
Annals of Operations Research (2020) 284:263–282
https://doi.org/10.1007/s10479-019-03263-6

ORIG INAL RESEARCH

Robust min–max regret scheduling to minimize the
weighted number of late jobs with interval processing times

Maciej Drwal1 · Jerzy Józefczyk1

Published online: 10 May 2019
© The Author(s) 2019

Abstract
We consider the robust version of single machine scheduling problem with the objective
to minimize the weighted number of jobs completed after their due-dates. The jobs have
uncertain processing times represented by intervals, and decision-maker must determine
their execution sequence that minimizes the maximum regret. We develop an exact solution
algorithm based on a specialized branch and bound method, using mixed-integer linear pro-
gramming formulations for a common due-date and for job-dependent due-dates. Finally, we
examine the solution algorithm in a series of computational experiments.

Keywords Robust optimization · Uncertainty · Scheduling · Mixed-integer programming

1 Introduction

Consider the following basic scheduling problem. Given is a set of n jobs to be processed on
a single machine in a sequence. Each job may require a different processing time, cannot be
interrupted when started and there are no precedence constraints between jobs. Each job has
an associated due-date, and an optimal schedule is such that the maximum number of jobs
complete before their due-dates, or, equivalently, the number of late jobs is minimized. In a
more general variant, each job may also have an associated weight, and an optimal solution
maximizes the total weight of jobs completed on-time.

Assuming that we know prescisely how much of the processing time is required for each
job, this problemcanbe solved fairly easily. If each job has the samedue-date, then the shortest
processing time first (SPTF) schedule is optimal for the unweighted case, and in the presence
of weights the problem is equivalent to knapsack (Karp 1972). In case of arbitrary due-dates
for jobs with equal weights an optimal schedule can be computed with a greedy method. In
this paperwe consider amore realistic setting in practical applications, when processing times

This research was partially supported by National Science Center, Poland, under Grant
2017/26/D/ST6/00423.

B Maciej Drwal
maciej.drwal@pwr.edu.pl

1 Faculty of Computer Science and Management, Wroclaw University of Science and Technology,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-019-03263-6&domain=pdf
http://orcid.org/0000-0002-8999-8748

264 Annals of Operations Research (2020) 284:263–282

are not known precisely (at the time when a complete schedule must be dispatched). One of
the standard techniques is to model the processing times as random variables with suitable
probability distributions (Pinedo 1983). Then such a problem can be solved by optimizing
for the expected value of the objective function. But in practice it is very often the case that
no probability distribution of processing times is known either; for example, decision-maker
may not have enough data to estimate it. For some critical applications it may be better then to
assume the robust approach (Ben-Tal et al. 2009; Goerigk and Schöbel 2016): use a schedule
that would perform possibly well even if the processing times turn out to be unfavorable.

We study the scheduling problem under the assumption that the processing times are
known only to belong to prespecified intervals. A robust solution would be the one that
performs the best in the worst-case scenario (a particular realization of the processing times).
Standard formulations in the robust optimization often usemin–max objective function (Ben-
Tal et al. 2009). However, for the problem in question, themin–max criterion appears to be too
restrictive: the worst-case scenario is simply the one consisting of the interval upper bounds.
Instead, it is more reasonable to seek a solution that has the value deviating the least from
optimality, when faced with its worst-case scenario. This can be accomplished by optimizing
for the maximum regret of a solution.

In this paper we develop new mixed-integer programming techniques for min–max regret
scheduling with interval processing times, with the objective to minimize the weighted num-
ber of late jobs. We consider the common-due date variant first, followed by the arbitrary
due-dates variant. A branch and bound algorithm is presented and evaluated in a series of
computational experiments.

1.1 Related work

Minimizing the maximum regret is a common approach to solving discrete optimization
problems with uncertain input data (Aissi et al. 2009; Kouvelis and Yu 1997). This criterion
is known to satisfy certain desirable properties of solutions when dealing with uncertainty
in decision-making, especially as an useful alternative to min–max, Hurwicz and Laplace
criteria (see Milnor 1951 for more details). Robust optimization can often be interpreted as
seeking a solution in a form of game against the adversary that controls the input data of the
deterministic optimization problem.

A substantial part of works concerning robust scheduling with min–max and min–max
regret criteria use the assumption that discrete scenario sets are provided as input data. Even
for such limited representation, many problems, which are easily solvable when parameters
are known exactly, become significantly more difficult to solve (Kasperski and Zieliński
2016). For instance, the minimization of the number of late jobs with 2 processing time
scenarios is NP-hard (Aloulou and Della Croce 2008). So is the problemwith unit processing
times and weighted number of late jobs criterion with 2 weight scenarios , and the 2-machine
flow shop problem with 2 processing times scenarios (Kasperski and Zielinski 2014).

However, the interval representation of uncertainty appears to be more practically moti-
vated, especially for modeling concepts of continuous nature, such as time. Although the
scenario space in that case is no longer finite or even countable, the structure of such sets
of uncertain parameters can sometimes be exploited. For the scheduling with the weighted
number of late jobs criterion, a variant with unit processing times and interval weights has
been considered within the min–max regret framework (see Kasperski 2008, chapter 14).
While it is unknown whether this problem is NP-hard, it is known to be a generalization of
the selecting items problem (where all jobs have a common due-date). The latter is proven

123

Annals of Operations Research (2020) 284:263–282 265

to be solvable in polynomial time in case of interval data, but NP-hard for discrete scenarios
(Averbakh 2001). Computational experience suggests that most of the scheduling problems
with interval data are hard to solve. The problem with total completion time on a single
machine with interval weights is weakly NP-hard (Lebedev and Averbakh 2006), while its
parallel machine variant is strongly NP-hard (Drwal and Rischke 2016). The problem with
the same criterion but with uncertain processing times has been considered in Montemanni
(2007) and Sotskov et al. (2009).

The uncertainty of processing times appears to occur very commonly in practical applica-
tions of scheduling (Herroelen and Leus 2005; Li and Ierapetritou 2008). Thus it is important
to examine it from the robust optimization perspective.Also related to the considered schedul-
ing problem is schedulingwith due-window (Biskup andFeldmann2005;Mosheiov andSarig
2009), and determination of a common due-date (Gordon et al. 2002). Moreover, a variant of
the considered scheduling problem with a common due-date is very similar to the knapsack
problem, whose min–max regret version with interval item values has been shown to be
Σ

p
2 -hard (Deineko and Woeginger 2010). Heuristic algorithms for this problem (including

ones based on integer programming) have been examined (Furini et al. 2015). In this paper,
however, the knapsack subproblem would appear in a variant with fixed item values but with
interval uncertainty in item sizes.

2 Problem formulation

Let us define the considered scheduling problem. Using the Graham classification scheme
(Graham et al. 1979) this problem is denoted 1|| ∑ w jU j . The problem is defined by speci-
fying the set of jobs J = {1, 2, . . . , n}. Each job j ∈ J is described by three parameters: p j ,
a processing time, d j , a due-date, and w j , the weight or priority (interpreted as the cost of
missing a deadline). All the parameters are assumed to be positive rational numbers. Since
we assume that each job is ready to be executed immediately, and no precedence constraints
are specified, we do not consider schedules with idle times. Once the execution of a job has
started, it cannot be preempted. Consequently, a solution (schedule) can be represented as a
permutation of job indices π = (π(1), π(2), . . . , π(n)), where π(k) is the index of job to
be scheduled as the kth from the beginning. We denote by P the set of all permutations of
{1, . . . , n}. We also define a function C : P × J → R+, where C(π, j) = ∑ j

k=1 pπ(k) is
the completion time at which j th job finishes processing in the schedule π .

