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Abstract 

Identifying genomic elements underlying phenotypic adaptations is an important 

problem in evolutionary biology. Comparative analyses learning from convergent 

evolution of traits are gaining momentum in accurately detecting such elements. We 

previously developed a method for predicting phenotypic associations of genetic 

elements by contrasting patterns of sequence evolution in species showing a 

phenotype with those that do not. Using this method, we successfully demonstrated 

convergent evolutionary rate shifts in genetic elements associated with two 

phenotypic adaptations, namely the independent subterranean and marine 

transitions of terrestrial mammalian lineages. Our method calculates gene-specific 

rates of evolution on branches of phylogenetic trees using linear regression. These 

rates represent the extent of sequence divergence on a branch after removing the 

expected divergence on the branch due to background factors. The rates calculated 

using this regression analysis exhibit an important statistical limitation, namely 

heteroscedasticity. We observe that the rates on branches that are longer on 

average show higher variance, and describe how this problem adversely affects the 

confidence with which we can make inferences about rate shifts. Using a 

combination of data transformation and weighted regression, we have developed an 

updated method that corrects this heteroscedasticity in the rates. We additionally 

illustrate the improved performance offered by the updated method at robust 

detection of convergent rate shifts in phylogenetic trees of protein-coding genes 

across mammals, as well as using simulated tree datasets. Overall, we present an 

important extension to our evolutionary-rates-based method that performs more 

robustly and consistently at detecting convergent shifts in evolutionary rates. 

 

Introduction 
Understanding the relationship between phenotype and genotype is one of 

the fundamental problems of biology. A mechanistic characterization of this 

relationship hinges on our ability to define how specific genetic elements contribute 

to biological processes at the molecular, cellular, and organismal level. Advanced 

high-throughput sequencing technologies have enabled the development of 

experimental approaches that have discovered a wealth of genetic elements with 

putative regulatory roles across tissues (ENCODE Project Consortium, 2012; 

Andersson et al., 2014; Romanoski et al., 2015). However, identifying the precise 

biological functions of these discovered elements remains a challenge. Even beyond 

non-coding elements, the precise biological roles of many protein-coding genes is 
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still poorly understood and many genes with statistical disease associations still lack 

a mechanistic explanation (Pennacchio et al., 2013; Radivojac et al., 2013; Sa, 

Sánchez and Huarte, 2013; Shlyueva, Stampfel and Stark, 2014). While 

experimental validation for functional annotation remains challenging, there is 

considerable interest in developing new tools that can use existing data resources to 

further elucidate the function of genetic elements. These approaches have the 

potential to  improve the diagnosis of disease susceptibility as well as the 

development of therapeutic interventions (Manolio et al., 2009; Esteller, 2011). 

 Computational approaches learning from patterns of convergent phenotypic 

evolution across species provide a complementary approach to predict genotype-

phenotype associations. The natural world is rife with examples of phenotypic 

convergence ranging from the independent evolution of flight in birds and mammals 

to diving in species that transitioned from a terrestrial to marine habitat to loss of 

complex phenotypes such as eyesight in animals colonizing the subterranean niche. 

Genome-scale studies aimed at identifying the genetic basis of phenotypic 

convergence take advantage of the growing availability of whole genome sequences 

for species across several orders, alongside the development of comparative 

methods to predict orthologous sequences (Eisen, 1998; Pellegrini et al., 1999; Li et 

al., 2014). An oft considered approach by such studies is to identify convergence at 

the molecular level, including substitutions at specific nucleotide or amino acid sites 

(Zhang and Kumar, 1997; Parker et al., 2013; Stern, 2013; Foote et al., 2015; 

Thomas and Hahn, 2015; Zou and Zhang, 2015). A complementary strategy to 

investigate the genetic basis of convergence is to search for convergent changes at 

the level of larger functional regions rather than specific nucleotide or amino acid 

sites. Sets of genes associated with a phenotype can respond to convergent 

changes in the selective pressure on the phenotype through non-identical changes in 

the same gene, and as such, sites-based methods can fail to detect them. These 

limitations have encouraged researchers to search for convergent shifts in 

evolutionary rates of individual protein-coding genes and more recently conserved 

non-coding elements (Lartillot and Poujol, 2011; Hiller et al., 2012; Chikina, 

Robinson and Clark, 2016; Marcovitz, Jia and Bejerano, 2016; Prudent et al., 2016). 

An increased selective constraint can manifest as a slower evolutionary rate 

whereas faster evolutionary rates can result from a release of constraint or from 

adaptation. Thus phenotypic associations for genetic elements can be predicted from 

correlated changes in their evolutionary rates on phylogenetic branches 

corresponding to the phenotypic change. Example approaches based on 

evolutionary rates include the Forward/Reverse Genomics methods that have 

identified protein-coding and non-coding genetic elements showing convergent 

regression in subterranean mammals, as well as limb-regulatory elements lost in 

snake lineages (Hiller et al., 2012; Marcovitz, Jia and Bejerano, 2016; Prudent et al., 

2016; Roscito et al., 2017).  

