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Abstract. This paper focuses on the evaluation of an ideal midsagit-
tal plane (iMSP) extraction algorithm. The algorithm was developed for
capturing the iMSP from 3D normal and pathological neural images. The
main challenges are the drastic structural asymmetry that often exists in
pathological brains, and the sparse, nonisotropic data sampling that is
common in clinical practice. A simple edge-based, cross-correlation ap-
proach is presented that decomposes the iMSP extraction problem into
discovery of symmetry axes from 2D slices, followed by robust estima-
tion of 3D plane parameters. The algorithm’s tolerance to brain asym-
metries, input image offsets and image noise is quantitatively measured.
It is found that the algorithm can extract the iMSP from input 3D im-
ages with (1) large asymmetrical lesions; (2) arbitrary initial yaw and
roll angle errors; and (3) low signal-to-noise level. Also, no significant
difference is found between the iMSP computed by the algorithm and
the midsagittal plane estimated by two trained neuroradiologists.
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1 Introduction

Healthy human brains exhibit an approximate bilateral symmetry with respect
to the interhemispheric (longitudinal) fissure plane bisecting the brain, known
as the midsagittal plane (MSP). However, human brains are almost never
perfectly symmetric [4,5,6]. Pathological brains, in particular, often depart dras-
tically from reflectional symmetry. For effective pathological brain image align-
ment and comparison (e.g. [4,10,11]) it is most desirable to define a plane of
reference that is invariant for symmetrical as well as asymmetrical brain images
and to develop algorithms that capture this reference plane robustly.

We define an ideal midsagittal plane (iMSP) as a virtual geometric plane
about which the given 3D brain image presents maximum bilateral symmetry.
Computationally, this plane is determined by taking the majority votes from
both axial and coronal 2D slices based on a sound geometric analysis (Section
2.1). Factors that challenge the robustness of an iMSP algorithm include: (1) the
intrinsic factor: the brains being imaged can be either bilaterally symmetric or
drastically asymmetric; (2) the extrinsic factor(s): anisotropism, under-sampling,
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initial transformation errors and artifacts/noise can be introduced during the
imaging process.

The well known Talairach framework is an anatomical landmark-based ap-
proach to define a 3D brain coordinate system [18]. Patient image to Talairach
framework registration is difficult to achieve automatically since it relies on iden-
tifying 3D anatomical features that may not be obvious in the image. Further-
more, when the interhemispheric sagittal plane no longer lies on a flat surface
due to normal or pathological deformation (Figure 1(a)), the interhemispheric
medial plane is ill defined. In contrast, the iMSP is based on global geometry of
the head and can be found using low-level image processing techniques. Further-
more, it remains well-defined in pathological cases, forcing a virtual left-right
separation consistent with the location where an ideal midsagittal plane would
be if not for the presence of local brain deformation (Figure 1(b)).

�a� �b�

Fig. 1. (a) An axial brain slice, the midline is deformed due to a space occupying
tumor. (b) The intersection of the extracted iMSP with the same 2D brain slice
(straight line), and the deformed midline (curved line) captured by a “snake”
active contour.

Designing a robust algorithm that deals with real clinical images originates
from our desire to facilitate on-line clinical image database indexing and retrieval
for real-time medical consultation [10,11,12,13]. We have developed a simple yet
robust algorithm that can extract the iMSP of a brain from clinical CT or MR
images (Section 2.2). The algorithm has been applied on more than 100 3D
clinical images and tested on both synthetic and real images with computed
ground truth. Breakdown points of the iMSP extraction algorithm are found by
varying brain orientation, lesion size, and noise level, and are compared against
a maximization of mutual information method (Section 3). We also consider
“ground truth” generated by human experts, and find no significant difference
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between the orientations estimated by our iMSP algorithm and those hand-
picked by two neuroradiologists (Section 3).

The goal of many existing MSP detection algorithms [1,2,3,7,19] is to locate
the plane of reflection of a roughly symmetrical brain image. Tolerance of these
algorithms to asymmetry is reported to be low [3,7]. The MSP algorithm devel-
oped in [15] is tested on simulated PET images to show its insensitivity to focal
asymmetries. More recently, Smith and Jenkinson [17] presented an algorithm
for finding symmetry axes in partially damaged images of various modalities.
However, no quantitative evaluations have yet been given and the computation
is expensive.

