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M
emristors are a leading candidate for future storage and 
neuromorphic computing technologies1–10 due to charac-
teristics such as device scalability, multi-state switching, 

fast switching speed, high switching endurance and CMOS com-
patibility6,11–16. Most research and development efforts have been 
focused on improving device switching performance in optimal 
conditions, and the reliability of memristors in harsh environments 
such as at high temperature and on bending substrates has so far 
received much less attention. Since the programming processes in 
memristors based on traditional oxide materials mostly rely on ion 
moving and ionic valence changing16,17, the thermal instability at 
elevated temperatures could result in device failure18. Thus, to the 
best of our knowledge, there has been no reliable switching behav-
iours observed in memristors at temperatures above 200 °C18,19, 
which limits their potential application in harsh electronics such as 
those demanded in aerospace, military, automobile, geothermal, oil 
and gas industries. Common high temperature electronic materi-
als, such as SiC and III-nitride20,21, are not adoptable in fabricating 
memristors, and therefore searching for new materials and struc-
tures for robust memristors with good performance is desirable.

By stacking two-dimensional (2D) layered materials together22–30, 
van der Waals (vdW) heterostructures can combine the superior 
properties of each 2D component. 2D materials have shown excel-
lent structural stability31,32 and electrical properties, which could 
provide significant improvements in the robustness of electronic 
devices. For example, graphene possesses unparalleled breaking 
strength, and ultra-high thermal and chemical stabilities33; molyb-
denum disulfide (MoS2) has shown good flexibility, large Young’s 

modulus (comparable to stainless steel),34 and excellent thermal sta-
bility up to 1,100 °C32; and various functionalized 2D material lay-
ers, or certain grain boundaries within 2D materials, have shown 
switching behaviours35–44. Since both the thickness and roughness of 
2D layered materials can be controlled accurately at the atomic scale, 
the reliability and uniformity of the electronic devices based on such 
materials and their vdW heterostructures could also be optimized.

In this Article, we report robust memristors based on a vdW heter-
ostructure made of fully layered 2D materials (graphene/MoS2−xOx/
graphene), which exhibit repeatable bipolar resistive switching with 
endurance up to 107 and high thermal stability with an operating 
temperature of up to 340 °C. The MoS2−xOx layer was found to be 
responsible for the high thermal stability of the devices by perform-
ing high temperature in situ high-resolution transmission electron 
microscopy (HRTEM) studies. Further in situ scanning transmission 
electron microscopy (STEM) investigations on the cross section of 
a functional device revealed a well-defined conduction channel and 
a switching mechanism based on the migration of oxygen ions. The 
atomic layered structure of both memristive material (MoS2−xOx) 
and electrodes (graphene) was found to be well maintained during 
the switching processes, which plays a crucial role in determining 
the robustness of the devices. Finally, the mechanical flexibility of 
such devices was demonstrated on polyimide (PI) substrate with a 
good endurance against mechanical bending of over 1,000 times.

Device fabrication and switching performance
Figure 1a shows the schematic drawing and the crystal structure of 
graphene/MoS2−xOx/graphene (GMG) devices. Multi-layer graphene 

Robust memristors based on layered two-
dimensional materials

Miao Wang1,7, Songhua Cai2,7, Chen Pan1, Chenyu Wang1, Xiaojuan Lian1, Ye Zhuo   3, Kang Xu1,  