 We previously developed an evolutionary-rates-based method to identify 

genetic elements showing convergent shifts in evolutionary rates associated with two 

distinct phenotypic transitions (Chikina, Robinson and Clark, 2016; Partha et al., 
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2017). Our method calculates gene-specific evolutionary rates using a linear model, 

and gene-trait associations are inferred using correlations of these rates with the 

phenotype of interest. A genome-wide scan for protein-coding genes associated with 

the transition to the marine environment identified hundreds of genes that showed 

accelerated evolutionary rates on three marine mammal lineages (Chikina, Robinson 

and Clark, 2016). These accelerated genes were significantly enriched for functional 

roles in pathways important for the marine adaptation including muscle physiology, 

sensory systems and lipid metabolism. More recently, using our methods we 

detected an excess of vision-specific genes as well as enhancers that showed 

convergent rate acceleration on the branches corresponding to four subterranean 

mammals (Partha et al., 2017). Such genome-scale efforts, both from our group and 

others, searching for genetic elements responding to convergent changes in the 

selective pressures in their environment, are gaining momentum in accurately 

describing precise genotype-phenotype associations. 

Our current evolutionary-rates method has an important statistical limitation, 

namely strong mean-variance trends in the computed evolutionary rates. The 

distributions of branch lengths of gene trees in phylogenetic datasets are influenced 

by the choice of species, divergence from the most recent common ancestor, and 

species-specific properties such as generation time in addition to gene-specific 

constraints on the sequence evolution. These factors cause large differences in the 

average lengths as well as the variance of the branch lengths across the branches 

studied. In this paper, we illustrate how this limitation can adversely impact the 

confidence with which we infer phenotypic associations for genetic elements, in 

particular making them sensitive to certain factors in phylogenomic analyses 

including choice of taxonomic groups and average rates of sequence divergence on 

phylogenetic branches showing the convergent phenotype. We demonstrate how 

introducing long branches in phylogenetic trees via the inclusion of distantly related 

species impacts the reliable estimation of evolutionary rates using gene trees across 

mammals, as well using a first-of-its-kind model for simulating gene trees. We 

present key improvements to our methods that address these limitations and 

overcome them. The next section New Approaches presents a detailed walk-through 

of our current approach to calculate relative evolutionary rates, the illustration of 

mean-variance trends (heteroscedasticity) in these rates, and our methodological 

updates that correct for the problem of heteroscedasticity in the rates.  We 

subsequently demonstrate the improved reliability in relative rate calculations using 

our updated method, and more importantly in the robust detection of convergent rate 

shifts across a range of evolutionary scenarios in real and simulated phylogenetic 

datasets.  

 

New Approaches 
Current relative-evolutionary-rates methods for predicting phenotypic 

associations of genetic elements 
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Our method infers genetic elements associated with a convergent phenotype 

of interest based on correlations between that phenotype and the rates of evolution 

of genetic elements. As input, the phenotype is encoded as a binary trait on a 

phylogenetic tree, and the evolution of each genetic element is similarly described by 

phylogenetic trees with the same fixed topology. Figure 1 provides an illustration of 

our method capturing the convergent acceleration of the Lens Intrinsic membrane 2 

protein Lim2 on four subterranean mammal branches. We use maximum likelihood 

approaches to estimate the amount of sequence divergence of each genetic element 

on branches of the phylogenetic tree (Yang, 2007). Using the branch lengths on 

each elements tree's branch lengths, we calculate the average tree across the 

individual trees reflecting the expected amount of divergence on each branch. 

Relative evolutionary rates (RERs) on individual trees are then calculated as the 

residuals of a linear regression analysis where the dependent variable corresponds 

to the branch lengths of individual trees, and the independent variable corresponds 

to branch lengths of the average tree. Thus the relative rates reflect the gene-

specific rate of divergence in each branch, factoring out the expected divergence on 

the branch due to genome-wide effects (such as mutation rate, time since speciation, 

etc.). The relative rates method works downstream of estimating the trees, and 

hence considers protein-coding gene trees, non-coding genetic element trees and 

simulated gene trees equivalently. For the sake of simplicity, we refer to the relative 

rates on the branches of each tree as the gene-specific relative rate; the term gene 

could in principle be referring to a protein-coding gene, non-coding genetic element, 

or a simulated tree depending on the dataset being studied. 

 

 
Figure 1. Predicting gene-trait associations using relative rates methods. A. Lens 

Intrinsic Membrane 2 (Lim2) protein-coding gene tree. Our phylogenetic dataset is 

comprised of trees constructed from alignments of protein-coding genes in the mammalian 

genome across 59 species of placental mammals. B. Relative rates on branches of 
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phylogenetic trees are calculated using linear regression. C. Gene-trait associations are 

identified using correlations of relative rates of the gene with binary trait of interest 

 

Estimating mean-variance trends in relative rates 

Our current methods calculate the gene-specific rates by correcting for the 

genome-wide effects on branch lengths using linear regression. Consequently, the 

variance of the relative rates on individual branches strongly depends on the 

average length of the branch, illustrated here using an example protein-coding gene 

tree for MFNG, Manic Fringe Homolog Drosophila (Figure 2A). We see that longer 

branches have relative rates showing a higher variance, as can be inferred from the 

increasing spread of the relative rates. This pattern becomes clearer when we plot 

the genome-wide variance in relative rates for branches of different average lengths 