2 Ideal Midsagittal Plane Extraction

We define an ideal head coordinate system centered in the brain with positive
X0, Y0 and Z0 axes pointing in the right, anterior and superior directions respec-
tively (Figure 2, white coordinate axes). With respect to this coordinate system,
the iMSP of the brain is defined as the plane X0 = 0. Ideally, a set of axial
(coronal) slices is cut perpendicular to the Z0(Y0) axis, and the intersection of
the MSP with each slice appears as a vertical line on the slice1.

In clinical practice, however, the imaging coordinate system XYZ (Figure
2(a), black coordinate axes) differs from the ideal coordinates due to uninten-
tional positioning errors and/or deliberate realignments introduced so that a
desired volume can be better imaged, The orientation of the imaging coordinate
system differs from the ideal coordinate system by three rotation angles, pitch,
roll and yaw, about the X0, Y0 and Z0 axes, respectively. The imaging coordinate
system can also be offset (Figure 2(a)). The goal of an iMSP algorithm is to find
the transformation between the two planes: X0 = 0 and X = 0.

2.1 Geometry of the Ideal Midsagittal Plane

Under the imaging coordinate system, the iMSP can be represented as

aX + bY + cZ + d = 0 (1)

where (a, b, c) is a vector describing the plane normal. For the rest of this section
we assume a nonzero scaling such that

√
a2 + b2 = 1. Now consider the ith axial

slice, represented by the plane equation Z = Zi. The symmetry axis of the ith
slice is the intersection of the above two planes: aX + bY + (cZi + d) = 0 .
This is the equation of a 2D line (θi, ρi) in the image XY plane, having line
orientation θi = arctan(b/a) and perpendicular offset from the image origin
ρi = c Zi + d . By examining this line equation, we can make two immediate
observations. First, the orientation angle θi = arctan(b/a) is the same for the
symmetry axes of all slices regardless of their Zi position. Secondly, the offset
1 The analysis given to the axial slices from now on can be applied to coronal slices

(cut along the Y axis) as well with corresponding symbols changed: ‘Z’ to ‘Y’.
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Fig. 2. (a) Ideal head coordinate system X0Y0Z0 vs. the imaging coordinate
system XY Z. The iMSP algorithm finds the transformation between planes
X0 = 0 and X = 0. Rendered head courtesy of the Visible Human Project. (b)
A midsagittal plane (X0 = 0) automatically extracted using our iMSP extraction
algorithm.

ρi of the symmetry axis on slice Z = Zi is linearly related to Zi as a function
of plane parameters c and d. Therefore, given the translational offset of at least
two symmetry axes on different slices, we can estimate c and d by solving a set
of linear equations. These observations form the basis of the iMSP extraction
algorithm.

Under the ideal coordinate system, the iMSP passes through the origin and
has normal vector (1, 0, 0). Due to the scanning geometry, points in the ideal
coordinate system are reoriented into the observed imaging coordinate by an
unknown rotation R = yaw(θ)roll(φ)pitch(ω) and displaced by an unknown
translation ∆X0, ∆Y0, and ∆Z0. Precisely, points in the ideal coordinate system
are mapped into the imaging coordinate system by the transformation matrix

⎡
⎣

X
Y
Z

⎤
⎦ =

⎡
⎣

cφ cθ cθ sω sφ − cω sθ cω cθ sφ + sω sθ ∆X0

cφ sθ cω cθ + sω sφ sθ cω sφ sθ − cθ sω ∆Y0

−sφ cφ sω cω cφ ∆Z0

⎤
⎦

⎡
⎣

X0

Y0

Z0

⎤
⎦

where cθ ≡ cos θ, sθ ≡ sin θ, and so on. After some algebraic manipulation, the
iMSP X0 = 0 can be rewritten in terms of the imaging coordinate system as

cosφ cos θ X + cosφ sin θ Y − sin φZ − (n . ∆) = 0 (2)

where n = (cosφ cos θ, cosφ sin θ,− sinφ)T is the unit normal vector of the plane
and ∆ = (∆X0, ∆Y0, ∆Z0)T . Scaling appropriately, and comparing with (1), we
find by inspection that

a = cos θ b = sin θ c = − tanφ d = −(n . ∆)/ cosφ . (3)