Tianjun Cao1, Xiaoqing Pan2,4,5, Baigeng Wang1, Shi-Jun Liang1, J. Joshua Yang   3*, Peng Wang   2,6* 

and Feng Miao   1*

Van der Waals heterostructures are formed by stacking layers of different two-dimensional materials and offer the possibil-
ity to design new materials with atomic-level precision. By combining the valuable properties of different 2D systems, such 
heterostructures could potentially be used to address existing challenges in the development of electronic devices, particularly 
those that require vertical multi-layered structures. Here we show that robust memristors with good thermal stability, which is 
lacking in traditional memristors, can be created from a van der Waals heterostructure composed of graphene/MoS2–xOx/gra-
phene. The devices exhibit excellent switching performance with an endurance of up to 107 and a high operating temperature of 
up to 340 °C. With the help of in situ electron microscopy, we show that the thermal stability is due to the MoS2–xOx switching 
layer, as well as the graphene electrodes and the atomically sharp interface between the electrodes and the switching layer. We 
also show that the devices have a well-defined conduction channel and a switching mechanism that is based on the migration 
of oxygen ions. Finally, we demonstrate that the memristor devices can be fabricated on a polyimide substrate and exhibit good 
endurance against over 1,000 bending cycles, illustrating their potential for flexible electronic applications.

Corrected: Author correction

NATuRe eLeCTRoNiCS | VOL 1 | FEBRUARY 2018 | 130–136 | www.nature.com/natureelectronics130

mailto:jjyang@umass.edu
mailto:wangpeng@nju.edu.cn
mailto:miao@nju.edu.cn
http://orcid.org/0000-0002-1385-9039
http://orcid.org/0000-0003-0671-6010
http://orcid.org/0000-0003-0788-6687
http://orcid.org/0000-0002-0962-5424
http://www.nature.com/natureelectronics


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ARTICLESNATURE ELECTRONICS

(~8 nm thick) and MoS2 (~40 nm thick) membranes were mechani-
cally exfoliated and deposited on SiO2/Si wafers. We oxidized MoS2 
membranes at 160 °C for 1.5 h in ambient air to obtain the layered 
MoS2−xOx membrane, where x ≈  0.3 according to Energy Dispersive 
X-Ray Spectroscopy (EDS) analysis (Fig. 5d). Figure 1b shows the 
optical image of a typical GMG device and measurement setup. The 
stacked vdW heterostructure was obtained by using standard poly-
vinyl alcohol (PVA) transfer method. Figures 1c and 1d show the 
cross-section high angle annular dark-field (HAADF) and HRTEM 
images respectively. Remarkably, the MoS2−xOx layer exhibits excel-
lent layered crystal structure after the oxidization process. Compared 
to the previous works of replacing either electrode or switching layer 
by layered materials to improve performance35–44, one major advan-
tage of our GMG devices based vdW heterostructure is the realiza-
tion of the atomically sharp interfaces between the switching layer 
and the electrodes (Fig.  1d). This is not achievable in traditional 
metal/oxide/metal based memristors fabricated by sputtering and 
evaporating16,17. Since the switching performance of memristors is 
largely affected by the roughness of the switching interface5,45, high 
performance could be expected in the GMG devices.

We then examined the switching performance of our GMG 
devices by using four-probe electrical measurements (to rule out 
the line resistance). Figure 2a shows the repeatable bipolar switch-
ing curves of a typical GMG device. The switching polarity is 
determined by the electroforming voltage polarity, i.e. positive/
negative electroforming resulting in ON switching with positive/
negative bias and OFF switching with negative/positive bias (see 
Supplementary Fig. 1a and Supplementary Note 1 for more details). 

Higher ON/OFF ratio can be achieved with higher current compli-
ance for electroforming and set process (Supplementary Fig.  1b). 
The switching voltage for the first set operation (orange curve in 
Fig. 2a) is only slightly larger than that of the subsequent normal set 
operation (blue I-V), suggesting that no dramatic electroforming 
process is required for device operations. As shown in Fig. 2b, over 
2 ×  107 switching cycles were observed by applying fixed voltage 
pulses (1 μ s width with +  3.5 V for set and − 4.8 V for reset). We also 
used fixed voltage pulses (+  3 V for set and − 4 V for reset) with pro-
gressively broadened width to test the switching speed of our GMG 
devices. The results show that the GMG device could switch in less 
than 100 ns and sustain its resistance state under the following wider 
reading pulses (Fig. 2c). Here we note that this measured switching 
speed is limited by the parasitic capacitance of the device, not the 
intrinsic switching speed. In addition, a good retention (~105 s) of 
both ON and OFF states at room temperature was shown in Fig. 2d. 
During all electrical measurements, the voltages were applied on 
the graphene top electrode and the graphene bottom electrode was 
always grounded.