(Figure 2B). In statistical terms, the relative rates are heteroscedastic meaning they 

show unequal variance across the range of values of the dependent variable, here 

the average branch length. The presence of a non-constant mean-variance trend in 

the residuals stands in violation of one of the assumptions underlying linear 

regression, namely, homoscedasticity or constant variance of residuals with respect 

to the dependent variable. More importantly, we suspect that this heteroscedasticity 

of the relative rates adversely affects the confidence with which we can infer rate 

shifts on specific branches. For example, the presence of a mean-variance trend can 

increase the likelihood of observing higher relative rates on longer branches by 

chance, rather than due to gene-specific changes reflecting changes in selective 

pressure. A potential negative consequence could be a higher proportion of false 

positives while inferring convergent rate changes on such branches. 

 

 
Figure 2.  Heteroscedasticity in the relative rates computed using current method. A. 

Relative rates on branches of Manic Fringe (MFNG) gene tree, calculated using current 

method. Points represent branches of the gene tree, with relative rates computed on the 

branches plotted against the genome-wide average length. Heteroscedasticity in the relative 
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rates can be visualized as the increase in the variance of the relative rates with increasing 

average branch length B. Genome-wide mean-variance trends in relative rates. The 

logarithm of the relative rate variance within each bin is shown, where branches are binned 

based on their average lengths across all gene trees. Bin ranges were chosen to provide 

equal numbers of observations per bin. Higher variance in relative rates are observed with 

increasing branch lengths, and the extent of this heteroscedasticity is calculated using the ‘r-
squared’ of the quadratic model between the variables plotted. 

 

Updated method to calculate relative rates 

In this study, we present an approach relying on a combination of data 

transformation and weighted linear regression to calculate relative evolutionary rates 

that addresses the statistical limitations resulting from relative rates calculated using 

naive linear regression. The proposed method updates are based on the ideas 

presented in Law et al, who developed new linear modeling strategies to handle 

issues related to mean-variance relationship of log-counts in RNA-seq reads (Law et 

al., 2014; Ritchie et al., 2015). We represent the branch lengths on individual gene 

trees as a matrix Y, where rows correspond to individual genes (g), and columns to 

the branches (b) on these trees. We first transform the branch length data using a 

square-root transformation (Eq. 1).  𝑌𝑔𝑏′ = √𝑌𝑔𝑏 (1) 

 

 

Following the transformation, we perform a weighted regression analysis to 

calculate the relative evolutionary rates as follows: we calculate the average tree and 

perform a first-pass of linear regression using the transformed branch length matrix 

(Eq. 3,4).  𝑥𝑏 = 𝑌̅𝑏′, (2) 

where 𝑥𝑏 is the branch length for branch b in the average tree. 𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌′ (3) 𝑅 = 𝑌′ − 𝑋𝛽̂, (4) 

where 𝛽̂ are the coefficients of linear regression, and R is the residuals matrix. 

We then estimate the mean-variance trends in the residuals of the linear 

regression analysis by empirically fitting a locally weighted scatterplot smoothing 

(LOWESS) function capturing the relationship between the log of variance of the 

residuals and the branch lengths (Eq. 5).  𝑙𝑜𝑔(𝑅2) ~𝑓(𝑌′) (5) 

Subsequent to estimating this function, we assign each gene x branch 

observation a weight W based on the predicted value for the branch, obtained from 

the first pass linear regression (Eq. 6).  𝑊 = 𝑒−𝑓(𝑋𝛽̂) (6) 

For branches that are shorter on average, the variance in the residuals is 

smaller, thus resulting in a higher weight, and vice versa. Using the computed 

weights, we perform a weighted regression analysis between the individual branch 
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length (dependent variable) and the average tree (independent variable). The 

weighted regression analysis attempts to remove the heteroscedasticity in the 

residuals by computing the residuals after minimizing the weighted sum of squared 

errors, as opposed to the raw sum of squared errors (Eq. 7,8).  𝛽̂𝑊𝐿𝑆 = (𝑋𝑇𝑊𝑋)−1𝑋𝑇𝑊𝑌′ (7) 𝑅 = 𝑌′ − 𝑋𝛽̂𝑊𝐿𝑆 (8) 𝑟𝑔𝑏′ = 𝑟𝑔𝑏√𝑤𝑔𝑏𝜎𝑏 , (9) 

where 𝜎𝑏 is the standard deviation of the weighted residuals in branch b 

Subsequent to the weighted regression analysis, the weighted residuals (𝑟𝑔𝑏′ ), 

are estimated by rescaling the regression residuals (𝑟𝑔𝑏) with the weights, 

additionally standardized to have unit variance within every branch across all genes 

(Eq. 9). The weighted residuals (𝑟𝑔𝑏′ ) correspond to the weighted relative rate on 

branch b for gene g. The differences to the relative rate calculations introduced by 

the updated method result in changes to the scales of the relative rates computed. 

However, we note that this scale is arbitrary and the downstream gene-trait 

correlations for binary traits estimated using a Mann-Whitney test (see Methods) 

depend only on the ranks of the relative rates of each branch within any single gene 

tree. Figure 3 shows the workflows for computing relative evolutionary rates using 

the original and updated method. 

