run;

/* calculate confidence interval using the bias-corrected bootstrap method*/

/* Get p and z0 for bias-corrected bootstrap */

data findp; set estimates;

if ab > &sampest then p=1; else p=0;

run;

proc means data=findp noprint;

output out=findp2 mean(p)=p;

run;

data _NULL_; set findp2;

z0=probit(1−p);

call symput('z0',z0);

run;

/* Find percentiles to get for bias-corrected bootstrap */

data _NULL_;

zp=probit(&upct/100);

roundpoint=100/&nboot;

bcbzlo=(2*&z0)−zp;
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bcbzup=(2*&z0)+zp;

bcbplo=probnorm(bcbzlo);

bcbpup=probnorm(bcbzup);

bcbpctlo=round(bcbplo*100,roundpoint);

bcbpctup=round(bcbpup*100,roundpoint);

call symput('bcbpctlo',bcbpctlo);

call symput('bcbpctup',bcbpctup);

run;

/* get confidence interval */

proc univariate data = estimates;

var ab;

output out=bcboot pctlpts=&bcbpctlo &bcbpctup pctlpre= ab pctlname=_lb _ub;

run;

/* print results */

data output1;

merge abest pboot;

method = "percentile bootstrap ";

run;

data output2;

merge abest bcboot;

method = "bias-corrected bootstrap";

run;

data output;

set output1 output2;

label ab_lb="lower &lpct% limit" ab_ub="upper &upct% limit";

run;

options label;

run;

ods listing;

proc print data = output label;

var method a b ab ab_lb ab_ub;

run;

%mend;
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Figure 1.
Path diagram for the single-level mediation model.
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Figure 2.
Performance of standard mediation analysis vs. proposed robust mediation analysis when
data are generated from the Tukey g-and-h family of distributions with different values of g.
A larger value of g represents a higher degree of skewness. Panel (a) shows the ratio of the
mean squared error (MSE). For reference, a ratio of 1 is indicated by the dashed horizontal
line. Panel (b) shows the difference in power. DistProd-OLS and DistProd-HC3 denote the
distributions of the product methods based on the ordinary least squares (OLS) and
heteroscedasticity consistent covariance (HC3) estimates of variance, respectively. A
difference of 0 is indicated by the dashed horizontal line.
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Figure 3.
Performance of standard mediation analysis vs. proposed robust mediation analysis when
data are generated from the Tukey g-and-h family of distributions with different values of h.
A larger value of h indicates heavier tails. Panel (a) shows the ratio of the mean squared
error (MSE). For reference, a ratio of 1 is indicated by the dashed horizontal line. Panel (b)
shows the difference in power. DistProd-OLS and DistProd-HC3 denote the distributions of
the product methods based on the ordinary least squares (OLS) and heteroscedasticity
consistent covariance (HC3) estimates of variance, respectively. A difference of 0 is
indicated by the dashed horizontal line.
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Figure 4.
Performance of standard mediation analysis vs. proposed robust mediation analysis under
different values of δ where a larger value of δ indicates a higher degree of heteroscedasticity.
Panel (a) shows the ratio of the mean squared error (MSE). For reference, a ratio of 1 is
indicated by the dashed horizontal line. Panel (b) shows the difference in type I error rate.
DistProd-OLS and DistProd-HC3 denote the distributions of the product methods based on
the ordinary least squares (OLS) and heteroscedasticity consistent covariance (HC3)
estimates of variance, respectively. A difference of 0 is indicated by the dashed horizontal
line.
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Figure 5.
Panel (a) is the normal quantile-quantile plot for the residuals of y regressing on x and m;
panel (b) is the normal quantile-quantile plot for the residuals of m regressing on x.
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Table 4

Estimates of the mediation effect and the associated standard error (SE) and 95% confidence intervals using
the standard and robust mediation methods for the job training data set.

95% Confidence Interval

Mediation
Method

α̂β̂

Distribution of product
Bootstrap

OLS HC3

Standard −0.015 (−0.039, 0.008) (−0.039, 0.007) (−0.039, 0.006)

Robust −0.045 (−0.089, −0.007) (−0.058, 0.000)

Note. Distribution of the product methods based on the ordinary least squares (OLS) and heteroscedasticity consistent covariance (HC3) estimates

of variance apply to only the standard mediation method.
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