That is, the shared angle θ = θi = arctan(b/a) of each axial slice is actually the
yaw angle of the head’s imaging coordinate system. Furthermore, the roll angle
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φ can be determined from the offsets of the 2D symmetry axes on the set of
slices by solving a linear system of equations ρi = c Zi + d . Note from this
equation and equation (3) that when the roll angle φ is zero, c = 0, and thus all
2D symmetry axes have the same offset ρi = d; otherwise ρi varies linearly from
slice to slice. Finally, the quantity (−d cosφ) measures the displacement of the
imaging coordinate system in the direction normal to the symmetry plane.

In summary, if we can extract the 2D axes of reflection symmetry from a set
of axial slices, we can completely determine the geometric equation aX + bY +
cZ +d = 0 of the ideal MSP. Furthermore, we can infer from this equation some
of the 3D pose parameters of the patient’s head with respect to the ideal head
coordinate system, namely the yaw angle θ, roll angle φ and the translational
offset along the X0 axis.

2.2 Midsagittal Plane Extraction Algorithm

The geometric results from the previous section have been used to develop an
algorithm for automatically detecting the iMSP of a neural brain scan.

�a� �b�

Fig. 3. (a) Using pairs of edge images (original image and its rotated reflection
w.r.t. X = 0 plane) to find the best correlation value for each given rotation
angle. The brightest point indicates the highest correlation score. (b) A flow
chart of the MSP extraction algorithm, where “X” with a circle around means
2D cross correlation, and with the addition of a square means multiple cross
correlations of different rotated images.
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Input: a set of brain scans in axial (or coronal) format.
Output: head yaw and roll angles θ̂, φ̂, and translational offset of the iMSP from
the X0 = 0 plane.
iMSP Extraction Algorithm2

1. isolate the head region and compute binary edge images Si.
2. find an estimated initial rotation error θinit from one of the lowest 2D brain
slices: for each Si, construct S′

i = Si reflected w.r.t. X = 0 plane.
θinit = arg max {Ci(Si, rot(S′

i, θ))} where Ci is the cross correlation of Si and
rotated S′

i, θ is sampled in the range of [−90o, 90o] or [−180o, 180o] if necessary.
3. find symmetry axis orientation θi on each Si (Figure 3(a)):
for each 2D slice Si,
for j = -10 to 10 step 1 (degrees), Ci(Si, rot(S′

i, θinit + j)) end;
θi = arg max {Ci}.
end;
4. compute the common yaw (or roll) angle (Figure 3(b)):
θ̂ = robust(θ1, · · · , θn), where function robust eliminates outliers [20] and finds
the median from weighted inliers.
5. compute image offsets ti by finding the maximum cross correlation value of
each yaw (roll)-angle-corrected 2D slice and its vertical reflection.
6. robust estimation of image offsets ρi: taking out outliers from ti using least
median of squares [16] and fit a plane to the inliers using ρi = c Zi + d.
7. compute all plane parameters (Equation (3)).

The algorithm is implemented on an SGI O2 R10000, using a mixture of
MATLAB and C subroutines. Total time for all algorithmic steps is roughly
7 minutes. No special attention has yet been paid to speeding up the code,
except for using the fast Fourier transform for cross correlation computation.
The algorithm has been applied to over 100 3D image sets (Table 1) with varying
modalities.

One strategy used to increase robustness to large orientation errors is to use
both axial and coronal slices simultaneously to estimate the yaw and roll angles
(usually one of these sets of slices is measured directly, and the other is created by
resampling the image volume). This is done because the accuracy of symmetry
axis offset detection degrades when axial (coronal) slices have a roll (yaw) angle
beyond 20 degrees. However, there is no such angular limit to estimating yaw
(roll) angles from axial (coronal) slices, as these are in-plane rotations. Figures
4 and 5 show examples of extracted symmetry axes when there are obvious
asymmetries in the head.