 

 
Figure 3. Workflow for calculating relative evolutionary rates using the updated 

method. Black areas of the workflow represent steps implemented as part of current relative 

rates method, and blue areas correspond to methodological updates. 

 

Results  
Improvements to relative evolutionary rates methods mitigate genome-wide 

mean-variance relationship 

Our updated method to calculate relative rates using data transformation 

followed by weighted regression produce nearly homoscedastic relative rates that do 

not show a significant global mean-variance relationship. Figure 4A shows the 

relative rates computed for the MFNG protein-coding gene tree using the updated 

method. In comparison to the original method based on naive linear regression 
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(Figure 2A), we observe that the updated method produces relative rates showing no 

apparent increase in the variance of relative rates on longer branches of the tree. 

Plotting the genome-wide mean-variance trends of the relative rates, we observe 

that the relative rates calculated from transformed-weighted residuals show nearly 

constant variance across branches of varying lengths (Figure 4B). We additionally 

checked the mean-variance relationships from intermediate steps in our method that 

can estimate relative rates, corresponding to two method variants which do not 

implement data transformation (linear-weighted regime) or a weighted regression 

(square-root unweighted regime) (Supplementary Figure S1). However, we find that 

the intermediate regimes, utilizing only one of the method updates (branch length 

transformation or weighted regression) are less effective at eliminating mean-

variance trends. A combination of transformation and weighted regression steps 

works best at producing homoscedastic relative rates.  

  

 
Figure 4. Updated method to calculate relative rates shows no apparent trends of 

heteroscedasticity. A. Manic Fringe (MFNG) gene relative rates calculated using the 

updated method. In comparison to figure 2A, we do not observe an increase in the variance 

of relative rates of branches with increasing average branch length. B. Genome-wide mean-

variance trends for relative rates computed using the updated method show constant 

variance with increasing branch lengths. Contrasting the trends resulting from the application 

of original (Figure 2B) and updated method (Figure 4B), we observe that the updated 

method produces nearly homoscedastic relative rates. The extent of heteroscedasticity, 

computed as the ‘r-squared’ of the quadratic model between the variables plotted, is nearly 

hundred-fold lower with the updated method compared to original method.  

 

Better robustness to inclusion of distantly related species  

In earlier applications of our evolutionary-rates-based method to detect 

genetic elements convergently responding in subterranean mammals and marine 

mammals respectively, we sampled alignments of placental mammal species to 
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construct phylogenetic trees for each genetic element (Chikina, Robinson and Clark, 

2016; Partha et al., 2017). These alignments were derived from the placental 

mammal subset of the 100-way vertebrate alignments made publicly available by the 

UCSC genome browser (Casper et al., 2018). In addition to these placental 

mammals, the 100-way alignments include four other species of mammals, three 

marsupials – Opossum (monDom5), Wallaby (macEug2), Tasmanian Devil 

(sarHar1), and one monotreme – Platypus (ornAna1). Despite deep conservation of 

many genetic elements in these non-placental mammals, human-and-mouse 

centered phylogenomic studies tend to exclude these species due to the introduction 

of long branches in the phylogenetic trees (Parker et al., 2013; Marcovitz, Jia and 

Bejerano, 2016; Prudent et al., 2016). For instance, in previous applications of our 

relative-rates-methods we deliberately excluded these non-placental mammals since 

they produce wide variations in relative rates due to the introduction of long 

branches, which would adversely affect the confidence with which we make 

inferences of convergent rate acceleration in species exhibiting a convergent 

phenotype (Chikina, Robinson and Clark, 2016; Partha et al., 2017). However, 

scanning for rate-trait associations across tree datasets with higher numbers of 

species would allow for more statistical power, and hence a relative rates method 

that can reliably include such distantly related species offers a clear advantage. To 

this end, we test the robustness of our updated method to the inclusion of distantly 

related species at inferring convergent rate shifts. We choose two phylogenetic 

datasets - 1. Genome-wide protein-coding gene alignments across 59 placental 

mammal species, and 2. across 63 mammals including the four non-placental 

mammals in addition to the placentals.  An example demonstration of how our 

current method to calculate relative rates is sensitive to the inclusion of non-placental 

mammals is illustrated in Figure 5A. Using the example Peropsin (RRH) gene, we 

show that the ranks of relative rates computed using the current method 

considerable vary upon the inclusion of non-placental mammals. These changes in 

ranks are observed across many branches on the gene tree including one of the four 

subterranean branches (Cape golden mole). In comparison, the updated method 

displays a stronger concordance in the ranks of the computed relative rates (Figure 

5A). Consequently, the subterranean acceleration scores for RRH computed using 

the updated method are more stable with the inclusion of non-placental mammals 

(Table 1). 