Given a schedule π ∈ P , we define Uj (π) = 1 if j th job completes after its due-date,
and Uj (π) = 0 otherwise, i.e.:

Uj (π) =
{
0, C(π, j) ≤ d j ,

1, otherwise.

We say that a job is on-time, if it completes not later than its due-date. Otherwise, we say
that the job is late.

The objective is to find a schedule π that minimizes the total cost of late jobs:

F(π) =
∑

j∈J

w jU j (π). (1)

Problem1|| ∑w jU j isweaklyNP-hard (Karp 1972).However, its all unitweights variant,
1|| ∑Uj , can be solved in polynomial time by a greedy algorithm (Brucker 2007). A case
with common due date 1|d j = d| ∑ w jU j can be reduced to the knapsack problem in a

123

266 Annals of Operations Research (2020) 284:263–282

straightforward way, while its unweighted case, 1|d j = d| ∑Uj , can be solved by sorting
jobs in the order of nondecreasing processing times, i.e., applying the shortest processing
time first (SPTF) rule (Brucker 2007).

When considering problemswith uncertain data, we call the deterministic counterpart (i.e.,
one with certain parameters) a nominal problem. A nominal problem becomes a subproblem
in the robust formulation.

We now define the uncertain variant of the problem.We assume that due-dates andweights
of jobs are certain, but the exact processing times of jobs are only known to belong to the
given intervals. For each j ∈ J , we have that the processing time p j ∈ [p−

j , p+
j], where

interval bounds are known positive rational numbers. A vector of processing times will be
called a scenario. The set of all possible scenarios is defined as:

U = {p = (p1, . . . , pn) : ∀ j∈J p−
j ≤ p j ≤ p+

j }.
The value of objective function in a scenario p ∈ U will be denoted by F(π,p).

Given a solution π ∈ P , and a scenario p ∈ U , the regret is defined as:

R(π,p) = F(π,p) − min
σ∈P F(σ,p). (2)

We measure the quality of a solution π ∈ P under interval uncertainty using the notion of
maximum regret. The problem of computing the maximum regret for a given π is called an
adversarial problem. It involves solving a nested minimization problem. The solution σ ∗
that minimizes F(σ,p) is called an adversarial solution. Finally, the robust objective of the
problem is:

Z(π) = max
p∈U R(π,p). (3)

A scenario p that maximizes the regret will be called a worst-case scenario. Hence we define
an optimal solution π∗ of an uncertain problem as:

Z∗ = Z(π∗) = min
π∈P Z(π). (4)

A solution π∗ that minimizes the maximum regret is called a robust optimal solution.
Note that the nominal problem (1) can be equivalently defined as maximization of the

total weight of on-time jobs, instead of minimization of the total weight of late jobs, since
the sum of all weights W = ∑

j∈J w j is constant:

F(π) =
∑

j∈J

w jU j (π) = W −
∑

j∈J

w j
(
1 −Uj (π)

) = W − F̄(π).

Consequently, the regret (2) can expressed as the difference between the total weight of on-
time jobs in optimal solution for scenario p, and the total weight of on-time jobs in a schedule
π under scenario p,

R(π,p) = max
σ∈P F̄(σ,p) − F̄(π,p). (5)

This form will be used in Sect. 3 in order to formulate mixed-integer programs.
It can be seen that the robust version of the scheduling problem (4) is in fact a variant of

bilevel optimization problem (Colson et al. 2007): the evaluation of the objective function (3)
involves solving a nestedmaximization problem that determines theworst-case scenario. This
is the reason that standard mathematical programming methods cannot be applied directly,
and specialized solution methods need to be developed.

123

Annals of Operations Research (2020) 284:263–282 267

3 Maximum regret subproblem

In this section we discuss the subproblem (3), which consists of maximizing the regret
function for a given fixed schedule π ∈ P . We will refer to this as the adversarial problem;
it is natural to interpret the robust problem as a two-player game between a decision-maker,
controlling schedule π , who is faced by an adversary who controls the scenario p and an
alternative schedule σ . The choice of scenario influences the value of both schedules π and
σ .

As already noted, the nominal problem is NP-hard in the presence of weights, so is the
problem of maximizing regret (5). The solution to this problem can, however, be computed
by solving a mixed-integer program.

Before we proceed, let us discuss how the worst-case scenarios are formed. Provided that
not all jobs are on-time in π , there is j ∈ J , such that all jobs scheduled before j are on-time,
while the job j , and all jobs scheduled after j , are late. Intuitively, the maximum regret (5) is
attained when first late job j appears early in the schedule, but late in the alternative schedule
provided by adversary. Consequently, the worst-case processing times of jobs preceding j
tend to be longer (close to their upper interval bounds). At the same time, jobs following j
in the schedule π would have their processing times as short as possible (equal to their lower
interval bounds), allowing the adversary to reschedule them early.

An extreme scenario is defined as a scenario that consists entirely of interval endpoints;
in our case, pE = (pE1 , . . . , pEn), where pEj ∈ {p−

j , p+
j } for all j ∈ J . Many min–max

regret combinatorial optimization problems have the property that the worst-case scenario is
an extreme scenario. This is true for all min–max regret problems with a nominal problem
of the form min{x · c : x ∈ F}, where c is a vector of nonnegative real numbers, and
F ⊂ {0, 1}n . This is also true, for example, for a variant of the problem in question with
uncertain weights and unit processing times, and for 2-machine flow shop problem with
interval processing times (Kasperski 2008), although both of them do not belong to the
aforementioned class. This property immediately implies an (exponential time) algorithm
for discovering the worst-case scenario for a large class of problems. However, even for the
simplest variant of the considered scheduling problem with uncertain processing times, the
worst-case scenarios are not necessarily extreme scenarios, as shown in the following:

Proposition 1 A worst-case scenario of interval min- - max regret 1|d j = d| ∑Uj

is not necessarily an extreme scenario.

Proof Consider the following example (Fig. 1). Let n = 4 jobs be given, each with the
same processing time interval: p−

j = 2, p+
j = 5 (we assume for simplicity of computation

that each job has the same weight w j = 1, thus each permutation has the same worst-case
scenario). Suppose that due-date is d j = 8, and consider π = (1, 2, 3, 4). Given a scenario
p, the regret (5) can be written as R(π,p) = L − K , where K is the number of on-time jobs
in schedule π , and L is the number of on-time jobs in adversarial schedule σ . It can be seen
that in the worst-case scenario only one job can complete on-time, while the adversary can
reschedule so that three jobs are on-time. This follows from the fact that at least one job will
be on-time in all scenarios, thus K ≥ 1. There exists only one scenario when all four jobs can
be on-time: the all interval lower-bounds scenario, which obviously is not the worst-case;
thus L ≤ 3 holds for the worst-case one, which implies R(π,p) ≤ 2. Consequently, the
worst-case scenario is: p1 = 5, p2 = 3+ a, a ∈ (0, 1], p3 = 2, p4 = 2. Such a scenario has
the maximum regret equal to 2, while the adversarial schedule is σ = (3, 4, 2, 1). Note that
this is not an extreme scenario for all a ∈ (0, 1]. 	