In order to investigate the role of the high-quality interface in 
the GMG devices, we carried out control experiments by fabricat-
ing devices based on Au/MoS2−xOx (~40 nm)/Au (AMA) struc-
ture (using the same MoS2−xOx membranes as in GMG devices). 
Repeatable switching behaviours were also observed in AMA 
devices. We carefully analysed and compared the statistics of the 
switching parameters in AMA and GMG devices. Compared with 
the GMG devices, the AMA devices have shown much boarder 
distributions in both reset and set voltages (see Supplementary 
Figures 2a–e and Supplementary Note 2), suggesting a larger vari-
ance and less reliable resistive switching in AMA devices. A much 
lower switching endurance with a larger cycle-to-cycle resistance 
variance was also observed in the AMA devices, as shown in 
Supplementary Fig.  2f. The cross-section HRTEM studies of an 
AMA device (see Supplementary Fig. 3 and Supplementary Note 3) 
revealed a rough interface between the Au electrode and MoS2−xOx 
layer, indicating a crucial role possibly played by the high-quality 
switching interface in memristor devices based on layered materials.

High-temperature performance and thermal stability
To further examine the thermal stability of the GMG devices, we 
measured their switching performance at elevated temperatures. 
Various switching curves of a typical GMG device at ambient tem-
peratures ranging from 20 °C to 340 °C are shown in Fig. 3a. The 
device remained fully functional at 340 °C. We also used voltage 
pulses (fixed width of 1 μ s) to test the switching repeatability of the 
GMG devices at elevated temperatures. As shown in Fig.  3b, the 
GMG device exhibits a good cycle to cycle reproducibility and a sta-
ble switching window at three chosen temperatures (100 °C, 200 °C 
and 300 °C). The retention of both ON and OFF states at elevated 
temperatures was also examined. As shown in Fig. 3c, we observed 
no significant resistance change of ON/OFF state over an approxi-
mately 105 s testing time at 160 °C and 340 °C respectively, suggest-
ing a great reliability of the GMG devices at elevated temperatures. 
The demonstrated operating temperature of 340 °C is record-high 
for memristors, and much higher than the previously reported 
highest temperature of 200 °C19, suggesting potential applications of 
GMG devices as high-density memory/computing units in future 
high-temperature harsh electronics.

Compared with the amorphous oxide switching layer used in the 
traditional memristors, the layered crystal structure of MoS2−xOx 
could be responsible for the robustness of GMG devices in terms of 
high thermal stability. In order to verify this, we performed in situ 
HRTEM studies on the MoS2−xOx membranes at high temperatures 
(Fig. 4a–d). Remarkably, the MoS2−xOx membrane maintains excel-
lent crystal structure at temperatures up to 800 °C. Ion migration 
starts to occur only when the temperature increases to 900 °C or 
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higher (see Supplementary Fig. 5 and Supplementary Note 4). As 
a matter of fact, pristine MoS2 stays stable at very high tempera-
tures. For example, MoS2 can still be used as a lubricant at 1,300 °C46. 
Thus, the superior high thermal stability of the MoS2−xOx layer 
should be attributed to the structural stability of MoS2 (since the 
MoS2−xOx layer was obtained by oxidizing MoS2). Such high ther-
mal stability has not been reported in the amorphous oxides used in 
traditional memristors (such as in Titanium oxides and Tantalum 
oxides, with phase transition temperatures at 300 °C47 and 650 °C48, 
respectively). The thermal stability of MoS2−xOx layer also enables 
the non-switching regions in the devices to maintain their original 
state at elevated temperatures, hence ensures the stable switching of 
the GMG devices.