 

Dataset\Method Original Updated 
With non-placentals 2.70(rho = 0.31; 

         p = 0.002) 
2.1(rho = 0.27; 

      p = 0.008) 
Placentals only 1.38(rho = 0.21; 

         p = 0.041) 
2.0(rho = 0.26; 

    p = 0.01) 
Table 1. Subterranean acceleration scores for Peropsin (RRH) computed using two 

methods, and across two datasets. In comparison to the original method, the updated 

method shows stronger consistency in the scores across the two tree datasets, with and 

without the non-placental mammals. The subterranean acceleration scores reflect the 

significance of convergent rate acceleration on the four subterranean branches.  
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We also performed a larger-scale benchmarking of the robustness of our 

methods to the inclusion of non-placental mammals across 60 genes showing eye-

specific expression. These genes were identified based on mouse microarray 

expression data across 91 tissues (see Methods). For each of these eye-specific 

genes, we calculated subterranean acceleration scores (see Methods) reflecting the 

convergent rate acceleration on the four subterranean branches, independently in 

gene trees including and excluding the non-placental mammals. Based on the 

relative rates calculated using each method, we compared the concordance of the 

subterranean acceleration scores across the two tree datasets. Ideally, we expect 

the scores produced by the methods to be highly consistent across the two datasets 

since the four non-placental mammals are not subterranean by nature, with only 

minor differences arising due to the inclusion of four additional background species. 

The results of the analysis revealed that the updated method produces superior 

concordance in the scores across the two tree datasets, reflecting its improved ability 

to handle the long branches introduced by the non-placental mammals, (Fig 5B). 

 

 
Figure 5. Comparison of robustness of methods to inclusion of non-placental 

mammals. A. Relative rates of Peropsin (RRH) gene across trees with and without non-

placental mammals, using the original vs the updated method. The relative rate ranks of 

terminal lineage branches within the RRH tree are plotted with respect to the inclusion of 
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non-placental mammals in the gene trees. Red points denote subterranean branches, and 

blue points correspond to non-placental mammals. Ranks of relative rates on computed by 

the original method form a crisscross pattern reflecting wider variation with respect to the 

inclusion of non-placental mammals, whereas updated methods reveal stronger 

concordance. B. Updated method shows improved robustness to inclusion of non-placental 

mammals at detecting subterranean acceleration of eye-specific genes. Individual points 

represent rate acceleration on subterranean branches for each of sixty eye-specific genes 

computed across two datasets using the two methods. Robustness of each method is 

estimated as the spearman correlation coefficient of subterranean acceleration scores 

computed based on placental-only gene trees (y-axis) and scores computed based on trees 

also including non-placental mammals. An improved robustness to the inclusion of non-

placental mammals is observed with the updated method. 

 

Improved power to detect convergent rate shifts in simulated trees 

In order to compare the power of our methods to detect convergent rate shifts 

in branches across a range of evolutionary scenarios, we developed a model to 

simulate individual gene trees. Such a model allows us to rigorously examine 

method performance in relation to various parameters in phylogenetic datasets 

including number of foreground branches, length distribution of foreground branches 

etc., where foreground branches describe branches showing a convergent 

phenotype, while background branches do not. The limited availability of ‘ground 
truth’ examples of convergently evolving genetic elements calls for the development 
of biologically realistic simulations of sequence evolution. Using our model to 

simulate trees (see Methods), we compared the power to detect rate shifts in relation 

to two factors: 1. Average lengths of foreground branches, in particular extreme 

foreground branches - branches that are short and long on average, respectively. 2. 

Number of foreground branches. We investigated the performance of the updated 

method in detecting rate shifts in such extreme branches, assessing the power 

advantage resulting from calculating relative rates that do not suffer from a biased 

mean-variance relationship.  

Our model to simulate phylogenetic trees allows for explicit control over                                   

choosing foreground branches showing convergent rate acceleration. We simulate 

‘control’ trees, where all branches are modeled to evolve at their respective average 

rates, and ‘positive’ trees, where the chosen foreground branches are modeled to 

evolve at an accelerated rate that is twice their average rate (see Methods). Firstly, 

we compared the heteroscedasticity in the relative rates on the branches of the 

control trees calculated using the original and updated methods. Similar to the trends 

observed in mammalian gene trees (Supplementary figure S1), we observed that the 

updated method outperformed the original method at producing homoscedastic 

relative rates (Supplementary figure S3). We then calculated a foreground 

acceleration score for individual simulated trees (see Methods). This score, 

calculated a signed negative logarithm of the p-value, is higher for trees showing 

stronger convergent rate acceleration on the foreground branches. Subsequent to 

estimating these scores, we evaluated the performance of the two methods, based 

on the power to distinguish the positive trees as showing convergent acceleration in 
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comparison to the control trees. In two independent simulation settings with 

foreground branches of long and short average lengths respectively, we observed 

that the updated method offers more power to detect convergently accelerated 

‘positive’ trees (Figure 6B). In addition to the positive trees with foreground branches 

that were long or short branches, we compared the power to detect rate acceleration 

on foreground branches of intermediate length. Consistent with the findings in 

short/long foregrounds, we find a modest yet significant improvement offered by the 

updated method (Supplementary figure S4). Overall, we find that our updated 

method to compute relative rates offers a significantly improved power to detect 

convergent rate shifts in simulated trees. 
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Figure 6. Comparison of method performance across simulated phylogenetic trees. A. 

Branch length distributions for simulating phylogenetic trees with foreground branches 

highlighted in red. Two independent simulations were performed with foreground branch sets 

comprised of long foreground branches (left panel) and short foreground branches (right 

panel) respectively.  B. Power to detect rate shift in foreground branches of simulated trees. 