123

268 Annals of Operations Research (2020) 284:263–282

Fig. 1 Illustration of
Proposition 1: a schedule
(1, 2, 3, 4) in the worst-case
scenario, and b the worst-case
alternative schedule (3, 4, 2, 1)

(a)

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 3 + ε 2 2

(b)

t

0 1 2 3 4 5 6 7 8 9 10 11 12 13

2 2 3 + ε 4

It can be seen that there are no extreme worst-case scenarios at all for the problem instance
considered above. We have also shown that there may exist infinitely many worst-case sce-
narios. Another example of a min–max regret scheduling problem with the property that
worst-case scenario is not always extreme is the minimization of the weighted number of
late jobs with interval due-date uncertainty (Drwal 2017, 2018).

3.1 Maximum regret MIP for common due-date

Let us first consider the case with a common due-date, d j = d , for j ∈ J . The following
mixed-integer program (MIP) allows to compute the worst-case scenario and the value of
maximum regret (5) for a given schedule π ∈ P . The program involves binary decision
variables y and z, as well as continuous decision variables p. Variable y j assumes the value
1 when the job j is on-time in the schedule π (i.e., y j = 1 − Uj (π)), while z j = 1 if job
j is on-time in the worst-case adversarial solution for π (i.e., z j = 1 −Uj (σ)). Continuous
variable p j denotes the processing time of job j . The objective is to:

maximize R(p, y, z) =
∑

j∈J

w j (z j − y j), (6)

subject to:
∑

j∈J

p j z j ≤ d, (7)

∀k=1,...,n

k∑

i=1

pπ(i) ≥ d(1 − yπ(k)) + ε, (8)

∀ j∈J p−
j ≤ p j ≤ p+

j , (9)

∀ j∈J z j ∈ {0, 1}, y j ∈ {0, 1}. (10)

The objective function (6) can be seen as a difference between the total weight of on-time
jobs in the worst-case adversarial solution σ , and the total weight of on-time jobs in the
schedule π .

Note that constraint (8) allows to determine whether the job at position k is late in the
schedule π (given a certain scenario). The objective function increases when variables y j
assume values 0, but for any j = π(k) this is possible only when the sum of k first jobs’
processing times exceeds d . In order to exclude the case when this sum is exactly d we
include a constant 0 < ε < min j p

−
j at the righthand side of (8).

123

Annals of Operations Research (2020) 284:263–282 269

Vector of processing times p∗ corresponding to optimal solution of MIP is a worst-case
scenario of the problem. Note that although constraint (7) is nonlinear, it is straightforward
to write an equivalent mixed-integer linear program by introducing auxiliary nonnegative
continuous variables v j in place of mixed terms p j z j . The following linear constraints are
sufficient to replace (7):

∑

j∈J

v j ≤ d, (11)

∀ j∈J p j + p+
j z j − v j ≤ p+

j . (12)

3.2 Maximum regret MIP for arbitrary due-dates

Next, we formulate MIP for the case with job-dependent due-dates. Note that, in the previous
case, the order of jobs in the adversarial schedule did not matter (it was enough to determine
the set of on-time jobs), and constraint (7) allowed to determine the optimal values of z.
This time it is necessary to distinguish between jobs’ due-dates, and consequently we use
separate constraint for each job, similar to (8). Decision variables y, z and p have the same
meaning as in MIP (6)–(10). In addition, we introduce permutation variable σ , interpreted
as the worst-case alternative solution. The objective is to:

maximize R(σ,p, y, z) =
∑

j∈J

w j (z j − y j), (13)

subject to:

∀k=1,...,n yπ(k) = 0 ⇒
k∑

i=1

pπ(i) ≥ dπ(k) + ε, (14)

∀k=1,...,n zσ(k) = 1 ⇒
k∑

i=1

pσ(i) ≤ dσ(k), (15)

∀ j∈J p−
j ≤ p j ≤ p+

j , (16)

∀ j∈J z j ∈ {0, 1}, y j ∈ {0, 1}. (17)

Since vector σ is a decision variable, we need to rewrite (15) as a set of equivalent linear
constraints. For this we introduce new decision variable s ∈ {0, 1}n×n , a binary matrix that
encodes permutation σ . We have s jk = 1 if job j is scheduled at position k, and s jk = 0
otherwise. There is a single 1 in each row and each column of s, enforced by matching
constraints:

∀k=1,...,n

∑

j∈J

s jk = 1, (18)

∀ j∈J

n∑

k=1

s jk = 1. (19)

This allows to rewrite the objective function (13) as:

R(s,p, y, z) =
∑

j∈J

n∑

k=1

s jk zkw j −
∑

j∈J

w j y j , (20)

123

270 Annals of Operations Research (2020) 284:263–282

and constraint (15) as:

∀k=1,...,n zk = 1 ⇒
k∑

i=1

∑

j∈J

s ji p j ≤
∑

j∈J

s jkd j . (21)

Note that variables z have now the following interpretation: zk = 1 if a job placed at
position k in the schedule σ completes on-time, and zk = 0 otherwise. Which job it actually
is from the set of jobs J is to be determined by solving the program.Moreover, the conditional
constraints (14) and (15) can be stated as standard linear constraints, respectively, as:

∀k=1,...,n yπ(k)Mk +
k∑

i=1

pπ(i) ≥ dπ(k) + ε, (22)

and

∀k=1,...,n

k∑

i=1

∑

j∈J

s ji p j ≤
∑

j∈J

s jkd j + (1 − zk)Nk, (23)

where Mk and Nk are sufficiently large constants. The same technique applies also to (27).
Finally, in order to obtainmixed-integer linear program solvable by standardmathematical

programming methods, we linearize products s jk zk in (20) and s jk p j in (23) in analogous
way to (11)–(12) in the common due-date case.

4 Branch and bound algorithm

Although the considered problems are computationally difficult, wemay askwhether it is still
possible to determine optimal robust solutions in practice. In order to avoid the exhaustive
search it is desirable to develop a solution method that exploits the problem’s structure. We
present a method for exploring the search space that is capable of substantially reducing
the number of potential candidate solutions to examine. Such scheme could serve both as
an exact solution algorithm, as well as a foundation for various heuristic solution methods.
The method can be practically effective for moderately sized problem instances and produce
robust optimal solutions in realistic timeframes. For a greater number of jobs, due to its
worst-case exponential time complexity, it often fails to give an optimal solution, but can still
be useful, as it is capable of generating a sequence of gradually better suboptimal schedules.

The algorithm is first presented for the problem variant with common due-date d j = d for
all j ∈ J . Then its extension for the variant with arbitrary due-dates is discussed in Sect. 4.2.

The presented Algorithm 1 explores the solution space, which can be visualized as a
search tree, with each node representing a subset of jobs’ permutations – candidate solutions.
The root of the search tree corresponds to the full set of permutations P , while each leaf
corresponds to single permutation (a feasible solution of the robust optimization problem).
Each inner node represents a subset of permutations: a node at depth k represents a set of
schedules with first k positions fixed (with root corresponding to k = 0, and leaves to k = n).