3 Evaluation

No obvious mishaps have been observed when applying the iMSP extraction al-
gorithm to over 100 image sets with varying modalities and scan geometries. In
this section we report a series of experiments that are carried out to test the

2 For further details of the algorithm see [9]
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Table 1. A Sample of Input 3D Image Data

Set Modality Form Matrix Voxel (mm3) Pathology

5 MR (T1) coron 256x256x123 0.9375x0.9375x1.5 Normal

17 CT axial 686x550x9 0.5x0.5x10 Right thalamic
acute bleed

58 CT axial 678x542x17 0.5x0.5x5 (1-9) Frontal astrocytoma
0.5x0.5x10 (10-17) high grade glial tumor

109 CT axial 512x512x21 0.4395x0.0.4395x5 (1-10) Left parietal infarct
0.4395x0.4395x8 (11-21)

110 CT axial 512x512x24 0.4297x0.4297x5 Normal

Fig. 4. The symmetry axes extracted from a set of axial slices with a 15 degree
roll angle (out of plane rotation).

robustness of the iMSP algorithm. Two ground truth image test sets are created
from datasets 5 and 110 respectively (Table 1), one is a sparse, axial CT vol-
ume and the other is a dense, coronal MR volume. Each ground truth test set
is formed by finding the midsagittal plane by hand, then reflecting one half of
the head volume about this midsagittal plane to overlay the other half, produc-
ing a perfectly symmetrical volume. Since the constructed test set is perfectly
symmetric, the ground truth iMSP is known.

Tolerance to initial offset errors
To evaluate the accuracy of computed roll and yaw angles, the MR test image
set was resampled using trilinear interpolation to artificially vary the yaw (roll)
angles from -90 to 90 degrees in 5 degree intervals. The algorithm was then run
on these sets to determine an estimated yaw and roll angle. In all cases, the error
between estimated and actual angles is less than one degree. Given the image
sampling interval, these errors are negligable.

Tolerance to asymmetry
The algorithm is tested by superimposing spherical “lesions” of varying density,
size and position into the CT test image. The lesions are offset from the midline,
resulting in pathological assymetry of the brain. The MSP algorithm’s perfor-
mance starts to decline when the tumor radius reaches 200 pixels (85.94mm),
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Fig. 5. The symmetry axes extracted from different CT scans where obvious
asymmetry is present. Left to right: normal, acute blood, infarct.

and totally fails when the lesion radius reaches 250 pixels (107.4mm) (Figures 6
and 7).

Fig. 6. The iMSP algorithm performs successfully when presented with an arti-
ficially grown lesion of 100 pixels (42.97mm) radius.

Tolerance to noise and asymmetry
To study the effects of noise and asymmetry on the iMSP extraction algorithm,
we have tested the algorithm on the MR ground truth dataset. The data is arti-
ficially degraded by adding different levels of zero-mean Gaussian noise, and by
inserting spherical lesions of varying diameters. The algorithm breaking point is
determined by incrementally adding noise until the algorithm fails to detect the
correct symmetry plane. Each incremental addition of noise corresponds to a loss
of 6.02dB of SNR, or roughly 1 bit of information.3 Figure 8 shows represen-
tative slices, and iMSPs extracted by the algorithm. Naturally, the algorithm is
more robust to noise when no lesion is present (Figure 8(d)). But the algorithm
can handle very large levels of noise (up to SNR = -10.8dB when no lesion is

3 SNR or Signal to Noise Ratio is defined as 10 * log(var(signal)/var(noise)). An SNR
of less than 0 means that the noise has a higher variance than the signal.
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Fig. 7. Yaw and roll angle errors (Left) and translational offset errors (Right)
versus the radius of an artificial lesion, in pixels (1 pixel = 0.4297 mm). The
spherical lesion is centered at 3D location X = 310; Y = 210; Z = 350. The
MSP algorithm’s performance starts to decline when the tumor radius reaches
225 pixels (96.68 mm), and totally fails when the lesion radius reaches 250 pixels
(107.43mm).