Across five independent simulations of control trees and positive trees, we measured the 

area under the precision-recall curve (AUPR) to precisely detect positive trees using the 

foreground acceleration score. The AUPR distributions obtained using the updated method 

to calculate relative rates are significantly elevated compared to the original method across 

simulated scenarios involving foreground sets of long (left) and short branches (right) 

respectively. 

 

We then compared the power to detect rate shifts across varying numbers of 

foreground branches by simulating ‘positive’ trees with seven foreground branches of 

short average lengths (Supplementary figure S5). We subsequently generated 

positive trees with subsets of n branches (n ranging from 4 to 7) among these seven 

foreground branches (Supplementary figure S5). Within each of these datasets, we 

calculated foreground acceleration scores for control and positive trees using each 

method independently. Contrasting the power of the methods to precisely detect 

positive trees as showing convergent rate acceleration, we observed that the 

updated method to calculate relative rates is consistently more powerful than the 

original method. We repeated the analysis choosing seven foreground branches that 

were long on average rather than short (Supplementary figure S5). Similar to the 

short foreground scenario, we observed that the updated method is able to more 

precisely detect convergent rate acceleration with the inclusion of additional 

foreground branches in the simulated trees (Figure 7B). 

 

 
Figure 7. Improved power to detect foreground rate shifts using the updated method 

across different numbers of foreground branches.  This analysis was performed across 

five independent simulations of control trees and positive trees with varying numbers of 

foreground branches (4 to 7). Within each simulation, we measured the area under the 
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precision-recall curve (AUPR) to precisely detect positive trees using the foreground 

acceleration score. The AUPR distributions obtained using the updated method to calculate 

relative rates are consistently elevated compared to the original method across simulations 

with different numbers of foreground branches. These simulations were performed across 

two scenarios with different foreground branch sets consisting short (A) and long branches 

(B) respectively. 

 

Relative rates-based inference is robust to minor uncertainties in species tree 

topology 

Our method relies on estimating sequence divergence on branches of 

phylogenetic trees with a fixed topology. Efforts to better resolve the phylogeny of 

extant mammals have resulted in continuous updates to the consensus species tree 

topology (Murphy et al., 2001, 2007). Topology trees commonly used in 

phylogenomic analyses of extant mammals include the UCSC genome browser’s 
100-way tree, as well as the timetrees reported in the Meredith et al and Bininda-

Emonds et al (Bininda-Emonds et al., 2007; Meredith et al., 2011; Casper et al., 

2018). Differences between these species tree topologies often involve entire clades, 

and the decision to choose a particular topology tree can potentially strongly 

influence the outcomes of phylogenetic analyses. Here, we benchmarked the 

robustness of our relative rates methods to the choice of topology tree. We 

constructed protein-coding gene trees based on two different species tree 

topologies, namely the UCSC 100-way tree and our modified Meredith et al. 

(Meredith+) topology tree (see Methods). The Robinson-Foulds metric between 

these two phylogenies is 22, reflecting differences in 22 partitions of species 

(Robinson and Foulds, 1981; Schliep, 2011). We observed that both the updated 

and original methods to calculate relative rates show robust signatures of 

subterranean rate acceleration for eye-specific genes with respect to the species 

tree topology used (Figure 8). 

 

 
Figure 8. Comparison of robustness of methods to species tree topology. Both 

the original and updated relative rates based methods are robust to choice of 
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species tree topology used to construct individual gene trees. Points represent the 

strength of convergent subterranean acceleration for eye-specific genes whose trees 

were constructed using the Meredith+ topology (x-axis), and the UCSC topology (y-

axis) respectively. The robustness of each method is estimated as the spearman 

correlation coefficient of the subterranean acceleration scores across the two tree 

datasets. 

 

Discussion 
Our previous evolutionary-rates-based method to detect genomic elements 

underlying convergent phenotypes has already proved to be a valuable technique to 

detect genes and enhancers associated with transitions to marine and subterranean 

habitats (Chikina, Robinson and Clark, 2016; Partha et al., 2017). However, the 

original method suffered from reduced power to detect such genomic elements due 

to a heteroscedastic relationship between the mean and variance of branch lengths 

for a given branch across all gene trees, i.e. branches that are longer on average 

have higher variance than branches that are shorter on average. Here, we 

developed a method using a square-root transformation and a weighted regression 

based on the observed mean-variance relationship to correct for the 

heteroscedasticity. We tested our improved method on real and simulated 

phylogenies and observed improved robustness to wider ranges of branch lengths 

and increased ability to detect convergent evolutionary rate shifts. Our method, 

called RERconverge, is freely-available on GitHub (Kowalczyk et al., 2018) 

(https://github.com/nclark-lab/RERconverge).  