We propose a special branching procedure, which subdivides the search space by consid-
ering partially fixed schedules. A priority queue of nodes to be explored is maintained during
the execution of the algorithm. Initially the queue contains only the root (all entries unfixed).
The algorithm processes a node by first checking if it corresponds to fully fixed schedule (in
this case the maximum regret can be computed by solving MIP (6)–(10), and the resulting
value would be compared with the current best value). Otherwise, the node corresponds to

123

Annals of Operations Research (2020) 284:263–282 271

a partial schedule. The algorithm applies heuristic in order to compute a complete schedule
from the partial one (see Step 12). The heuristic assumes interval upper bounds p+

j for all

fixed jobs, and mid-point processing times p−
j + 1

2 (p
+
j − p−

j) for the remaining jobs in the
partial schedule, and solves the nominal problem. For the obtained schedule π ′ the maximum
regret is computed by solving MIP (6)–(10) (and similarly, it is checked if a new incumbent
has been found).

Subsequently, the branching is performed on the first unoccupied position in the partial
schedule. A new node is created for each subsequent assignment of a previously unscheduled
job at that position.

Note that the algorithm is capable of exploring whole search space by generating all
possible permutations, but in many cases a branch of the search tree may be discarded early.
It is possible that a newly created node corresponds to a subset of schedules with definite
value of maximum regret, even if not all jobs are fixed (see Step 20). This happens, when
the subsequence of fixed jobs at a given node already completes after due-date (even in the
most optimistic all-lower bounds scenario p j = p−

j). Then the order of the remaining jobs
is irrelevant to the actual value of the solution: jobs that are already known to be late in
any scenario may be scheduled in arbitrary order. Thus we do not need to branch on the
positions that determine their order, but we can put them in any order (e.g., lexicographical),
and treat the node as a leaf of the search tree. Similarly, it is not necessary to consider all
partial schedules which are permutations of subsequences of jobs that complete on-time in
the all-upper bounds scenario p j = p+

j . This is due to the fact that jobs that are always
on-time, regardless of the scenario, may be scheduled in arbitrary order (only the choice of
the first late job may influence the value of maximum regret). Consequently, only a node with
first such subsequence generated would be added to the queue. That subsequence would be
stored in memory, and all the following nodes with the same jobs in their partial schedules
would be discarded.

By evaluating a lower bound of optimal solution in each node of the search tree and
comparing them with the currently best solution value, a large number of candidate solutions
may be discarded earlier, reducing the computational effort. For each node we determine the
value of lower bound (LB), by considering the maximum regret in a scenario that is easy to
compute, but is not necessarily the worst-case one. A typically bad-case (but not worst-case)
scenario can be derived from an extreme scenario, in which all jobs that start before due-date
in schedule π are set to have processing times at their interval upper-bounds, while all other
jobs’ processing times assume their interval lower-bounds (this is explained in more detail
later; see Algorithm 2). If this solution lower bound value is greater or equal to the current
upper bound on the optimal solution (i.e., the value of currently best feasible solution), we
discard the node from further considerations.

A new node is added to the queue with a priority based on the “permutation distance” from
the current incumbent solution. Let π−1(j) denote the position of job j in the schedule π ;
for a partial schedule, if j is not yet scheduled in π , then π−1(j) = n + 1. The permutation
distance is defined as:

D(π1, π2) =
n∑

j=1

|π−1
1 (j) − π−1

2 (j)|. (24)

A distance between schedules (permutations of jobs) is computed as the sum of differences
between position indices of each job in both schedules. If a job is not present in one of the
schedules (as it happens when one schedule is partial), then value n+ 1 is added for that job.
The lower priority value, the closer to the beginning of the queue the node is placed.

123

272 Annals of Operations Research (2020) 284:263–282

By prioritizing partial schedules that are similar to the current incumbent schedule, the
algorithm explores the neighborhood of incumbent solution first, before proceeding to the
other areas of the search space. The algorithm can be initialized with an arbitrary schedule,
but it is desirable to have a good initial solution. A heuristic algorithm could be used to find
one, e.g., based on sampling solutions, or solving nominal problem in various fixed scenarios
(e.g., all interval mid-points).

Algorithm 1 Branch & bound method.
Require: Initial incumbent solution π0.
Ensure: Robust optimal solution π∗.
1: Let UB be equal to the value of initial solution π0. Initialize queue with root node.
2: Take the first node off the queue (if the queue is empty the algorithm terminates).
3: if the node corresponds to fully fixed schedule π then
4: Compute maximum regret R of π .
5: if R < UB then
6: update incumbent solution to π , and let UB ← R, go to Step 2
7: end if
8: else
9: if node’s LB ≥ UB then
10: discard node and go to Step 2
11: end if
12: Run heuristic to compute solution x′ from the node’s partial schedule.
13: Compute maximum regret R′ of x′ .
14: if R′ < UB then
15: update incumbent solution to x′, and let UB ← R′, go to Step 2
16: end if
17: Branching. Let k be the depth of the current node.
18: for i = 1, . . . , n − k do
19: create new node by fixing i th unscheduled job at position k + 1,
20: if new node corresponds to subset of schedules with a fixed maximum regret then
21: fix the remaining jobs in arbitrary order,
22: else
23: compute lower bound LB for new node (see Algorithms 2 and 3)
24: if LB ≥ UB then
25: discard the created node and go to Step 2
26: end if
27: end if
28: add new node to the queue with the priority equal to the distance (24) between incumbent and new

node’s partial schedule
29: end for
30: end if

4.1 Bounding rule

In Step 23–25ofAlgorithm1 it is possible to cut-off a branch of the search tree after examining
a partial schedule with unfixed entries. Let h = [h1, . . . , hn] represents a partial schedule,
i.e., hi is either equal to the index of job fixed at position i , or hi = 0 if the contents of
position i is not determined yet. Algorithm 2 allows to compute a lower bound of the value
of optimal solution that can be obtained from a node corresponding to the partial schedule.
If that lower bound is greater or equal to the value of incumbent solution, the corresponding
subset of candidate solutions can be discarded from further search.

123

Annals of Operations Research (2020) 284:263–282 273

Note that Algorithm 2 requires solving the following knapsack problem twice as a sub-
routine:

v(s, v, κ) = max

{
m∑

i=1

xivi :
m∑

i=1

xi si ≤ κ, ∀i xi ∈ {0, 1}
}

, (25)

where s is the vector of item sizes, v is the vector of item values, and κ is the capacity.

Algorithm 2 Lower bound computation for common due-date variant.
Require: Partial schedule h, scenario p̃ ∈ U .
Ensure: The lower bound value LB of a node corresponding to h.