present), as well as large lesions (we tested with lesions of radius up to 60 pixels
= 56.25mm).
Comparison with a mutual information maximization method
For comparison, an implementation of midsagittal plane extraction based on a
general mutual information volume registration algorithm [14] was also tested.
Volume registration can be used to identify an iMSP by finding the rigid trans-
formation that best registers a volume with a version of itself reflected about the
X = 0 plane. The geometry underlying iMSP extraction in this case is analogous
to that described in Section 2.2. We choose to compare a volume registration
algorithm based on mutual information due to its intensity-based nature, in
contrast to our edge-based method. The experimental results show that iMSP
extraction based on mutual information registration breaks down at a lower level
of noise than our algorithm, as shown in Figure 8. The volume registration al-
gorithm had to be tested on the dense MR dataset, since it could not directly
handle sparse, unisotropic clinical CT data.
Comparison with human experts To compare the algorithm with human
performance, we had two neuroradiologists (one has 20 years experience, one
is an intern) hand-draw the ideal midline on each 2D slice of several randomly
chosen brain scans. The radiologists were allowed to view the whole set of the
2D slices from one volumetric image for reference while using a mouse to click on
a computer screen directly. Although scan geometry tells us the angles of the
symmetry axes on each axial slice should be the same (Section 2.1), there is a
variation in the angles determined by the human expert. The standard deviation
of the human measurement error on different sets of slices varies from 0.55 to
2.37 degrees (Table 2).
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Fig. 8. Sample results on images artificially degraded with lesions and noise,
to determine algorithm breaking points. (a) one slice from original dataset with
no noise, SNR = 43.35dB. (b) result from iMSP extraction based on mutual
information registration, on a dataset with lesion plus noise. SNR of breaking
point is 13.25dB. (c) result from our algorithm, on a dataset with lesion plus
noise. SNR of breaking point is -4.82dB. (d) result from our algorithm when
run on a dataset with added noise only (no lesion). SNR of breaking point is
-10.84dB.

Table 2. Comparison of human vs. computer-estimated yaw angles (in degrees)

Label Pathology # Slices Expert 1 Expert 2 Expert 1 Expert 2 Computed

Mean(θi) Mean(θi) STD(θi) STD(θi) Yaw θ̂

CMU121 infarct 17 1.6208 1.5730 1.0290 0.9972 0.8202

CMU126 blood 21 7.1404 6.2472 2.3678 0.5595 6.0347

CMU129 infarct 10 -2.0248 -1.8201 1.1141 1.6304 -2.2318

CMU130 blood 21 1.3257 0.6829 0.9091 0.8967 1.3216

CMU170 normal 20 -4.3187 - 4.5296 1.2781 2.0080 -4.5109

CMU171 normal 22 -1.3028 - 1.7582 1.0626 1.1963 -1.0129

4 Discussion and Future Work

In this paper, we have presented an iMSP extraction algorithm that is capable of
finding the ideal MSP from coarsely sampled, asymmetrical neural images, with-
out compromising accuracy on symmetrical ones. We have observed that iMSP
computation using our algorithm is not adversely affected by lesions, mass ef-
fects, or noise in the images. This may seem strange since cross-correlation is
used as a measure for the best matching of two images. It is natural to ask why
the algorithm works so well on drastically asymmetrical images. We can provide
the following relevant observations: 1. Majority rules: For a 3D pathological
brain, a lesion only resides on a relatively small number of 2D slices, thus when
the iMSP is fit to the whole set of 2D slices, normal slices with prominent bi-
lateral symmetry dominate the iMSP’s position. 2. Edge features: By using
edge features rather than the original intensity images directly, the effect of
strong density concentration around lesions is much reduced. 3. Lower brain
slice stability: Lower brain slices are relatively stable due to the bilateral struc-
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ture of the skull. In practice, the lower brain slices are given more weight when
determining the orientation of the iMSP. 4. Robust estimators: Robust es-
timation techniques are used to remove outliers from computed measurements
before combining them to determine plane parameters.

We are currently exploring how to use the iMSP extraction algorithm to facil-
itate registration of pathological images with other modalities (PET, SPECT),
and comparison of brain images (e.g. schizophrenia, acute infarct). Computing
similarity among diverse brain images is part of an ongoing effort to study how
symmetry-based features can be used for classification and retrieval of medi-
cally relevant cases [10,11,12,13]. We have also begun to apply the method on
3D pelvis images, to establish a common coordinate system for cross patient
comparison, set an initial position for X-ray/CT registration [8], and evaluate
left-right abnormality (Figure 9).

Fig. 9. Results from applying the MSP algorithm to pelvis CT images. Leftmost
image is the midsagittal plane automatically extracted.
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