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Abstract

We propose a novel model reduction approach for the approximation of non linear

hyperbolic equations in the scalar and the system cases. The approach relies on an

offline computation of a dictionary of solutions together with an online L1- norm

minimization of the residual. It is shown why this is a natural framework for hyperbolic

problems and tested on nonlinear problems such as Burgers’ equation and the

one-dimensional Euler equations involving shocks and discontinuities. Efficient

algorithms are presented for the computation of the L1-norm minimizer, both in the

cases of linear and nonlinear residuals. Results indicate that the method has the

potential of being accurate when involving only very few modes, generating physically

acceptable, oscillation-free, solutions.

Keywords: Model reduction, Dictionaries, L1-norm residual minimization

Background

Many engineering applications require the ability to simulate the behavior of a physical

system in real-time. This requirement holds in particular when a full parametric explo-

ration of the behavior of the system is sought. In aerodynamics, such an exploration can be

done to compute the flow around an aircraft for varying boundary conditions or to design

its shape to maximize lift and minimize drag. Uncertainty quantification also requires a

large number of simulationswith varying parameters in order to propagate chaos bymeans

of a Monte-Carlo method or calibrating input parameters by a Markov chain technique.

A third important application is flow control.

When sucha largenumberof simulations is required, the cost of one simulation is critical

to the application at hand. This cost can be lowered by using sophisticated computer

science techniques such as parallelization but such techniques are usually not enough to

allow full parametric exploration, especially when computational resources are limited.

Alternatively,model reduction techniques can alleviate the cost of such repeated simula-

tionswith limited computational resources [1–4].Model reduction is directly based on the

underlying high-dimensional model (HDM) that results from a standard finite element,
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finite volume or finite differences formulation. In the present paper, partial differential

equations (PDE) of the following type are considered:

∂U

∂t
+ L(U ) = 0 x ∈ �, t ∈ [0, T ]

B(U ) = g x ∈ ∂�, t ∈ [0, T ]

U (x, t = 0) = U0(x) x ∈ �

(1)

L is a differential operator (for example the Laplacian or the divergence of a flux), and

B a boundary operator. In this paper, we are particularly interested in the case where the

solution U (x, t) ∈ R
p is a scalar or a vector and L is the divergence of a flux F . Three

examples will be considered by increasing the order of complexity:

• Burgers’ equation for which U = u is scalar:

– Its unsteady version,

∂u

∂t
+

∂

∂x

(

1

2
u2
)

= 0, u(x, 0) = u0(x)

with periodic boundary conditions

– It steady version with weak Dirichlet boundary conditions

• The one-dimensional compressible Euler equations for which

U = (ρ, ρu, E), F (U ) =
(

ρu, ρu2 + p, u(E + p)
)

and the perfect gas equation of state holds:

p = (γ − 1)

(

E −
1

2
ρu2

)

.

ρ denotes the density, u the velocity, p the pressure and E the energy.

• An example of a steady flow through a nozzle.

After discretization in space, the solution is denoted as u(t) ∈ R
Np. The PDE is here

parametrized by a parameter vector µ ∈ R
m that allows changes in the operator L, the

boundary operatorB or the initial conditions. For simplicity andwithout loss of generality,

this parametric dependency will be omitted in the next paragraphs.

Instead of allowing any value of the solution degrees of freedom u, model reduction

however restricts the solution to be contained in a subspace of the underlying high-

dimensional space. This subspace is determined by an optimized reduced basis that is

determined in a training phase. Thus, a large number of degrees of freedom (say millions)

are represented by only a few number of coefficients in the representation of the full

solution in terms of the reduced basis vectors, leading to important computational savings.

Two important questions arise at this point: (1) how can an optimal reduced basis be

constructed? and (2) how can the evolution of the reduced coefficients be computed in a

stable fashion?

A popularmethod for choosing an “optimal” basis is ProperOrthogonal Decomposition

(POD), first introduced as a tool for the analysis of flows by Lumley [5] and then extended

and popularized by Sirovich [6]. The idea behind POD is to collect a few snapshots of the

solution and then compute the best approximation of these snapshots in terms of a small

number of reduced basis vectors.Mathematically speaking, ifui(tl) ∈ R
p denotes the value

of the discrete solution u at grid point xi, i = 1, . . . , N and at time tl , l = 1, . . . , Nt , POD
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constructs M orthogonal functions φℓ ∈
[

L2(Rd)
]p

such that the following functional is

minimized:

J (φ1, . . . ,φM) =

Nt
∑

l=1

Np
∑

i=1

∥

∥

∥

∥

∥

ui(tl) −

M
∑

ℓ=1

〈u(tl),φℓ〉φℓi

∥

∥

∥

∥

∥

2

2

, (2)

where φℓi ∈ R
p denotes the value of φ at xi. ‖ · ‖ denotes here the Euclidean norm in R

p,

and 〈 · , · 〉 is the L2 scalar product. A minimum of the functional J can be analytically

computed by Singular Value Decomposition and the reduced basis vectors φℓ are the left

singular vectors of the snapshots matrix

S =

⎛

⎜

⎜

⎝

u1(t1) . . . u1(tNt )
...

...
...

uN (t1) . . . uN (tNt )

⎞

⎟

⎟

⎠

.

Defining by {λℓ}
Nt

l=1
the positive eigenvalues of STS sorted decreasingly, the error associ-

ated with the minimum of the functional is

J (φ1, . . . ,φM) =

Nt
∑

ℓ=M+1

λℓ. (3)

In the continuous case, the functions φℓ(x) ∈ R
p, are the solution of Fredholm alterna-

tive
∫

�

R(x, x′)φℓ(x
′)dx′ = λℓφℓ(x), for all x ∈ �, (4)

where R(x, x′) = u(x)u(x′)T .

In both the discrete and continuous cases, the basis dimensionM is depending on how

fast is the decay of the eigenvalues λℓ. Given a tolerance ǫ ≪ 1, M is selected as the

smallest dimension such that the following relative truncation error is smaller than ǫ,

J (φ1, . . . ,φM)
∑Nt

l=1

∑Np
i=1

∥

∥ui(tl)
∥

∥

2

2

=

∑Nt
ℓ=M+1 λℓ
∑Nt

ℓ=1 λℓ

. (5)

In general, one expects the eigenvaluesλℓ to decrease very rapidly to 0. This allows,when

this assumption is true, to consider only the most energetic modes in the decomposition.

Unfortunately, it is not always the case that the eigenvalues λℓ are rapidly converging to

zero. This is demonstrated by the following simple counter example for which a simple

scalar advection problem defined on � = [0, 1[ is considered:

∂u

∂t
+

∂u

∂x
= 0 (6a)

with the boundary condition

u(0, t) = 1 (6b)

and the initial condition

u(x, 0) = 0. (6c)

The solution is given by a traveling discontinuity

u(x, t) =

{

1 if x ≤ min(t, 1)

0 otherwise.

Considering grids xi = i/N , i = 0, . . . , N for varying number of grid points N and

snapshots collected at times as tk = k
t, with 
t = 1/N , a series of POD bases is
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constructed numerically. For each grid size N , the eigenvalues λℓ(N ) are reported in

Fig. 1. One can observe that the ratio λℓ(N )/λ1(N ) behaves like 1/k . This illustrates that

it is not possible to select only a few dominant modes, due to the slow decay of the POD

eigenvalues. This example also illustrates why most of the work on model reduction has

been focused on regular problems, and for fluids, on incompressible flows, see e.g. among

many others [7–9]. For compressible (but regular) flows, one of the early work is [10],

then one may mention [11] for compressible turbulent flows and [3,12,13] for the case of

linearized compressible inviscid flows.

Concerning compressible fluids, there is another difficulty. In problem (4), one needs a

norm. In the case of incompressible flows, a natural norm is related to the kinetic energy.

For compressible materials, however, one needs to take into account the density, velocity

and the energy, i.e. the thermodynamics. A simple L2-norm cannot be used because one

cannot combine in a quadratic manner these variables, for dimensional reasons. Only a

non-dimensionalization of the variables can alleviate the dimensionality issue [11,12].

The natural equivalent of the L2-norm is however related to the entropy, which is not

quadratic: if a minimization problem can be set up, its solution is non trivial. These

arguments were raised in [10], and an energy-based norm was developed in [13] for

linearized compressible flows.

To circumvent those issues, an approach based on a dictionary of solutions [14] is

developed in this work as an alternative to using a truncated reduced basis based on POD.

The elements of this dictionary are solutions u(tl ;µj) computed for varying values of time

tl and parameter µj ∈ R
m. Selecting appropriate parameter samples µj ∈ D ⊂ R

m is

a crucial step that can affect the accuracy of the reduced-order model in the parameter

domain. Greedy sampling procedures have been developed when error estimates are

known [7,9,15–17]. In this work, we do not elaborate much on this, we are more focused

on showing that such a method can actually work. The strategy to look for the “best” µ in

this context will be the topic of further research.