1: Initialization. Let t ← 0, i ← 1.
2: while t < d and hi �= 0 do
3: let qhi ← p+

hi
,

4: let t ← t + p+
hi
,

5: increment i ← i + 1,
6: end while
7: while hi �= 0 do
8: let qhi ← p−

hi
,

9: let t ← t + p−
hi
,

10: increment i ← i + 1,
11: end while
12: Let q j ← p̃ j for all j ∈ J\H .
13: Solve the knapsack problem (25) with capacity C = d − t for items with sizes s j = q j and values

v j = w j , for j ∈ J\H . Denote the value of solution as vK = v(s, v,C).
14: Solve the knapsack problem (25) with capacity d for items with sizes s j = q j , and values v j = w j , for

j ∈ J . Denote the value of solution as vL = v(s, v, d).
15: return LB = vL − vK − ∑

j∈H w j

The idea behind this algorithm is to determine a lower bound on the robust optimal solution
for a restricted problem: the schedules must agree with a partial schedule h for a given node,
and their maximum regret is computed in a fixed scenario p̃. The scenario is selected so
that it is “close” to worst-case scenario, but is easy to construct: jobs in partial schedule
that complete before due-date have maximal processing times p+

j , while jobs starting after

due-date have minimal processing times p−
j ; all the remaining (unfixed) jobs have randomly

selected processing times fromwithin their intervals. In order to estimate the bound on robust
optimal solutionwe consider the totalweight of on-time jobs in the restricted schedule, and the
total weight of on-time jobs in the adversarial schedule that can be achieved in the considered
scenario.

Let us denote by F(h) the set of schedules that agree with a partial schedule h
on all fixed positions (i.e., except on positions labelled with “0”). We also denote
H = { j ∈ J : ∃i hi = j}. Then we have:

Proposition 2 Let h be a partial schedule and LB(h) be the value computed by Algorithm 2
for h. Then LB(h) ≤ minπ∈F(h) Z(π).

Proof Let U ′ ⊂ U . For any π ∈ P we have:

max
p∈U ′ R(π,p) ≤ max

p∈U R(π,p) = Z(π),

123

274 Annals of Operations Research (2020) 284:263–282

thus for π∗ ∈ argminπ∈F(h) Z(π) we have that the maximum regret on a restricted uncer-
tainty set U ′ is a lower bound on the robust optimal value (at the node corresponding to the
partial schedule h).

Moreover, maxp∈U ′ R(π∗,p) = v∗
L − v∗

K , where v∗
K is the total weight of on-time jobs in

robust optimal solution π∗, and v∗
L is the total weight of on-time jobs in adversarial solution.

The Algorithm 2 returns value vL − vK − ∑
j∈H w j , which we show is no greater than

v∗
L − v∗

K .
The algorithm computes maximum regret for a singleton set U ′ containing scenario q,

where:

(a) q j = p+
j , for j ∈ H that complete before due-date in scenario q,

(b) q j = p−
j , for j ∈ H that start after due-date in scenario q,

(c) q j = p̃ j , for j ∈ J\H .

The Algorithm 2 constructs in Step 13 the set of on-time jobs that would fill the positions
with undefined contents in a partial schedule h. This is accomplished by assuming scenario
q, and solving the knapsack problem, restricted to unfixed jobs j ∈ J\H . The knapsack
capacity is equal to the residual capacity C = d − t , where d is the due-date, and t is the
total processing time taken by fixed jobs in scenario q. The choice of jobs corresponding to
the optimal solution of the knapsack problem will result in the largest possible total weight
vK of on-time jobs in all the schedules that agree with h. Note that if t ≥ d then the value
of on-time jobs is already determined, and vK = 0. This value, plus the total weight of fixed
jobs,

∑
j∈H w j , gives an upper bound on the total weight of on-time jobs in robust optimal

solution v∗
K .

On the other hand, the total weight of on-time jobs in adversarial schedule in scenario q
can be computed by simply solving the nominal (knapsack) problem with item sizes equal
to processing times q j . This is computed in Step 14, and this value is denoted vL .

Since vK + ∑
j∈H w j ≥ v∗

K , and vL = v∗
L , we obtain a lower bound on the maximum

regret of a robust optimal solution for a partial schedule h, computed for the restricted
uncertainty set U ′ = {q}, and consequently, for the full uncertainty set U . 	

In order to obtain a good lower bound it is suggested to run Algorithm 2 a number of
times for different scenarios p̃, and to use the maximum value returned over the sequence
of runs as a final lower bound of a node. One can also observe that typically in practice the
worst-case scenarios contain many extreme jobs (i.e., ones with processing time either p−

j

or p+
j), with only few non-extreme jobs. Thus it may be a good strategy to randomize over

scenarios with extreme jobs when initializing Algorithm 2 with p̃.

4.2 Arbitrary due-dates variant

The branch and bound method presented in the previous sections can be easily extended to
handle the problem variant with arbitrary due-dates for each job. The main difference is that
the maximum regret of a schedule, required in Steps 4 and 13 of Algorithm 1, is computed
using MIP (13)–(21), and that the optimal solution to the nominal problem 1|| ∑w jU j can
be computed by solving the following MIP:

maximize
∑

j∈J

w j

n∑

k=1

s jk zk, (26)

123

Annals of Operations Research (2020) 284:263–282 275

subject to:

∀k=1,...,n zk = 1 ⇒
k∑

i=1

∑

j∈J

s ji p j ≤
∑

j∈J

s jkd j , (27)

∀k=1,...,n

∑

j∈J

s jk = 1, (28)

∀ j∈J

n∑

k=1

s jk = 1, (29)

∀ j∈J∀k=1,...,n s jk, z j ∈ {0, 1}. (30)

In order to compute node’s lower bound in Step 23 the Algorithm 3 could be used, which is
based on the same principle as Algorithm 2. The difference is that nominal problem (13)–(21)
needs to be solved twice instead of the knapsack problem (25). The former problem is first
solved with additional constraints that fix jobs on positions determined in a partial schedule
h (to get an upper bound vK on the value of optimal solution that can be derived from h),
and then the second time without additional constraints (to get a lower bound vL on the
adversarial solution). Again, a number of runs with different randomly generated scenarios
p̃ could be performed to obtain good lower bound. However, due to the higher complexity
of MIP (13)–(21), the computations would typically require significantly more time. In all
experimental results presented in Sect. 5 we sampled 5 random scenarios when computing
lower bound for each node.

Finally, we remark that the special cases of both problem variants, when all jobs have
equal weights (w j = 1 for j ∈ J), can be solved much faster. In the variant with a common
due-date, the solution algorithm of the knapsack problem (25) can be replaced by a simple
greedy algorithm that selects items in the order of nondecreasing sizes. In the variant with
arbitrary due-dates, the solution algorithm of nominal MIP (26)–(30) can be replaced by a
polynomial time algorithm for scheduling problem 1|| ∑Uj (Brucker 2007).

Algorithm 3 Lower bound computation for arbitrary due-dates variant.
Require: Partial schedule h, scenario p̃ ∈ U .
Ensure: The lower bound value LB of a node corresponding to h.

1: Initialization. Let t ← 0, i ← 1.
2: while hi �= 0 do
3: let qhi ← p+

hi
,

4: let τ = t + p+
hi

− dhi ,
5: if τ > 0 then
6: qhi ← qhi − τ + ε

7: end if
8: let t ← t + qhi ,
9: increment i ← i + 1
10: end while
11: Let q j = p̃ j for all j ∈ J\H .
12: Solve the nominal problem (26)–(30) for p = q, and additional constraints s jk = 1, where hk = j , for

j ∈ H . Denote the value of solution as vK .
13: Solve the nominal problem (26)–(30) for p = q. Denote the value of solution as vL .
14: return LB = vL − vK

123

276 Annals of Operations Research (2020) 284:263–282

5 Experimental results

In this section we present the results of computational experiments, conducted on different
types of randomly generated data sets. We have taken into consideration four experiments,
each designed to assess different aspect of the proposed solution method.