in situ STeM study and microscopic pictures
In order to further reveal the nature of the robustness of GMG 
devices, it is essential to acquire the microscopic pictures dur-
ing the electroforming and switching processes. We fabricated 
electron-transparent cross-sectional TEM samples with a similar 
GMG structure (Pt/graphene/MoS2−xOx/graphene/conductive sili-
con substrate, see details in methods section), followed by in situ 
STEM experiments. This makes it feasible for real-time observa-
tion of any voltage-induced structural change, particularly in the 
conduction channel region, with typical HAADF-STEM and EDS 

results of different states shown in Fig. 5a–c (pristine, ON and OFF 
states respectively). The whole area of the cross-sectional device was 
investigated during the in situ STEM experiment to confirm that 
there is no region that is critical for the switching except the one 
shown in Fig. 5. After the electroforming with a positive staircase 
sweep voltage (from 0 to +  4.5 V) applied on the top electrode (Pt), 
a dark-contrast region in the MoS2−xOx layer appeared (in the ON 
state, shown in Fig. 5b) and barely changed when the device was 
switched to the OFF state (Fig. 5c). This observation suggests that 
a conduction channel was formed with some noticeable composi-
tion change, as the intensity of the HAADF image is monotonically 
proportional to atomic number Z49. In addition, EDS line-scan 
analysis was employed to study the elemental composition varia-
tions of the MoS2−xOx layer for three different states as shown in 
Fig.  5d–f respectively (the scanning directions are indicated by 
the green arrows in Fig. 5a–c). In the pristine state, the MoS2−xOx 
layer shows a uniform atom distribution in stoichiometric propor-
tions with an averaged atomic ratio of molybdenum to sulfur and 
oxygen at approximate 0.5 (Mo:(S +  O) ≈  1:2, as shown in Fig. 5d 
and Supplementary Fig.  6). This suggests that sulfur vacancies in 
MoS2−xOx could be mostly occupied by oxygen after the thermal 
oxidation (as schematically shown in Fig.  5g). After the electro-
forming, a clear reduction of the S atom percentage in the channel 
region was observed with the atomic ratio of Mo:(S +  O) decreased 
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to approximate 1:1.2, as shown in Fig. 5e. This observation is con-
sistent with the reduced contrast at the channel region in its cor-
responding HAADF image (Fig. 5b). The loss of S atoms (forming S 
vacancies) could result from thermophoresis effect due to the Joule 

heating: the temperature gradient caused by the increasing current 
drives the lighter ions away from the channel region (as schemati-
cally shown in Fig. 5g,h).

Furthermore, a comparison of in situ STEM results between the 
ON and OFF states could reveal a switching mechanism of GMG 
devices. It can be seen that there was no noticeable change in the 
MoS2-xOx layer as shown in the HAADF image (Fig. 5c), suggest-
ing that no intense atomic movement occurred during the reset 
process. At the same time, the horizontal line-scan exhibits a per-
centage increase of oxygen atoms in the channel region for the OFF 
state, with an atomic ratio of Mo:(S +  O) changed to be around 1:2.
The amount of S in the channel region remains the same or even 
slightly decreases from the ON state to the OFF state. The experi-
mentally observed increase of oxygen atoms in the channel region 
indicates that the oxygen ions near the channel region are driven 
(mainly by thermal dissolution effect) towards the channel to fill 
the sulfur vacancies, and consequently switch the device to the OFF 
state (as schematically shown in Fig. 5i). Here the filled oxygen ions 
are more mobile than the sulfur ions likely due to the lower bar-
rier energy for motion. For the set process, since thermophoresis 
effect50,51 would dominate due to the steep radial temperature gra-
dient produced by Joule heating, the oxygen ions are driven out of 
the channel region. The switching mechanism primarily based on 
the migration of oxygen ions with minor structure change of the 
channel region is believed to be a major origin of the observed high 
switching performance16.