Fig. 1 In log–log coordinate, plot of the ratio of POD eigenvalues log(λk (N)/λ1(N)) for

N = 400, 600, 800, 1000, 1500 grid points
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In addition to choosing an appropriate dictionaryD, selecting an approach for comput-

ing a reduced solution based on that dictionary is also crucial. For self-adjoint systems,

Galerkin projection is a natural approach but it there is no motivation for using Galerkin

projection for nonlinear compressible flows. Instead, strategies based on theminimization

of the residual arising from the reduced approximation have been successfully developed

for compressible flows in [1,2,11]. These approaches rely on aminimization of the residual

in the L2 sense. In the present work, this minimization problem is extended to the more

generalminimization using a Lq-norm, with emphasis on q = 1. For nonlinear systems, an

additional step, hyper-reduction, is required to ensure an efficient solution of the reduced

system [11,18]. Hyper-reduction is not considered in this work but will be the subject of

follow-up work.

Methods

This section is organized as follows.Motivations for using theL1 norm in the case of hyper-

bolic systems are presented first. We show that q = 1 is very closely linked to the concept

of weak solutions of hyperbolic problems. Then, the proposed model reduction approach

is developed in both the steady and unsteady cases. Finally, the proposed procedure is

applied to the model reduction of several steady and unsteady systems and conclusions

are given in the end.

Motivation for the L1-norm

In solvingminimization problems, it is quite usual tominimize some residual with respect

to the Lq norm for suitable q. The choice q = 2 is very common because it amounts to

minimize in some least square sense and many efficient algorithms are available. In the

case of hyperbolic problems, as we are concerned with here, this is still a convenient

choice (after proper adimensionalization as mentioned above), but it might not be the

most natural one. For example in [19,20] it is shown at least experimentally, that the

numerical solution has an excellent non oscillatory behavior, without doing explicitly

anything but to minimize the L1 norm of the PDE residual. In fact, this observation was

our original motivation for choosing the L1 norm, since we are interested in keeping the

non oscillatory nature of the solution. In this section, we further justify the choice of the

L1 norm applied to the residual, and show that it is closely related to the weak formulation

of the problem. The discussion is here formal.

Let us consider the problem

∂U

∂t
+ div F (U ) = 0 (7)

defined on � ⊂ R
d , t > 0. The steady problem can be done in the same exact manner.

We assume that the solutionU belongs to R
p, so that F = (F1, . . . , Fp). The weak form of

this is: for any ϕ ∈
[

C1(�)
]p

and with compact support, we have:

∫

�

ϕ(x, t)

(

∂U

∂t
+ div F (U )

)

dx = 0.

Integrating by parts, yields

∫

�

∂ϕ

∂t
Udx +

∫

�

∇ϕ · F (U )dx = 0
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If we restrict ourselves to the set of test functions
{

ϕ ∈
[

C1(�)
]p

, ||ϕ||∞ ≤ 1
}

, U is a

solution if:

sup
{ϕ∈[C1(�)]p ,||ϕ||∞≤1}

(

∫

�

∂ϕ

∂t
Udx +

∫

�

∇ϕ · F (U )dx

)

= 0.

Let us now recall the definition of the total variation

TV (g) = sup
ϕ∈C1

0 (R
n)∩L∞(Rn),||ϕ||∞≤1

{∫

Rn
∇ϕ(x) · g(x)dx

}

,

and the definition of the bounded variation of a function g ∈ L1(Rn):

BV (Rn) =
{

g ∈ L1(Rn) : TV (g) < ∞
}

.

We see that if in addition g ∈ C1(Rn), TV (g) =
∫

Rn ||∇g ||dx = ||∇g ||L1(Rn).

Thanks to this definition, we see that if we define the space-time flux F = (U, F ), U is

a weak solution if and only if the total variation of F vanishes, TV
(

F ) = 0.

Before going further, let us mention the following classical result that will be useful.

Consider {xi}i∈Z a strictly increasing sequence in R, we define xi+1/2 =
xi+xi+1

2 . We

assume that R = ∪i∈Z[xi−1/2, xi+1/2[ and consider g defined by: for any i ∈ Z,

g(x) = gi if x ∈ [xi−1/2, xi+1/2[,

we see that

TV (g) =
∑

i∈Z

|gi+1 − gi|.

