
1730 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 23, NO. 4, JULY 2019

Robust Methods for Real-Time Diabetic Foot
Ulcer Detection and Localization on

Mobile Devices
Manu Goyal , Student Member, IEEE, Neil D. Reeves , Satyan Rajbhandari,

and Moi Hoon Yap , Member, IEEE

Abstract—Current practice for diabetic foot ulcers (DFU)
screening involves detection and localization by podiatrists.
Existing automated solutions either focus on segmentation
or classification. In this work, we design deep learning meth-
ods for real-time DFU localization. To produce a robust deep
learning model, we collected an extensive database of 1775
images of DFU. Two medical experts produced the ground
truths of this data set by outlining the region of interest
of DFU with an annotator software. Using five-fold cross-
validation, overall, faster R-CNN with InceptionV2 model
using two-tier transfer learning achieved a mean average
precision of 91.8%, the speed of 48 ms for inferencing a
single image and with a model size of 57.2 MB. To demon-
strate the robustness and practicality of our solution to real-
time prediction, we evaluated the performance of the models
on a NVIDIA Jetson TX2 and a smartphone app. This work
demonstrates the capability of deep learning in real-time
localization of DFU, which can be further improved with a
more extensive data set.

Index Terms—Diabetic foot ulcers, deep learning,
convolutional neural networks, DFU localization, real-time
localization.

I. INTRODUCTION

D
IABETIC foot ulcers (DFU) that affect the lower extrem-

ities are a major complication of Diabetes. According to

the global prevalence data of International Diabetes Federation

in 2015, annually, DFU develop in 9.1 million to 26.1 million

people with diabetes worldwide [1]. It has been estimated that

patients with diabetes have a lifetime risk of 15% to 25% in

developing a DFU, with 85% of lower limb amputations oc-

curring due to an infected DFU that did not heal [2], [3]. In a

Manuscript received March 14, 2018; revised June 3, 2018 and August
7, 2018; accepted August 30, 2018. Date of publication October 4, 2018;
date of current version July 1, 2019. (Corresponding author: Moi Hoon
Yap.)

M. Goyal and M. H. Yap are with the School of Computing, Math-
ematics and Digital Technology, Manchester Metropolitan University,
Manchester M1 5GD, U.K. (e-mail:,manu.goyal@stu.mmu.ac.uk; m.yap
@mmu.ac.uk).

N. D. Reeves is a Professor of musculoskeletal biomechanics with
the Research Centre for Musculoskeletal Science & Sports Medicine,
School of Healthcare Science, Faculty of Science and Engineering,
Manchester Metropolitan University, Manchester M1 5GD, U.K. (e-mail:,
n.reeves@mmu.ac.uk).

S. Rajbhandari is with Lancashire Teaching Hospital, Preston PR2
9HT, U.K. (e-mail:,Satyan.Rajbhandari@lthtr.nhs.uk).

Digital Object Identifier 10.1109/JBHI.2018.2868656

more recent study, when additional data is considered, the risk

is suggested to be in-between 19% to 34% [4].

Due to the proliferation of Information Communication Tech-

nology, the intelligent automated telemedicine systems are often

tipped as one of the most cost-effective solutions for remote de-

tection and prevention of DFU. Telemedicine systems along

with current healthcare services can integrate with each other

to provide more cost-effective, efficient and quality treatment

for DFU. In recent years, there has been a rapid development

in computer vision, especially towards the difficult and vital is-

sues of understanding images from different domains such as

spectral, medical, object detection [5] and human motion anal-

ysis [6]. The computer vision and deep learning algorithms are

extensively used for the analysis of medical imaging of various

modalities such as MRI, CT scan, X-ray, dermoscopy, and ultra-

sound [7]. Recently, computer vision algorithms are extended

to assess different types of skin condition such as skin cancer

and DFU [8], [9].

From a computer vision and medical imaging perspective,

there are three common tasks that can be performed for the

detection of abnormalities on medical images, which are 1)

Classification 2) Localization 3) Segmentation. These tasks on

DFU are illustrated by Fig. 1. Various researchers have made

contributions related to computerised methods for the detection

of DFU. We divided these contributions into four categories:

1) Algorithms development based on basic image process-

ing and traditional machine learning techniques

2) Algorithms development based on deep learning tech-

niques

3) Research based on different modalities of images

4) Smartphone applications for DFU

Several studies suggested computer vision methods based on

basic image processing approaches and supervised traditional

machine learning for the detection of DFU/wound. Mainly,

these studies have performed the segmentation task by extract-

ing texture descriptors and color descriptors on small patches

of wound/DFU images, followed by traditional machine learn-

ing algorithms to classify them into normal and abnormal skin

patches [11]–[14]. In conventional machine learning, the hand-

crafted features are usually affected by skin shades, illumina-

tion, and image resolution. Also, these techniques struggled

to segment the irregular contour of the ulcers or wounds. On

the other hand, the unsupervised approaches rely upon image
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Fig. 1. Examples of three common tasks for inspection of abnormalities on a DFU image. (a) Classification, (b) localization, and (c) segmentation
of DFU (green) and surrounding skin (red) [10].

processing techniques, edge detection, morphological opera-

tions and clustering algorithms using different color space to

segment the wounds from images [15]–[17]. Wang et al. [18]

used an image capture box to capture image data and deter-

mined the area of DFU using cascaded two-stage SVM-based

classification. They proposed the use of superpixel technique

for segmentation and extracted the number of features to per-

form two-stage classification. Although this system reported

promising results, it has not been validated on a more substantial

dataset. In addition, the image capture box is very impractical

for data collection as there is a need for the patient’s barefoot to

be placed directly in contact with the screen of image capture

box. In healthcare, such setting would not be allowed due to the

concerns regarding infection control.

The majority of these methods involve manually tuning of

the parameters according to different input images and multi-

stage processing which make them hard to implement in clinical

settings. These state-of-the-art methods were validated on rel-

atively small datasets, ranging from 10 to 172 images. Current

state-of-the-art methods based on basic image processing and

traditional machine learning techniques are not robust, due to

their nature of reliance on specific regulators and rules, with

certain assumptions.

In contrast to traditional machine learning, deep learning

methods do not require such intense assumptions and have

demonstrated superiority in DFU localization and segmentation

of DFU, which suggests that the robust fully automated detec-

tion of DFU may be achieved, by adopting such approach [9],

[10], [19]. In the field of deep learning, several researchers made

contributions on the classification and segmentation of DFU.

Goyal et al. [9] proposed a new deep learning framework called

DFUNet which classified the skin lesions of the foot region into

two classes, i.e. normal skin (healthy skin) and abnormal skin

(DFU). In addition, they used deep learning methods for the

semantic segmentation of DFU and its surrounding skin with a

limited dataset of 600 images [10]. Wang et al. [19] proposed

a new deep learning architecture based on encoder-decoder to

perform wound segmentation and analysis to measure the heal-

ing progress of wound. To date, this paper is the first attempt to

develop deep learning methods for the DFU localization task.

Then, in a separate study from computer vision techniques,

van Netten et al. [20] proposed the detection of DFU using a

different modality called infra-red thermal imaging. They found

that there is a significant temperature difference between the

DFU and the surrounding healthy skin of the foot. Hence, they

used this considerable temperature difference on a heat-map to

detect the DFU. Liu et al. presented a preliminary case study to

evaluate the effectiveness of infra-red dermal thermography on

diabetic feet soles to identify pre-signs of ulceration [21]. Hard-

ing et al. [22] performed a study to assess the infra-red imaging

for the prevention of secondary osteomyelitis. Similarly, infra-

red thermography has been used in various studies to detect the

complications related to the DFU [23], [24].

Health applications on the smartphone are fast becoming pop-

ular in monitoring essential aspects of the human body. Yap et al.

[25], [26] developed an app called FootSnap, which is used to

produce the standardized dataset of the DFU images. This ap-

plication used basic image processing techniques such as edge

detection to provide the ghost images of the foot which is use-

ful to monitor the progress of DFU. Since this was designed

to standardise image capture conditions, it did not perform any

automated detection function. Recently, Brown et al. [27] de-

veloped a smartphone application called MyFootCare, which

provides useful guidance to the DFU patients as well as keep

the record of foot images. In this application, the end-users need

to crop the patch of the captured image, and with basic color

clustering algorithms, it can produce DFU segmentation. But,

previous research [10] has already shown that the basic cluster-

ing algorithms are not robust enough to provide accurate DFU

segmentation on full foot images.

The major challenges of DFU localization task are as follow:

1) Expensive in data collection and expert labelling on the DFU

dataset; 2) High inter-class similarity between the DFU lesions

and intraclass variation depending upon the classification of

DFU [29]; and 3) Lighting conditions and patient’s ethnicity. In

this work, we provide a large-scale annotated DFU dataset and

propose an end-to-end mobile solution for DFU localisation.