Experiment 1 In the first experiment we have examined the performance of Algorithm 1 on
the problem variant with common due-date. The algorithm was run on three types of sets
of random problem instances (A, B and C), with increasing number n of jobs in each set
(between 10 and 100). For each problem instance we generated initial incumbent solution by
computingmaximum regret for mid-point scenario heuristic solution, as well as 1000 random
permutations of jobs (taking the best out of these solutions). The Algorithm 1 was run until
either termination condition was met (i.e., queue of nodes became empty), or the time limit
set to 1 h was reached. Since for a number of larger instances it was often the case that the
Algorithm 1 failed to terminate within the assumed time limit, some of the obtained solutions
are either suboptimal, or lack the certificate of optimality. Consequently, we compared the
obtained results with ones computed using faster solution method, the mid-point scenario
heuristic. In this reference method we apply the algorithm for deterministic problem to the
scenario consisting of all interval mid-points. The results of this experiment are summarized
in Table 2.

Experiment 2 In order to assess the quality of solutions computed by the Algorithm 1 for
which no certificate of optimality has been obtained within 1 h, we compared the results
with solutions obtained by a randomized search heuristic. The heuristic sampled random
schedules for 1 h and reported the best solution found. Note that for many instances the
Algorithm 1 terminated much faster. Consequently, results for the data sets with instances
containing larger number of jobs (when Algorithm 1 tends to run out of time) have been
reported. The results of this experiment are summarized in Table 3.

Experiment 3 For the problem variant with common due-date we also tested the performance
of Algorithm 1 on data set containing instances with only 50% uncertain processing times.
This allowed to determine whether the amount of uncertainty influences the performance of
the solutionmethod. As in Experiment 1, the results have been compared against solution val-
ues returned by mid-point scenario heuristic. The results of this experiment are summarized
in Table 4.

Experiment 4 In this experiment we have examined the performance of Algorithm 1 on the
problem variant with job-dependent due-dates. Three types of data sets have been used (B,
C and D). Due to high computational requirements, in this case only data sets with instances
containing up to n = 30 jobs have been considered. The results of this experiment are
summarized in Table 5.

The branch and bound method has been implemented in Python programming language
and CPLEX 12.8 solver has been used for solving all MIP subproblems. Computations were
performed on machines with Intel Xeon processors with 16 cores at 2.4 GHz and 40 GB of
RAM (all cores were available for solving each problem instance).

5.1 Construction of data sets

We observe that especially difficult to solve are the problem instances where many potential
candidate solutions cannot be easily discarded by the algorithm, since the bounding methods

123

Annals of Operations Research (2020) 284:263–282 277

Table 1 Description of data sets
used in experiments

Type pmin pmax pw dmin dmax wmax

A 10 20 20 20 50 100

B 5 20 30 20 50 100

C 10 20 10 n 3n 100

D 5 10 20 n 3n 100

(Algorithms 2 and 3) give too weak lower bounds. This often happens when processing time
interval lower bounds of many jobs are very small, as in that case a large number of jobs
complete before due-date in adversarial schedule. Thus, two main factors that differentiates
instance difficulty is the average value of due-date d j and the minimal value of interval
lower-bound p−

j .
Consequently, the data sets used in experiments are divided into four different types,

ranging from “A” – easiest, to “D” – hardest (Table 1). Each set of instances is described by
six parameters: pmin, pmax, pw, dmin, dmax, wmax, where:

(1) interval lower-bounds p−
j are uniformly random integers between pmin and pmax,

(2) interval widths are uniformly random integers between 1 and pw ,
(3) due-dates d j are uniformly random integers between dmin and dmax,
(4) job weights w j are uniformly random integers between 1 and wmax.

5.2 Results

Results for problem instances for the variant with common due-date are presented in Tables 2,
3 and 4, while for the variant with job-dependent due-dates in Table 5. Note that each row
contains values that are averaged over 10 instances of a given type.

In Tables 2, 4 and 5, the first two columns describe the data set (number of jobs n, and type
of input data A, B, C or D). The following two columns contain the mean value and standard
deviation of computation time, excluding the results from instances when the algorithm did
not terminate before the time limit. The limit used in all the experiments was equal to 1 h
of wall-clock time. Next two columns contain the mean value and standard deviation of the
number of iterations performed by Algorithm 1 (i.e., the number of nodes explored in the
search tree, excluding the pruned nodes) before termination. The next column, labeled “opt.”,
indicates for how many instances out of 10 a certificate of optimality has been found (i.e.,
the algorithm terminated normally). Note that it is likely that for some instances without
such certificates optimal solutions might have been found too. Following are the mean value
and standard deviation of solution values obtained by Algorithm 1. The fourth column in the
group, denoted “gap%”, is the mean value of optimality gap (i.e., the ratio (UB − LB)/UB,
expressed in percents, whereUB is the value of the best feasible solution found and LB is the
best lower bound). The mean value and standard deviation of solution values from mid-point
scenario heuristic are given in the next two columns. The last column contains the measure
of improvement achieved by Algorithm 1 (vB) over the mid-point scenario heuristic (vM),
expressed in percents, computed as (vM − vB)/vM .

Table 3 contains mean values and standard deviations of best solutions found using ran-
domized search heuristic, which sampled random schedules for 1 h of wall clock time. The
heuristic was run on the same data sets as the ones used in Experiment 1, reported in Table 2.
The last column of the table contains the measure of improvement achieved by Algorithm 1

123

278 Annals of Operations Research (2020) 284:263–282

Table 2 Experimental results for common due-date variant

Data sets Time (s) Iterations Solution value Midpoint Imp.