Now, instead of having the exact solution, but some approximation procedure that

enables, from u
n ≈ U ( . , tn), to compute un+1 ≈ U ( . , tn+1), say L(un,un+1).

For instance, assume that we have a finite volume method and d = 1: for any grid point

i ∈ {1, . . . , N },

[

L
(

u
n,un+1

)]

i
= 
x

(

u
n+1
i − u

n
i

)

+ 
t
(

fi+1/2(u
n) − fi−1/2(u

n)
)

.

A way to evaluate un+1 is to minimize the total variation, i.e.

TV (L) =
∑

i∈I

∣

∣

∣

x
(

u
n+1
i − u

n
i

)

+ 
t
(

fi+1/2(u
n) − fi−1/2(u

n)
)

∣

∣

∣
,

u
n+1 = argmin

v piecewise constant

∑

i∈I

∣

∣
x
(

vi − u
n
i

)

+ 
t
(

fi+1/2(u
n) − fi−1/2(u

n)
)∣

∣ .

Clearly, if I is equal to the set of grid points, the solution is given by

u
n+1
i = u

n
i −


t


x

(

fi+1/2(u
n) − fi−1/2(u

n)

)

and nothing new is gained.

When I is not equal to the set of degrees of freedom, then something new happens. We

expect precisely to exploit this idea, or ideas related to this.

In the remainder of this paper, this idea is exploited in the case of model reduction,

for which I is not equal to the set of grid points and TV semi norm slightly modified in

order to guaranty that a unique solution to the minimization problem exists, as well as

the minimization problem is as easy as possible to solve.
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Formulation

High-dimensional model

Without loss of generality, the case of the classical finite volume method is considered

to define the High Dimensional Model (HDM). A computational domain � ⊂ R
d is

considered, and in most of this paper, � ⊂ R, that is d = 1. Starting from a subdivision

· · · < xj < xj+1 < · · ·, we construct control volumes Kj = [xj−1/2, xj+1/2[, j ∈ Z where

xj+1/2 =
xj + xj+1

2
.

A finite volume semi-discrete formulation of (1) writes

|Kj|
duj

dt
+ fj+1/2(u) − fj−1/2(u) = 0 (8a)

where fj+1/2 is a consistent numerical flux. In each applications, we consider Roe’s formu-

lation and a first order scheme. We assume either compactly supported initial conditions

or initial conditions with periodicity

uj(t = 0) ≈
1

|Kj|

∫

Kj

U0(x)dx. (8b)

In (8a), uj stands for an approximation of the average of the solution in the cell Kj ,

uj(t) ≈
1

|Kj|

∫

Kj

U (x, t)dx.

The time stepping is done in a standard way, for instant by Euler time stepping.

Model reduction by residual minimization over a dictionary

Steady problems

Two approaches are available to solve a steady state associated with problem (1). The first

one is to use a homotopy approach with pseudo-time stepping, resulting in the solution

of an unsteady problem which limit solution is the desired steady state. The procedure

described in Sect. “Unsteadyproblems” canbe, in principle applied to this case. The second

approach is by a direct solution of the steady-state problem. The discretized steady-state

problem writes

r(u(µ),µ) = 0

where r(·, ·) is usually a nonlinear function of its arguments, referred to as the residual.

This set of nonlinear equations is typically solved by Newton-Raphson’s method. This

second approach is followed in this work for steady problems.

The parameter vector µ ∈ P ⊂ R
m can, for instance, parametrize the boundary con-

ditions associated with the steady-state problem. The parametric domain of interest P is

assumed here to be a bounded set of R
m.

The solution manifold M =
{

u(µ) s.t µ ∈ P ⊂ R
m
}

is assumed to be of small dimen-

sion. This manifoldM belongs to L∞(Rd)∩BV (Rd), and thus can be locally described by

some mapping θ : P �→ L∞(Rd) ∩ BV (Rd). To approximate this mapping, we consider

a family of r parameters in P , {µℓ}
r
ℓ=1, and compute the associated solutions

{

u(µℓ)
}r

ℓ=1

of (8).

The steady-state u(µ) is then approximated as a linear combination of the precomputed

dictionary elements D as

u(µ) ≈

r
∑

ℓ=1

αℓ(µ)u(µl). (9)
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For a new value of the parameters µ ∈ P , the reduced coordinates
{

αℓ(µ)
}r

ℓ=1
are then

computed as the solution of the minimization problem

α(µ) := (α1(µ), . . . ,αr(µ)) = argmin
β = (β1 ,...,βr )

J

(

r

(

r
∑

ℓ=1

βℓu(µl),µ

)

,β

)

. (10)

In this paper we consider for J the L1-norm J (r,β) = ‖r‖1 or its regularized variant,

J (r,β) = ‖r‖1 + η‖β‖1 with η > 0.