Based on our results obtained in the in situ STEM experiments, 
both the graphene electrodes and the MoS2-xOx switching layer, 
together with their atomically sharp interfaces, are considered to 
be responsible for the high thermal stability of the GMG devices. 
Firstly, we found that the channel region still maintains layered crys-
tal structure after the electrical operations (see the HRTEM image 
of the in situ planar GMG device in Supplementary Fig.  7b). By 
considering the aforementioned extra-high thermal stability of the 
MoS2−xOx layer, at elevated temperatures, this could effectively avoid 
the undesirable migration of oxygen and sulfur ions, and prevent 
possible reactions between the conduction channel and surround-
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ing regions. Secondly, with a high thermal and chemical stability33 
and good impermeability52, the graphene electrodes act as protec-
tor of the conduction channel at elevated temperatures. Indeed, 
we noticed that the graphene electrodes maintain excellent crys-
tal structure after switching (Supplementary Fig. 7b). The carbon 
EDS mapping of the channel region in pristine, ON and OFF states 
(Supplementary Fig. 8) further demonstrates the compositional sta-
bility of the graphene electrodes. With the help of the atomically 
sharp interface between graphene and MoS2−xOx layer, the graphene 
electrodes well confine a stable conduction channel and effectively 
prevent the migration of the active ions43 into electrode materials, 
which is strongly correlated to device failure, especially at elevated 
temperatures. This also explains in ambient conditions (with the 
existence of oxygen and humidity), the as-prepared MoS2 mem-
brane with existing sulfur vacancies53 can be oxidized at quite low 
temperature (160 °C) to be MoS2−xOx, which still maintains good 

layered crystal structure (Fig. 1d). Nevertheless, after being isolated 
from oxygen and humidity (either in HRTEM vacuum or being 
well-protected by graphene electrodes), the MoS2−xOx membrane 
has shown good structure stability at temperatures up to 800 °C in 
HRTEM (Fig.  4) and good electrical switching behaviors at tem-
peratures up to 340 °C (Fig. 3).

Flexible electronic applications
Both graphene and MoS2 have shown outstanding mechanical flex-
ibility34,54, which is ideal for harsh electronics against mechanical 
stress and other flexible electronic applications40,55. As a demonstra-
tion, we fabricated flexible GMG crossbar structures on PI substrate 
(Fig. 6a,b). The flexible GMG devices could be set at about 0.4 V 
with a current compliance of 1 mA, and reset at about − 0.5 V (with 
switching curves of a typical device shown in Fig. 6c), which is com-
parable to the GMG devices on a SiO2/Si substrate. As shown in 
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Fig. 6c, the device exhibits excellent mechanical durability by main-
taining critical resistance states and remaining functional over 1,000 
bending cycles (corresponding to a strain of ∼ 0.6%). Usually it is 
very challenging for electronic devices to possess both good flexibil-
ity and high thermal stability: inorganic material based devices usu-
ally lack mechanical flexibility while organic material based devices 
usually lack good thermal stability.

Conclusions
We fabricated robust memristors based on fully layered 2D materi-
als (graphene/MoS2−xOx/graphene), which exhibit repeatable bipo-
lar resistive switching and high thermal stability up to 340 °C. We 
found the atomically sharp interface formed between graphene 
and MoS2−xOx is responsible for the observed high switching per-
formance. MoS2−xOx layer was found to induce the observed high 
thermal stability after performing high temperature in situ HRTEM 
studies. Further in situ STEM investigations on a cross-sectional 
device revealed a well-confined conduction channel and a switch-
ing mechanism based on the migration of oxygen ions. The atomic 
layered structure of both switching layer (MoS2−xOx) and electrodes 
(graphene), together with their atomically sharp interfaces, were 
found to play a crucial role in determining the robustness of the 
devices. Finally, the mechanical flexibility of such structured devices 
was demonstrated by showing a good endurance against mechanical 
bending of over 1,000 times, suggesting possible flexible electronic 
applications. Our realization of robust memristors based on fully 
2D materials provides an avenue for future electronics engineering 
using vdW heterostructures.