Our new method offers increased robustness to the inclusion of distantly-

related species with long branch lengths in our phylogeny, namely non-placental 

mammals. When we compared results from an analysis using only placental 

mammals and an analysis that included non-placental mammals using both our 

previous and our updated methods, we found that our new method, unlike the 

previous method, is unimpaired by the inclusion of non-placental mammals. By 

improving our method’s robustness to inclusion of long branches, we increased the 

method’s applicability to a broader range of species and hence a broader range of 

convergent phenotypes. Additionally, our new method’s increased power could 
enable us to discover more convergently evolving genomic elements. One particular 

incentivizing example for these improvements is the recent efforts to sequence the 

northern marsupial mole, a completely blind mammal (Archer et al., 2011). When 

considering using subterranean species to find genes and enhancers associated 

with vision, the ability to include the non-placental marsupial mole along with the 

other non-placental mammals in our dataset will allow for more power in a scan for 

vision-specific genetic elements showing convergent regression in the five blind 

mammals. 

Beyond examining individual genes, we further assessed our new method’s 
ability to detect pathway enrichments for genes under relaxation of constraint in 

subterranean mammals and marine mammals (see Figure 9 for marine foreground 
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branches). Compared to our previous method, the updated method detected more 

enriched Gene Ontology (GO) terms with accelerated evolutionary rates in 

subterranean mammals (Table 2). Additionally, the fold enrichment for detected 

terms was significantly stronger with the updated method (Figure S6, Supplementary 

Table S1). On the other hand, the marine system showed mixed results.  Both the 

new and the old method showed approximately equal power to detect enriched GO 

terms if we only consider the number of terms detected (Table 3). However, when 

comparing the fold enrichment for detected terms, the old method was significantly 

better than the updated method (Figure S6, Supplementary Table S1). These 

contrasting results from the subterranean dataset versus the marine dataset indicate 

the importance of tailoring the corrections we have developed to the dataset of 

interest, as well as the importance of taking advantage of simulation-based power 

and robustness assessments to develop methods that are broadly applicable to 

many convergent phenotypes.   

In addition to testing our method on real data, we also developed a 

simulation-based strategy to represent a “true positive” case of convergent evolution. 
Our simulations follow a similar approach to simulating RNA-seq counts where 

simulated rates are essentially capturing the number of substitutions that occur along 

a branch (Di et al., 2011). We showed that our new method demonstrates improved 

detection of rate shifts both when foreground species occupy long, high-variance 

branches and when foreground species occupy short, low-variance branches. This 

allows the method to detect convergent rate shifts given a variety of potential 

configurations of convergently-evolving species. The types of simulations we 

developed are essential because relatively few concrete instances of sequence-level 

evolutionary convergence exist, so biologically accurate simulations of such 

evolution are essential to rigorously test methods that detect shifts in evolutionary 

rates. One simplification of our simulation method is that all species are present in all 

simulated trees, which is not the case in real genomic data because of genomic 

element gain and loss across species. However, maintaining constant species 

composition in our simulated trees should have little impact on our ability to compare 

our methods because we expect both to be equally impacted by species presence 

and absence. A second simplification is that we assume all convergently-evolving 

species have the same phylogenetic relatedness, i.e. each foreground branch is an 

independent instance of convergent evolutionary rates.  We would like to be able to 

answer questions about our method’s power given more complex phylogenetic 
configurations. Developing methods to answer those types of questions will require a 

much higher degree of complexity in our simulations, but it will also allow us to 

determine which species to add to our genomic datasets to increase our power to 

find convergently evolving genomic features. 

Our improved method has proved valuable for detecting genomic elements 

associated with two binary traits - subterranean-dwelling or not, and marine-dwelling 

or not - and we will extend our method for use in convergent continuous traits and 

non-binary discrete traits. We will also assemble complementary analyses to assess 

the robustness and power of each method. By extending the scope of our method to 
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non-binary traits, we will expand the potential search-space of our method to a 

plethora of new convergent phenotypes. Our overarching goal is to develop an entire 

suite of methods that can utilize any conceivable phenotypes as inputs to accurately 

and robustly identify convergently evolving genomic elements. 

  

topN: number of 
top accelerated 

genes 

# subterranean-accelerated GO terms (FDR < 0.05) 

Original method Updated method 

20 2 9 

100 11 28 

200 16 32 

Table 2. Comparison of number of vision-related Gene Ontology terms enriched in top 

subterranean-accelerated genes discovered by the original and updated methods. 

Gene Ontology term enrichment analysis was performed individually on top subterranean 

accelerated genes discovered by each method. Across varying numbers of top target genes, 

genes discovered using the updated method were consistently enriched for higher numbers 

of vision-related GO terms. 

topN: number of top 
accelerated genes 

# marine-accelerated GO terms (FDR < 0.05) 

Original method Updated method 

50 16 10 

100 27 31 

200 59 59 

Table 3. Comparison of number of Gene Ontology terms enriched in top marine-

accelerated genes discovered by the original and updated methods. Gene Ontology 

term enrichment analysis was performed individually on top marine-accelerated genes 

discovered by each method. Across varying numbers of top target genes, neither method 

showed a clear superiority over the other at detecting higher numbers of enriched terms.  

  

Materials and Methods 
 

Protein-coding gene trees across 63 mammalian species 

We downloaded the 100-species multiz amino acid alignments available at the 

UCSC genome browser, and retained only alignments with a minimum of 10 species. 