The key contributions of this paper include:

1) We present one of the largest DFU dataset, which consists

of 1775 images with annotated bounding box indicating

the ground truth of DFU location. To date, the largest

dataset we encountered is of 600 DFU images, where it

was used for the semantic segmentation of DFU and its

surrounding skin [10].

2) We propose the use of convolutional neural networks

(CNNs) to localize DFU in real-time with two-tier

transfer learning. To our best knowledge, this is the first

time CNNs are used for this task. Since our main focus is
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Fig. 2. Illustration of high-resolution full feet images of our DFU dataset.

on mobile devices, we emphasize on light-weight object

localization models.

3) Finally, we demonstrate the application of our proposed

methods on two types of mobile devices: Nvidia Jetson

TX2 and an android mobile application.

II. METHODOLOGY

This section describes the preparation of the dataset and ex-

pert labeling of the DFU on foot images. The description of

CNNs for DFU localization is detailed. Finally, the performance

metrics used for validation are reported.

A. DFU Dataset

We received NHS Research Ethics Committee approval with

REC reference number 15/NW/0539 to use the foot images

of DFU for our research. Foot images with DFU were col-

lected from the Lancashire Teaching Hospitals over the past

few years. Our dataset has a total of 1775 foot images with

DFU. There were three cameras mainly used for capturing

the foot images, Kodak DX4530, Nikon D3300 and Nikon

COOLPIX P100. Whenever possible, the images were acquired

with close-ups of the full foot with the distance of around

30–40 cm with the parallel orientation to the plane of an ul-

cer. The use of flash as the primary light source was avoided,

and instead, adequate room lights are used to get the consis-

tent colors in images. The sample foot images in the dataset

are shown in the Fig. 2. To test the specificity measure for the

algorithms, we have included 105 healthy foot images in the

DFU dataset from the FootSnap application [26].

In this dataset, the size of images varies between 1600× 1200

and 3648 × 2736. We resized all the images to 640 × 640 to

improve the performance and reduce the computational costs.

We used Hewitt et al. [28] annotation tool for producing the

ground truths in the form of bounding box as shown in Fig. 3.

Fig. 3. Example of delineating ground truth on DFU dataset using Brett
et al. annotation tool [28].

Fig. 4. Comparison of Size of DFU against the size of image.

The ground truth was produced by two healthcare professionals

(a podiatrist and a consultant physician with specialization in

the diabetic foot) specialized in diabetic wounds and ulcers.

When there was disagreement, the final decision was mutually

settled with the consent of both. In the DFU dataset, there is

only one bounding box in approximately 90% of the images,

two bounding boxes in 7% and finally, more than two bounding

boxes in the remaining 3% images of the whole dataset. The

medical experts delineated a total of 2080 DFUs (some images

with more than one ulcer) using an annotator software. As shown

in the Fig. 4, approximately 88% DFU have the size less than

10% of the actual size of an image. The size varied considerably

across the DFUs in the dataset.

B. Conventional Methods for DFU Localization

In this section, we assessed the performance of conventional

methods for the localization of DFU. For traditional machine

learning, we delineated 2028 normal skin patches and 2080

abnormal skin patches for feature extraction and training of

classifier using 5-fold cross-validation [9]. We also used data-

augmentation techniques such as flipping, rotation, random

crop, color channels to make a total of 28392 normal and 29120

abnormal patches. 80% of the image data is used to train the

classifier and remaining 20% of the data is used as test im-
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ages. Since these two classes of skin (normal and abnormal)

have significant textural differences amongst them, we investi-

gated various feature extraction techniques including low-level

features such as edge detection, corner detection [30], texture

descriptors such as Local Binary Patterns (LBP) [31], Gabor

filter [32], Histogram of Oriented Gradients (HOG) [33], shape

based descriptors such as hough transform [34] and color de-

scriptors such as Normalized RGB, HSV, and L*u*v features

[35]. With exhaustive feature selection technique, we settled

with LBP, HOG, color descriptors to extract features from skin

patches of both normal and abnormal classes. For a single patch,

209 features were extracted with above mentioned feature ex-

traction techniques. After the feature extraction from images,

we used Quadratic support vector machine [36] as a classifier

for the classification task. Then, to perform DFU localization

task with multiple scales, we used the sliding window approach

to mask each box if the corresponding patch is detected as ulcer

by trained classifier.

This technique has achieved a good score in evaluation met-

rics, 70.3% in Mean Average Precision. The conventional ma-

chine learning methods require a lot of intermediate steps like

pre-processing of images, extracting hand-crafted features and

multiple stages to get the final results which makes them very

slow. Whereas, deep learning provides the faster end-to-end

models on various computing platforms which simply take im-

ages as input and provide the final localization results as output.