n Type Mean SD Mean SD Opt. Mean SD Gap% Mean SD %

10 A 2.8 2.6 10.2 9.9 10 44.7 31.3 – 83.4 52.1 46

20 A 59.0 78.8 23.2 33.7 10 53.8 30.9 – 88.0 59.5 39

30 A 382.0 517.1 97.3 123.7 10 52.5 36.5 – 95.5 34.6 45

40 A 903.8 1114.0 142.1 174.0 10 78.6 33.2 – 124.9 22.7 24

50 A 983.0 1086.4 101.0 122.5 10 95.4 18.8 – 137.9 31.3 31

60 A 430.6 302.0 56.5 94.4 9 75.4 31.2 < 1 128.0 40.4 41

70 A 308.9 303.5 57.5 108.3 8 49.6 40.4 < 1 62.8 59.1 21

80 A 824.6 1294.2 55.4 45.1 6 89.7 39.1 1 131.8 42.6 32

90 A 523.5 434.4 29.8 36.0 5 77.1 45.4 1 128.7 65.3 40

100 A 150.8 102.0 36.2 35.3 5 78.5 45.7 3 117.9 57.3 33

10 B 10.1 8.0 28.5 24.9 10 77.1 52.9 – 105.5 61.7 27

20 B 155.7 171.6 128.9 138.7 10 146.6 20.9 – 176.5 19.5 17

30 B 308.5 356.1 143.5 165.1 10 144.3 80.9 – 182.0 83.2 20

40 B 653.1 751.5 240.8 324.2 8 135.6 53.8 < 1 180.4 59.9 25

50 B 158.2 224.6 286.4 302.4 5 157.3 67.2 < 1 202.5 61.4 22

60 B 941.5 725.6 269.2 199.3 4 182.5 89.6 < 1 207.6 92.7 12

70 B 1355.7 1103.2 178.6 133.2 4 167.3 71.2 < 1 214.2 70.4 22

80 B 1844.1 1758.8 104.7 96.8 5 150.7 60.3 1 189.2 66.5 20

90 B 1232.0 1293.6 86.6 82.0 3 196.9 112.2 3 238.3 112.6 17

100 B 542.2 482.3 86.4 57.8 3 191.6 60.7 4 231.4 48.4 17

10 C 2.2 1.5 14.4 15.4 10 25.6 26.4 – 39.4 40.1 35

20 C 187.2 185.7 141.4 142.3 10 80.3 31.6 – 111.0 29.9 28

30 C 1117.9 1346.6 888.3 914.8 8 97.1 34.7 < 1 132.9 50.2 27

40 C – – 437.5 442.7 0 170.4 44.3 1 209.0 41.2 18

50 C 1969.1 – 544.3 201.0 1 200.7 55.5 1 225.4 38.9 11

60 C – – 406.9 41.5 0 248.1 68.3 2 276.1 58.3 10

Comparison of Algorithm 1 and mid-point heuristic

(vB) over the heuristic (vR), expressed in percents, computed as (vR − vB)/vR . Note that
the Algorithm 1 returned better solutions for all instances, even though it often terminated
before the 1 h time limit.

5.3 Observations

Analyzing the results, we have noticed that the branch and bound method introduced in
the previous section gives substantial improvements over solutions obtained both via mid-
point scenario heuristic, as well as via randomized search heuristic. In should be noted,
however, that the Algorithm 1 should be used as a framework for exact solution methods,
that can incorporate various heuristics as subroutines (used an the root and internal nodes).
The presented results give insight into the efficiency of the Algorithm 1 used in the variant
described in Sect. 5, as compared to two simple heuristic methods. Comparison with mid-

123

Annals of Operations Research (2020) 284:263–282 279

Table 3 Experimental results for
arbitrary due-date variant

Data sets Rnd. search value B&B value Imp.

n Type Mean SD Mean SD %

50 A 100.1 14.9 95.4 18.8 5

60 A 82.3 30.6 75.4 31.2 8

70 A 68.1 34.9 49.6 40.4 27

80 A 90.1 39.3 89.7 39.1 2

90 A 87.6 39.8 77.1 45.4 12

100 A 93.5 39.7 78.5 45.7 16

50 B 163.6 73.2 157.3 67.2 4

60 B 199.2 101.0 182.5 89.6 8

70 B 184.1 81.3 167.3 71.2 9

80 B 172.5 77.3 150.7 60.3 13

90 B 208.5 126.4 196.9 112.2 6

100 B 199.7 75.1 191.6 60.7 4

10 C 34.0 19.3 25.6 26.4 25

20 C 94.1 29.2 80.3 31.6 15

30 C 111.8 43.9 97.1 34.7 13

40 C 215.0 33.3 170.4 44.3 21

50 C 223.7 44.7 200.7 55.5 10

60 C 376.2 67.2 248.1 68.3 34

Random search heuristic with 1 h time limit compared to Algorithm 1
solution values. Last column reports improvements obtained via Algo-
rithm 1 (see Table 2)

Table 4 Experimental results for common due-date variant

Data sets Time (s) Iterations Solution value Midpoint Imp.

n type Mean SD Mean SD Opt. Mean SD Gap% Mean SD %

10 B 37.3 45.2 27.6 33.2 10 54.3 31.2 – 91.0 43.7 40

20 B 94.1 108.8 77.3 86.1 10 82.2 37.8 – 108.3 40.1 24

30 B 310.5 339.3 167.0 187.2 10 97.9 57.5 – 130.8 78.8 25

40 B 603.8 841.0 309.4 344.9 8 84.4 55.9 < 1 126.3 72.5 33

50 B 669.4 1140.1 117.5 173.0 7 117.9 54.4 < 1 168.8 65.7 30

60 B 1534.9 908.2 152.8 117.2 4 140.4 63.0 < 1 183.7 94.1 23

70 B 1210.9 1297.3 151.8 133.7 5 131.7 73.6 < 1 162.5 77.0 19

80 B 469.1 262.7 100.8 103.0 3 149.9 67.1 1 189.1 55.7 21

90 B 463.0 394.3 70.6 76.2 5 129.1 72.5 1 166.2 82.3 22

100 B 330.0 237.7 70.8 42.9 4 164.4 73.1 2 194.7 83.7 15

10 C 2.5 1.5 3.3 1.0 10 15.1 17.5 – 31.1 38.3 51

20 C 147.7 122.8 110.1 85.5 10 29.9 24.9 – 52.5 52.3 43

30 C 790.5 638.0 456.5 565.1 7 46.5 20.5 < 1 114.0 15.9 59

40 C 772.9 564.1 435.3 388.2 5 53.7 25.1 1 90.6 33.5 41

50 C 2602.1 – 484.1 204.7 1 98.1 19.0 1 109.0 28.0 10

60 C 1055.8 768.8 389.1 44.3 3 104.0 58.5 2 132.0 79.5 21

Comparison of Algorithm 1 and mid-point heuristic on instances with only 50% uncertain jobs

123

280 Annals of Operations Research (2020) 284:263–282

Table 5 Experimental results for arbitrary due-date variant

Data sets Time (s) Iterations Solution value Midpoint Imp.

n Type Mean SD Mean SD Opt. Mean SD Gap% Mean SD %

10 B 33.3 31.1 55.5 59.0 10 34.8 17.5 – 83.8 37.7 58

15 B 626.2 730.3 100.5 129.3 8 45.6 25.7 2 111.0 39.7 59

20 B 2407.1 – 29.9 22.2 1 81.5 28.6 8 116.5 40.9 30

25 B 246.6 – 12.2 7.8 1 90.2 21.2 11 154.2 59.8 41

10 C 311.2 434.6 76.1 82.7 9 69.7 38.2 < 1 139.1 71.7 49

15 C 1374.1 1227.8 64.1 40.5 5 118.8 21.3 2 178.6 48.4 33

20 C – – 13.3 2.9 0 149.2 48.1 4 199.4 72.4 25

25 C – – 17.9 3.6 0 156.1 60.9 5 212.9 60.9 27

30 C – – 7.0 0.7 0 199.5 42.9 9 263.5 83.9 24

10 D 22.4 18.1 48.3 89.0 10 32.1 23.0 – 68.2 43.3 52

15 D 582.3 776.9 61.8 19.8 7 49.2 28.6 8 105.2 42.8 53

20 D 2023.9 – 17.6 4.0 1 74.8 13.7 13 128.2 43.6 42

25 D – – 14.0 12.3 0 185.0 82.8 17 228.8 86.4 19

30 D – – 12.3 5.1 0 197.7 23.3 19 222.5 37.5 11

Comparison of Algorithm 1 and mid-point heuristic

point heuristic also provides an estimate of how much more regret would be generated,
when stochastic optimization approach (taking expected values of uncertain parameters with
entropy-maximizing distribution) would be used instead of robust one.