We then pruned each alignment down to the species represented in Figure 9 of the 

proteome-wide average tree. We added the blind mole rat ortholog of each gene 

based on the methods described in Partha et al (Partha et al., 2017). We estimated 

the branch lengths for each amino acid alignment using the aaml program from the 

package PAML (Yang, 2007). We estimated these branch lengths on a tree topology 

modified from the timetree published in Meredith et al. We attempted to resolve 
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conflicts between the topology inferred in Meredith et al. compared to that in Bininda-

Emonds et al. based on a consensus of various studies employing a finer scale 

phylogenetic inference of the species involved (Bininda-Emonds et al., 2007; 

Meredith et al., 2011). The differences between our final topology, which we call 

‘Meredith+’ topology and the Meredith et al. topology include setting the star-nosed 

mole as an outgroup to the hedgehog and shrew; cow as an outgroup to the Tibetan 

antelope, sheep and goat; and the ursid clade as an outgroup to mustelid and 

pinniped clades. For more details about the literature surveyed to resolve these 

differences, please refer to Meyer et al (Meyer et al., 2018). The topology of our final 

‘Meredith+’ tree compared to the UCSC topology tree is reported in Figure 9. In order 

to perform analyses benchmarking the method robustness to tree topology, we 

additionally generated the protein-coding gene trees based on the UCSC tree 

topology.  

 
Figure 9. Cladograms describing relationships between 63 mammalian species used 

for constructing genome-wide maximum likelihood protein-coding gene trees. Tree 

reported in UCSC genome browser (left) and the final version of the tree we modified from 

the topology reported in Meredith et al (right). Branches corresponding to subterranean and 

marine mammals are highlighted in red and blue, respectively. 
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Simulating phylogenetic trees 

Phylogenetic branch lengths have units of number of substitutions per site and thus 

can be thought of as normalized count data. However, we find that a Poisson 

distribution is unsuitable in this case as the real branch length data shows 

considerable overdispersion, that is the variance is higher than the mean. We thus 

model the branch lengths of the simulated trees using a negative binomial 

distribution, following ideas from studies simulating expression counts for RNAseq 

analysis (Robinson, McCarthy and Smyth, 2009; Di et al., 2011; Law et al., 2014; 

Ritchie et al., 2015).  

We simulated datasets of phylogenetic trees using the UCSC tree topology 

and branch lengths from the average proteome-wide tree across 19,149 mammalian 

protein-coding gene trees across 62 mammals. Supplementary figure S2 describes 

the tree topology used for the simulations. We simulate the branch lengths (or rates) 

for every branch (j) on each tree (i) according to the following formula,  bij  =  Poisson (Gamma (αiλj, αiλj − sqrt(αiλj))),  
where Gamma is parametrized by mean and variance. Here, 𝛼𝑖 is a gene-

specific scaling term, 𝜆𝑗 is the average rate of the corresponding branch so that 𝛼𝑖𝜆𝑗 

is the expected rate on the i𝑗’th branch, and the simulated rate is drawn from a 

Gamma distribution with that mean. The composite Poisson-Gamma distribution is 

equivalent to the negative binomial distribution and thus in our simulation the mean 

variance relationship has a quadratic component, matching what we observe in real 

data. 

We simulate two classes of trees in every dataset based on different input 

parameters. We simulate ‘control’ trees, trees where the j are simply the average 

rate on the branch j. These ‘control’ trees do not show any explicit convergent rate 
shift on any of the branches. We additionally simulate 'positive' trees showing 

convergent rate acceleration on foreground branches by sampling at 2*λj, only on 
these branches. Thus, the foreground branches in positive trees are effectively 

sampled at an accelerated rate compared to the foreground branches in control 

trees. 

 

Calculating gene-trait correlations 

The gene-trait correlations are computed under a Mann-Whitney U testing 

framework over the binary variable of foreground vs background branches. In the 

subterranean example, the four subterranean branches (Figure 1) are designated as 

foreground. We calculate a foreground acceleration score reflecting the strength of 

convergent rate acceleration on the foreground branches. The value is calculated as 

the negative logarithm of the p-value of the Mann-Whitney test multiplied by the 

direction of the correlation as given by the sign of the rho statistic. A positive rho 

statistic indicates rate acceleration in the foreground species, and the negative 

logarithm of p-value reflects the strength of the convergent rate shift. In simulated 

trees study, we generated trees for three sets of foreground branches with different 
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branch length distributions - short, intermediate, and long as illustrated in Figure 6 

and Figure S5. Foreground acceleration score =  Sign(Rho) ∗ [−log10P], 
where rho and P are the correlation coefficient and statistical significance of the 

Mann-Whitney test for association between relative rates and binary trait. 

 

Genes showing eye-specific expression 

We identified eye-specific gene sets using microarray expression data from 91 

mouse tissues (Su et al., 2004). We identified genes specifically expressed in the 

following tissues of the eye - cornea, iris, lens and retina (including retinal pigmented 

epithelium). These genes showed significant differential expression only in the tissue 

of interest compared to the other tissues at an alpha of 0.05 (T-test) 

 

Gene Ontology term enrichment analysis 

We performed functional enrichment analysis in target gene lists using the GOrilla 

tool (Eden et al., 2009). For each analysis, GO terms enriched in target gene lists 

were identified by comparing to a background gene list with all 19,149 genes used to 

construct gene trees. 
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