C. Deep Learning Methods for DFU Localization

CNNs proved their superiority compared to the conventional

machine learning techniques in image recognition tasks such as

ImageNet [37] and MS-COCO challenges [38]. They are very

capable of classifying the images into different classes of objects

from both non-medical and medical imaging by extracting the

hierarchies of features. One of the important tasks in computer

vision is object localization where algorithms need to localize

and identify the multiple objects in an image. Mainly, object

localization networks consist of three stages as described in the

following subsections.

1) CNN as Feature Extractor: In Stage 1, the standard CNN

such as MobileNet, InceptionV2, the convolutional layers ex-

tract the features from input images as feature maps. These

feature maps are used to identify the objects in the image with

particular attention focused on DFU regions as shown in the

Fig. 5. These feature maps serve as input for the later stages

such as generation of proposals in the second stage and classi-

fication and regression of RoI in the third stage.

2) Generation of Proposals and Refinement: In Stage 2, the

network scans the image in a sliding-window fashion and finds

specific areas that contain the objects using the feature map ex-

tracted in Stage 1. These areas are known as proposals which

have different boxes distributed over the image. In general,

around 200,000 proposals of different sizes and aspect ratios are

found to cover as many objects as possible in the image. With

GPU, Faster-RCNN produces these much anchors in 10 ms [39].

Stage 2 generates two outputs for each proposal:

Fig. 5. Stage 1: The feature map extracted by CNN that acts as back-
bone for object localization network. Conv refers convolutional layer.

Fig. 6. Stage 2: Detected proposal boxes with translate/scale operation
to fit the object. There can be several proposals on a single object.

� Proposal Class: It can be either foreground or background.

The foreground class means there is likely an object in that

proposal and it is also known as a positive proposal.
� Proposal Refinement: A positive proposal might not be

perfectly captured the object. So the network estimates a

delta (% change in x, y, width, height) for refinement of

the proposal box to center the object better as illustrated

in Fig. 6.

3) RoI Classifier and Bounding Box Regressor: Stage 3 con-

sists of the classification of RoI boxes provided by Stage 2 and

further refinement of the RoI boxes as shown in the Fig. 7. First,

all RoI boxes are fed into the RoI pooling layer to resize them

into fixed input size for classifier as RoI boxes can have different

sizes. Similar to Stage 2, it generates two outputs for each RoI:
� RoI Class: The softmax layer provides the classification

of regions to specific classes (if more than one class). If

the RoI is classified as background class, it is discarded.
� Bbox Refinement: Its purpose is to refine the location of

RoI boxes.

We considered three types of object localization networks to

perform on the DFU dataset. First is Faster R-CNN [39], which

is a successor of Fast R-CNN [40] for object localization in

terms of speed. It consists of all three stages of object local-

ization network as shown in the Fig. 8. It has two-stage loss
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Fig. 7. Illustration of Stage 3: The classification and further box refinement of RoI boxes from the second stage proposal with softmax and Bbox
regression. Where FC refers to Fully-connected layer.

Fig. 8. Faster R-CNN architecture for DFU localization which consists
of all three stages discussed earlier.

Fig. 9. R-FCN architecture which considers only the feature map from
the last convolutional layer which speeds up the three stage network.

function whereas first stage loss function that consists of the pa-

rameters such as space, scale and aspect ratio of the proposals.

Then, second stage loss function re-runs the crops of proposal

produced by the second stage with feature extractor to produce

more accurate box proposals for classification.

Dai et al. [41] proposed the Region-based Fully Convolu-

tional Networks (R-FCN) to produce faster box proposals by

considering the crops only from the last layer of features with

comparable accuracy as Faster R-CNN which crop features from

the same layer where region proposals are predicted as shown

in the Fig. 9. Due to cropping limited only to the last layer, it

minimizes the time to get the box refinement.

Single Shot Multibox Detector (SSD) [42] is a new architec-

ture for the object localization which uses a single stage CNN

to predict classes directly and anchor offsets without the need of

Fig. 10. The architecture of Single Shot Multibox Detector (SSD). It
considers only two stage by eliminating the last stage to produce faster
box proposals.

second stage proposal generator unlike Faster R-CNN [39] and

R-FCN [41] as shown in the Fig. 10. The SSD meta-architecture

produces anchors much faster than other object localization net-

works, which makes it more suitable for the mobile platforms.