The drawback of using Algorithm 1, as compared to the mid-point scenario heuristic, is
that it often requires considerably long time of computation. It shares the feature of many
MIP-based solution techniques, so that optimal solution can be found early, but almost all
computation time is spent on finding the proof of its optimality (in terms of exhausting the
search tree). However, the branch and bound method is capable of finding consistently better
solutions than the randomized search heuristic within 1 h time limit.

The method performs well on moderately sized instances of the problem variant with a
common due-date. Unfortunately, the variant with job-dependent due-dates ismuchmore dif-
ficult, and already for relatively small instances the exploration of search tree is prohibitively
expensive [due to the need of repeatedly solving MIP (13)–(21)]. The method often termi-
nates without a certificate of optimality after 1 h for instances with 20–30 jobs with arbitrary
due-dates.

It also appears that the presence of jobs with certain processing times in the data sets
improves the performance of the algorithm.More difficult instances with only 50% uncertain
processing times took significantly less effort to solve.

6 Conclusions

We have addressed the problem of uncertain processing times, represented by intervals, in
a basic single machine scheduling problem with due-dates. The min–max regret has been
considered as the concept of robustness. The need for modeling uncertainty in the input
data has important practical motivation, but it appears that it is very difficult to deal with

123

Annals of Operations Research (2020) 284:263–282 281

in combinatorial optimization problems. Using mixed-integer programming formulations,
we have developed an exact branch and bound method, adapted to the min–max regret
optimization. This method has been examined in computational experiments, and shown to
be superior to various heuristic solution methods (mid-point scenario heuristic and random
scenario heuristic). The method can be developed further in several ways. Faster and more
tight bounding rules could be applied in place of Algorithms 2 and 3. Problem variants
with release dates and precedence constraints could also be solved by a similar approach.
Moreover, the branch and bound method and bounding rules introduced in this paper could
be modified to handle other robust combinatorial optimization problems with interval data.

Acknowledgements The authors are grateful to Wroclaw Centre for Networking and Supercomputing
for granting access to the computing infrastructure built in the Projects No. POIG.02.03.00-00-028/08
“PLATON—Science Services Platform”.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

References

Aissi, H., Bazgan, C., & Vanderpooten, D. (2009). Min–max and min–max regret versions of combinatorial
optimization problems: A survey. European Journal of Operational Research, 197(2), 427–438.

Aloulou, M. A., & Della Croce, F. (2008). Complexity of single machine scheduling problems under scenario-
based uncertainty. Operations Research Letters, 36(3), 338–342.

Averbakh, I. (2001). On the complexity of a class of combinatorial optimization problems with uncertainty.
Mathematical Programming, 90(2), 263–272.

Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University
Press.

Biskup, D., & Feldmann, M. (2005). On scheduling around large restrictive common due windows. European
Journal of Operational Research, 162(3), 740–761.

Brucker, P. (2007). Scheduling algorithms. Berlin: Springer.
Colson, B., Marcotte, P., & Savard, G. (2007). An overview of bilevel optimization. Annals of Operations

Research, 153(1), 235–256.
Deineko,V.G.,&Woeginger,G. J. (2010). Pinpointing the complexity of the intervalmin–max regretKnapsack

problem. Discrete Optimization, 7(4), 191–196.
Drwal,M. (2017).Min–max regret scheduling tominimize the totalweight of late jobswith interval uncertainty.

In International conference on optimization and decision science (pp. 611–619). Springer.
Drwal, M. (2018). Robust scheduling to minimize the number of late jobs with interval due-date uncertainty.

Computers & Operations Research, 91, 13–20.
Drwal, M., & Rischke, R. (2016). Complexity of interval minmax regret scheduling on parallel identical

machines with total completion time criterion. Operations Research Letters, 44(3), 354–358.
Furini, F., Iori, M.,Martello, S., &Yagiura,M. (2015). Heuristic and exact algorithms for the interval min–max

regret Knapsack problem. INFORMS Journal on Computing, 27(2), 392–405.
Goerigk,M.,&Schöbel, A. (2016). Algorithm engineering in robust optimization. In L.Kliemann&P. Sanders

(Eds.), Algorithm engineering (pp. 245–279). Berlin: Springer.
Gordon, V., Proth, J. M., & Chu, C. (2002). A survey of the state-of-the-art of common due date assignment

and scheduling research. European Journal of Operational Research, 139(1), 1–25.
Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in

deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.
Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials.

European Journal of Operational Research, 165(2), 289–306.
Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher & J. D.

Bohlinger (Eds.), Complexity of computer computations (pp. 85–103). Berlin: Springer.
Kasperski, A. (2008). Discrete optimization with interval data: Minmax regret and fuzzy approach. Berlin:

Springer.

123

http://creativecommons.org/licenses/by/4.0/

282 Annals of Operations Research (2020) 284:263–282

Kasperski, A., & Zielinski, P. (2014). Minmax (regret) scheduling problems. In Y. Sotskov & F.Werner (Eds.),
Sequencing and scheduling with inaccurate data (pp. 159–210). New York: Nova Publishers.

Kasperski, A., & Zieliński, P. (2016). Robust discrete optimization under discrete and interval uncertainty: A
survey. In M. Doumpos, C. Zopounidis & E. Grigoroudis (Eds.), Robustness analysis in decision aiding,
optimization, and analytics (pp. 113–143). Berlin: Springer.

Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Berlin: Springer.
Lebedev, V., & Averbakh, I. (2006). Complexity of minimizing the total flow time with interval data and

minmax regret criterion. Discrete Applied Mathematics, 154(15), 2167–2177.
Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers

& Chemical Engineering, 32(4–5), 715–727.
Milnor, J. (1951). Games against nature. Technical report, DTIC Document
Montemanni, R. (2007). A mixed integer programming formulation for the total flow time single machine

robust scheduling problem with interval data. Journal of Mathematical Modelling and Algorithms, 6(2),
287–296.

Mosheiov, G., & Sarig, A. (2009). Minmax scheduling problems with a common due-window. Computers &
Operations Research, 36(6), 1886–1892.

Pinedo, M. (1983). Stochastic scheduling with release dates and due dates. Operations Research, 31(3), 559–
572.

Sotskov, Y. N., Egorova, N. G., & Lai, T. C. (2009). Minimizing total weighted flow time of a set of jobs with
interval processing times. Mathematical and Computer Modelling, 50(3), 556–573.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Robust min–max regret scheduling to minimize the weighted number of late jobs with interval processing times
	Abstract
	1 Introduction
	1.1 Related work

	2 Problem formulation
	3 Maximum regret subproblem
	3.1 Maximum regret MIP for common due-date
	3.2 Maximum regret MIP for arbitrary due-dates

	4 Branch and bound algorithm
	4.1 Bounding rule
	4.2 Arbitrary due-dates variant

	5 Experimental results
	5.1 Construction of data sets
	5.2 Results
	5.3 Observations

	6 Conclusions
	Acknowledgements
	References