Methods
Device fabrication. �e multi-layer graphene and MoS2 membranes were 
obtained by using mechanical exfoliation method on 300-nm thick SiO2 wafers, 
where commercial graphite and MoS2 �akes were used as received (graphite from 
Kish Graphite; MoS2 from SPI Supplies). �e graphene ribbons were de�ned 
by standard e-beam lithography (EBL) method, followed by dry etching in an 
Inductively Coupled Plasma (ICP) system, where O2 was used as etching gas. �e 
thickness of graphene and MoS2 membranes was identi�ed by an atomic force 
microscopy (AFM). �e oxidation of the MoS2 membranes was performed in 
ambient air on a hot plate at 160 °C for 1.5 h, with subsequent rapid cooling. �e 
graphene/MoS2–xOx/graphene (GMG) structure was stacked by using standard 
polyvinyl alcohol (PVA) transfer method26. �e metal conductive layer (5 nm 
Ti/50 nm Au) was deposited through standard E-beam deposition process. To 
fabricate Au/MoS2–xOx /Au (AMA) devices, we �rst deposited an Au bottom 
electrode (40 nm thick, 1 μ m wide) on a 300-nm thick SiO2 wafer through 
standard EBL and E-beam deposition processes. A MoS2–xOx membrane was then 
transferred onto the bottom electrode. An Au top electrode (40 nm thick, 1 μ m 
wide) was �nally deposited onto the MoS2–xOx membrane perpendicular to the 
bottom electrode.

Characterizations. Current–voltage switching curves and resistance measurements 
were performed using an Agilent B1500A parameter analyzer. The high 
temperature electrical measurements of GMG and AMA devices were performed 

on a hot plate in ambient air. The temperatures of the devices were further 
confirmed by a Fluke non-contact infrared thermometer.

High temperature in situ HRTEM experiments. MoS2 nanosheets were prepared 
by ultrasonic exfoliation using commercial MoS2 bulk samples (SPI Supplies). The 
dispersion was then dropped onto a DENSsolution in situ heating chip. Before the 
in situ HRTEM experiments, sample was heated to 160 °C in ambient air and kept 
1.5 h for thermal oxidation. HRTEM images were acquired by FEI Tecnai F20 at 
200 KV. DENSsolution DH30 system was used for in situ heating experiments.

In situ cross-section STEM experiments. High quality Pt (conductive protection 
layer)/graphene/MoS2−xOx/graphene/Si (conductive silicon substrate) samples 
were manufactured on our home-made in-situ electrical chip (designed for 
DENSsolution DH30 holder) by a Helios 600i dual-beam FIB system. The cross-
sectional lamellae were thinned down to approximate 100 nm at an accelerating 
voltage of 30 kV with 0.79 nA, followed by two steps of fine polish at 5 kV 
accelerating voltage with 0.12 nA and 2 kV accelerating voltage with a small 
current of 68 pA, respectively. The lamellae were fixed on two electrodes of the in 
situ electrical chip by Pt deposition in the FIB system. The STEM and HRTEM 
images were obtained on a FEI Titan Cubed G2 60–300 aberration corrected S/
TEM. The operation voltage of 60 kV was used to reduce electron beam damage to 
graphene and MoS2−xOx. EDS analyses were carried out using Bruker SuperEDX 
four-detector system. Real-time electrical measurements of the in situ samples 
were performed using a Keithley 2636 A dual channel digital source meter unit 
connected with a DENSsolution double-tilt heating and biasing holder. In this 
experiment, thicker graphene membranes ( >  50 nm) were used for both top and 
bottom electrodes to protect the MoS2−xOx layer from being damaged by the high 
energy focused ion beam (Gallium ion), and to avoid the disturbance of the Si and 
Pt atoms during the switching process.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon reasonable 
request.
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