There are six popular state-of-the-art object localization mod-

els which are based on these three region based detector meta-

architectures i.e. Single Shot multibox detector [42], R-FCN

[41] and Faster R-CNN [39]. These three meta-architectures

used the state-of-the-art classification algorithms like Mo-

bileNet [43], InceptionV2 [44], ResNet101 [45], Inception-

ResNetV2 [46] to get the anchor boxes from the features maps,

and finally, classify these anchors to different classes. Table I

summarises the size of models, speed (inference per image), and

accuracy (mAP) trained on MS-COCO dataset with 90 classes

[38], [47].

Since our work is limited by the hardware on mobile devices

and real-time prediction, we only considered lightweight models

(very small, low latency) in terms of size of the model and in-

ference speed. We used the first three models (SSD-MobileNet,

SSD-InceptionV2 and Faster R-CNN with InceptionV2) for the

DFU dataset as illustrated in Table I. These small models are

specifically chosen to match the resource restrictions (latency,

size) on mobile devices for this application. To evaluate the

performance of DFU localization using heavy model, we also

include R-FCN with ResNet101 to our experiment.

Inception-V2 is a new iteration of the original inception ar-

chitecture called GoogleNet with new features such as fac-

torization of bigger convolution kernels to multiple smaller

convolution kernels and improved normalization. For the first

time, this network used depth-wise separable convolutions to

reduce the computations in the first few layers. They also in-
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TABLE I
PERFORMANCE OF STATE-OF-THE-ART OBJECT LOCALIZATION MODELS ON MS-COCO DATASET [38]

troduced batch normalization layer which can decrease internal

covariate shift, also combat the gradient vanishing problem to

improve the convergence during training [44].

MobileNet is a recent lightweight CNN which uses depth-

wise separable convolutions to build small, low latency models

with a reasonable amount of accuracy that matches the limited

resource on mobile devices. The basic block of depth-wise sepa-

rable convolution consists of depth-wise convolution and point-

wise convolution. The 3 × 3 depth-wise convolution is used to

apply a single filter per each input channel whereas pointwise

convolution is just simple 1 × 1 convolution used to create the

linear combination of the depth-wise convolution output. Also,

it uses both batchnorm layers as well as RELU layers after both

layers [43].

ResNet101 is one of the residual learning networks which

won the first place on ILSVRC 2015 classification task [45]. As

suggested by the name, ResNet101 is a very deep network con-

sists of 101 layers which is about 5 times much deeper than VGG

nets but still having lower complexity. The core idea of ResNet

is providing shortcut connection between layers, which make it

safe to train very deep network to gain maximal representation

power without worrying about the degradation problem, i.e.,

learning difficulties introduced by deep layers.

D. The Transfer Learning Approach

CNNs requires a considerable dataset to learn the features

to get the positive results for detection of objects in images

[5]. It is vital to use transfer learning from massive datasets

in non-medical backgrounds such as ImageNet and MS-COCO

dataset to converge the weights associated with each convolu-

tional layers of network [10], [48], [49] for training the limited

dataset. The main reason for using two-tier transfer learning

in this work is because, the medical imaging datasets are very

limited. Hence, when CNNs are trained from scratch on these

datasets, they do not produce useful results. There are two types

of transfer learning i.e. partial transfer learning in which only

the features from few convolutional layers are transferred and

full transfer learning in which features are transferred from all

the layers of previous pre-trained models. We used both types

of transfer learning known as two-tier transfer learning [10]. In

the first tier, we used partial transfer learning by transferring the

features only from the convolutional layers trained on most sig-

nificant classification challenge dataset called ImageNet which

consists of more than 1.5 million images with 1000 classes

[37]. In the second tier, we used full transfer learning to transfer

the features from a model trained on object localization dataset

called MS-COCO that consists of more than 80000 images with

90 classes [38]. Hence, we used the two-tier transfer learning

technique to produce the pre-trained model for all frameworks

in our DFU localization task.

E. Performance Measures of Deep Learning Methods

We used four performance metrics i.e. Speed, Size of the

model, mean average precision (mAP), and Overlap Percent-

age. The Speed determines the time model takes to perform

inference on single image whereas Size of the model is the to-

tal size of the frozen model that is used for the inference of

test images. These are crucial factors for the real-time predic-

tion on mobile platforms. The mAP has an ”overlap criterion”

of intersection-over-union greater than 0.5. The mAP is an im-

portant performance metric extensively used for the evaluation

of the object localization task. The prediction by model to be

considered a correct detection, the area of overlap Ao between

the bounding box of prediction Bp and bounding box of ground

truth Bg must exceed 0.5 (50%) [50]. The last evaluation metric

is called Overlap Percentage, which is mean average of inter-

section over union for all correct detection.

Ao =
area(Bp ∩ Bg )

area(Bp ∪ Bg )
(1)

III. EXPERIMENT AND RESULT

As mentioned previously, we used the deep learning mod-

els based on three meta-architectures for the DFU localization

task. Tensorflow object detection API [47] provides an open

source framework which makes very convenient to design and

build various object localization models. The experiments were

carried out on the DFU dataset and evaluated with 5-fold cross-

validation technique. First, we randomly split the whole dataset

into 5 testing sets (20% each) for 5-fold cross validation. This

is to ensure that the whole dataset was evaluated on testing sets.

For each testing set (20%), the remaining images was randomly

split into 70% for training set and 10% validation set. Hence,
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for each fold, we divided the whole dataset of 1775 images into

approximately 1242 images in training set, 178 in validation set

and 355 in testing set. This was repeated for 5-fold to ensure the

whole dataset was included in testing set.

a) Configuration of GPU Machine for Experiments: (1) Hard-

ware: CPU - Intel i7–6700 @ 4.00 Ghz, GPU - NVIDIA TITAN

X 12 GB, RAM - 32 GB DDR4 (2) Software: Tensor-flow [47].

We tested four state-of-the-art deep convolutional networks

for our proposed object localization task as described in

Section III B. We trained the models with input-size of 640

× 640 using stochastic gradient descent with different learning

rate on Nvidia GeForce GTX TITAN X card. We initialised the

network with pre-trained weights using transfer learning rather

than randomly initialized weights for the better convergence of

the network. We tested the multiple learning rates by decreasing

the original learning rates with the 10 and 100 times as well as

multiplication factor from 1 to 5 to check the overall minimal

validation loss. For example, if the original Inception-V2 learn-

ing rate was set at 0.001. Then, for training on DFU dataset,

we used 10 learning rates of 0.0001, 0.0002, 0.0003, 0.0004,

0.0005, 0.00001, 0.00002, 0.00003, 0.00004, 0.00005.

We used 100 epochs for training of each reported model,

which we found are sufficient to train the DFU dataset as both

training and validation loss finally converge to optimal lowest.

We selected the models on the basis of minimum validation

losses for the evaluation. We tried different hyper-parameters

such as learning rate, number of steps and data augmentation

options for each model to minimize both training and valida-

tion losses. In next section, we report the different network

hyper-parameters and configurations for each model used for

evaluation on the DFU dataset.

We set the appropriate hyper-parameters on the basis of meta-

architecture to train the models on DFU dataset. For SSD, we

used two CNNs, MobileNet and Inception-V2 (both of them

use depth-wise separable convolutions), we set the weight for

l2_regularizer as 0.00004, initializer that generates a

truncated normal distribution with standard deviation of 0.03

and mean of 0.0, batch_norm with decay of 0.9997 and ep-

silon of 0.001. For training, we used a batch size of 24, optimizer

as RMS_Prop with a learning rate of 0.004 and decay factor

of 0.95. The momentum optimizer value is set at 0.9 with a

decay of 0.9 and epsilon of 0.1. We also used two types of

data augmentation as random horizontal flip and random crop.

For Faster-RCNN, we set the weight for l2_regularizer as

0.0, initializer that generates a truncated normal distribution with

standard deviation of 0.01, batch_normwith decay of 0.9997

and epsilon of 0.001. For training, we used a batch size of 2,

optimizer as momentum with manual step learning rate with an

initial rate as 0.0002, 0.00002 at epoch 40 and 0.000002 at epoch

60. The momentum optimizer value is set at 0.9. For training

RFCN, we used same hyper-parameters as Faster-RCNN with

only change in the learning rate set as 0.0005. For data aug-

mentation, we used only random horizontal flip for these two

meta-architectures.

In Table II, we report the performance evaluation of object

localization networks for DFU dataset on 5-fold cross valida-

tion. Overall, all the models achieved promising localization

results with high confidence on DFU dataset. Few instances of

accurate localization by all trained models are demonstrated by

the Fig. 11. SSD-MobileNet ranked first in the Size of Model

and Average Speed performance index. This is mainly due to

the simpler architecture to generate anchor boxes in SSD [42].

Whereas in Ulcer mAP and Overlap Percentage, R-FCN with

ResNet101 and Faster R-CNN with InceptionV2 were almost

equally competitive in these performance measures. In Ulcer

mAP, Faster R-CNN with InceptionV2 ranked first with overall

mAP of 91.8%, just slightly better than R-FCN with ResNet101

with mAP of 90.6%. But, in Overlap Percentage, R-FCN-

Resnet101 achieved a score of 96.1%, which was slightly better

than Faster R-CNN with Inception. SSD-InceptionV2 ranked

third in both of these performance measure categories with dif-

ference of 4.6% in Ulcer mAP and 3.5% in Overlap Percentage

from the first position. In performance measures, overall Faster

R-CNN with InceptionV2 was the best performer, and the most

lightweight SSD-MobileNet emerged as the worst performer

in terms of accuracy. Finally, we tested models on the dataset

of 105 healthy foot images for specificity measure. None of

the above-mentioned models produce any DFU localization on

these healthy images.

A. Inaccurate DFU Localization Cases

In this work, we explored different object localization meta-

architectures to localize DFU on full foot images. Although

the performance of all models is quite accurate as shown in

the Fig. 11, this section explores inaccurate localization cases

by trained models on DFU dataset in 5-fold cross-validation

as shown in the Fig. 12. We found that trained models were

struggled to localize the DFU of very small size and that has

the similar skin tone of the foot especially, SSD-MobileNet and

SSD-InceptionV2. There are cases of DFU that have very subtle

features, not even, most accurate models such as Faster-RCNN

with InceptionV2 and R-FCN with ResNet101 were able to

detect these conditions.

IV. INFERENCE OF TRAINED MODELS ON NVIDIA

JETSON TX2 DEVELOPER KIT

Nvidia Jetson TX2 is the latest mobile computer hardware

with an onboard 5-megapixel camera and a GPU card for the

remote deep learning applications as shown in the Fig. 13. How-

ever, it is not capable of training large deep learning models.

We installed tensor-flow specifically designed for this hardware

to produce inference from the DFU localization models that

we trained on the GPU machine. Jetson TX2 is a very com-

pact and portable device that can be used in various remote

locations.

b) Configuration of Jetson TX2 for Inference: (1) Hardware:

CPU - dual-core NVIDIA Denver2 + quad-core ARM Cortex-

A57, GPU - 256-core Pascal GPU, RAM - 8 GB LPDDR4 (2)

Software: Ubuntu Linux 16.04 & Tensor-flow.

We did not find any difference in the prediction of the models

on Jetson TX2 hardware and the GPU machine; the only let-off

is the slow inference speed on the Jetson TX2. It is obviously
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TABLE II
PERFORMANCE MEASURES OF OBJECT LOCALIZATION MODELS ON THE DFU DATASET

Fig. 11. The accurate localization results to visually compare the performance of object localization networks on the DFU dataset. Where SSD-
MobNet is SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2 is Faster R-CNN with InceptionV2, and RFCN-Res101 is R-FCN with
ResNet101.

due to limited hardware compared to the GPU machine. For

example, the speed of SSD-MobileNet was 70 ms per infer-

ence on Jetson TX2 as compared to 30 ms on GPU machine.

Also, for real-time localization, models can produce the visu-

alization of maximum 5 fps using the on-board camera with

lightweight model. Fig. 14 demonstrates the inference using

Jetson TX2.

V. REAL-TIME DFU LOCALIZATION WITH

SMARTPHONE APPLICATION

Training and inference of the deep learning frameworks

on smartphone are challenging tasks due to limited resources

of a smartphone. Hence, we trained these object localization

frameworks on the desktop with a GPU card. We utilized the
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Fig. 12. Incorrect localization results to visually compare the performance of object localization networks on DFU dataset. Where SSD-MobNet is
SSD-MobileNet, SSD-IncV2 is SSD-InceptionV2, FRCNN-IncV2 is Faster R-CNN with InceptionV2, and RFCN-Res101 is R-FCN with ResNet101.

Fig. 13. Nvidia Jetson TX2.
Fig. 14. DFU localization on Nvidia Jetson TX2 using Faster R-CNN
with InceptionV2 on tensor-flow.
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Fig. 15. Real-time localization using smartphone android application. In the first row, images are captured by default camera. In the second row,
the snapshot of real-time localization by our prototype android application.

whole dataset of 1775 DFU images for further experiments by

randomly splitting 90% data in the training set and remain-

ing 10% in the validation set. We trained only Faster R-CNN

with InceptionV2 on this dataset because of the best trade-off

between the accuracy and the speed. With android studio and

tensor-flow deep learning mobile library, we deployed these

models on Samsung A5 2017 (Android Phone) to create the real-

time object localization for DFU. As mentioned in the previous

section, we finalized Faster R-CNN with InceptionV2 model for

the prototype android application.

We tested our prototype application for the real-time appli-

cation in real-time healthcare settings as shown in the Fig. 15.

We tested this application on 30 people in this preliminary test

in which 10 people were with DFU. Out of 10 people with

DFU, our application detected 8 DFU and out of 20 people with

normal foot, our application did not detect any false detection.

Furthermore, more user-friendly features, care, and guidance

will be added to this application to make it a complete package

of DFU care for diabetic patients.

VI. DISCUSSION AND CONCLUSION

Diagnosis and detection of DFU by the computerized method

has been an emerging research area with the evolution of com-

puter vision, especially deep learning methods. In this work, we

investigated the use of both conventional machine learning and

deep learning for the DFU localization task. We achieved rel-

atively good performance using conventional machine learning

technique. But, due to multiple intermediate steps, this approach

is very slow for the DFU localization task. In deep learning,

we used different object localization meta-architectures to

train the end-to-end models on the DFU dataset with different

hyper-parameter settings and two-tier transfer learning to

localize DFU on the full foot images with high accuracy. As

shown in the Fig. 11, these methods are capable of localizing

multiple DFU with high inference speed. We also found that

though SSD meta-architecture produced fastest inference due

to the two-stage architecture, Faster R-CNN produced the most

accurate results in our task. Then, we demonstrated how these

methods can be easily transferred to a portable device, Nvidia

Jetson TX2, to produce inference remotely. Finally, these deep

learning methods were used in an android application to provide

real-time DFU localization. In this work, we developed mobile

systems that can assist both medical experts and patients for

the DFU diagnosis and follow-up in the remote settings.

In the present situation, manual inspection by podiatrists re-

mains the ideal solution for the diagnosis of DFU. However,

Netten et al. [51] claimed that human observers achieved low

validity and reliability for remote assessment of DFU. There-

fore, computerized method could be used as a tool to improve

human performance. Developing the remote, computerized and

innovative DFU diagnosis system according to the medical clas-

sification systems and exactness accomplished by the podiatrist,

it demands a significant amount of research. To assist podiatrist,

foot analysis with computerized methods in the near future, the

following issues need to be addressed.

1) The detection of DFU on foot images with computer-

ized methods is a difficult task due to high inter-class

similarities and intra-class variations in terms of color,

size, shape, texture and site amongst different classes of

DFU. Although, detection and localization of DFU on full

foot images is a valuable study, further analysis of each
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DFU on foot images is required according to the medical

classification systems followed by podiatrists such as

the Texas Classification of DFU [29] and the SINBAD

Classification System [52]. Most of the state-of-the-art

computerized imaging methods rely on the supervised

learning. Hence, there is a need for laborious manual an-

notation by medical experts according to these popular

classification systems. For example, the Texas classifi-

cation system classifies DFU into 16 classes depending

on conditions of DFU based on ischemia, infection, area

and depth. These methods can be extended to produce

localization of DFU and determine the outcome of DFU

according to the Texas classification system with sub-

stantial image data belonging to each class and expert

annotations.

2) Deep learning methods require a considerable amount of

data to learn features of abnormality in medical imaging.

To achieve accurate DFU detection according to differ-

ent classification systems, multiple images of same DFU

covering key specific conditions such as lighting condi-

tions, the distance of image capture from the foot and

orientation of the camera relative to the foot. To our best

knowledge, there are no publicly available standardized

DFU dataset with descriptions and annotation. Hence,

there is a requirement for a publicly available annotated

DFU dataset with essential diagnostic capability in this

regard. The standardized dataset can help to produce even

more accurate results with these methods.

3) Early detection of key pathological changes in the dia-

betic foot leading to the development of a DFU is really

important. Hence, the time-line dataset of patients with

early signs of DFU till the diagnosis is required to achieve

this objective. With these methods and time-line dataset,

the early prediction, healing progress and other potential

outcomes of DFU could be possible.

4) The combination of image features and diagnosis features

such as patient’s ethnicity, the presence of ischemia, depth

of DFU to the tendon, neuropathy would aid to a more

robust DFU diagnosis system.

5) The DFU diagnosis system should be scalable to multiple

devices, platforms and operating systems.

With limited human resources and facilities in healthcare sys-

tems, DFU diagnosis is a significant workload and burden for

the government. The computer-based systems have huge poten-

tial to assist healthcare systems in DFU assessment. The new

technologies like the Internet of Things (IoT), cloud comput-

ing, computer vision and deep learning can enable computer

systems to remotely assess the wounds, provide faster feedback

with good accuracy. But, this integrated system should be tested

and validated rigorously by podiatrists and medical experts, be-

fore it is implemented in the real healthcare setting and deployed

as a mobile application.
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