In order to minimize J when r is a linear function of β, the Linear Programming (LP)

approach is considered, involving the solution of an optimization problem with 2m + r

variables and 3m constraints.

When r is a nonlinear function of β, a Gauss-Newton-like procedure can be used in

combination with the LP approach. Unicity of the solution can be guaranteed by setting

the regularization term η > 0. That’s why we are not doing the linear example.

Remark • Decreasing thedimensionality of the solution space fromN to r is not enough

to gain computational speedup when the system to be solved is nonlinear. An addi-

tional level of approximation, hyper-reduction, is necessary.

• A careful selection of the sample parameter samples
{

µℓ

}r

ℓ=1
is necessary in order

to generate a reduced-order model that is accurate in the entire parameter domain

P . Greedy sampling techniques, associated with a posteriori error estimates, have

been successfully used to construct reduced models that are robust and accurate in a

parameter domain P . These techniques are not considered in this paper but will also

be the focus of future work.

Unsteady problems

For simplicity, in the remainder of this section, we assume that only the initial condition

u
0(µ) depends on a parameter vector µ ∈ P ⊂ R

m. Again, the family of solutions u(µ) of

the Cauchy problem (8) is then conjectured to belong to a low dimensional manifold M

when the initial condition is parametrized in (8b).

To approximate this mapping, we consider a family of r parameters in P , {µℓ}
r
ℓ=1,

and compute the associated solutions of (8) for respective initial conditions u0(µℓ), ℓ =

1, . . . , r.

Once these solutions are computed, we propose to approximate, for any parameter

µ ∈ P the solution {un(µ)}Nt
n=0 associatedwith an initial conditionu

0(µ) by approximating

it as

u
n(µ) =

r
∑

ℓ=1

αn(µ)un(µℓ)

with the following procedure:

1. Initialization: determine the reduced coefficients {α0
ℓ (µ)}

r
ℓ=1 as:

α0(µ) :=
(

α0
1(µ), . . . ,α

0
r (µ)

)

= argmin
β = (β1 ,...,βr )

J

(

r
∑

ℓ=1

βℓu
0(µℓ),β

)

,

for a given choice of functional J (u,β).
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2. Assume that αn(µ) = (αn
1 (µ), . . . ,α

n
r (µ)) is known, determine αn+1 = (αn+1

1 , . . . ,

αn+1
r ) such that:

αn+1(µ) = argmin
β = (β1 ,...,βr )

J

(

r
∑

ℓ=1

βℓu
n+1(µℓ) − w

n(µ) −

t


x

(

f1/2(w
n) − f−1/2(w

n)

)

,β

)

where

w
n(µ) =

r
∑

ℓ=1

αn
ℓ (µ)u

n(µℓ).

We see that the second step can be written as: find αn+1(µ) that minimizes

J
(

A
n+1αn+1 − b

n
)

:= J
(

A
n+1αn+1 − b

n,αn+1
)

where the matrix An+1 can be written by blocks as

A
n+1 =

⎛

⎜

⎜

⎝

u
n+1
1 (µ1) . . . u

n+1
1 (µr)

...
...

...

u
n+1
N (µ1) . . . u

n+1
N (µr)

⎞

⎟

⎟

⎠

(11)

and b
n depends on known data.

A few immediate remarks can be made.

Remark • In the case of a linear flux, Problem (1) is linear. If St is themapping between

the initial condition u0 and the solution at time t, we have St (u+ v) = St (u)+ St (v).

This means the exact solution of the Cauchy problem with U0 =
∑

ℓ α0
ℓU0(µℓ) is

St (U0) =
∑

ℓ α0
ℓSt (U (µℓ, 0)). In the case of a linear scheme, minimizing the func-

tional J should result in αn = α0 for any n ≥ 0.

• In the case of an explicit background scheme, the choice of the numerical flux, how

high order is reached, and the choice of time stepping has no influence on the overall

procedure: any sub-time stepwould be treated similarly. In this paper, we have chosen

a first order method with Euler time stepping in the case of unsteady problem.

• In the case of an implicit scheme, aNewton-like procedure can be applied tominimize

the functional as in [11]. At each time step, the procedure is then identical as in the

steady case described above.

Results and discussion

Model reduction of unsteady problems

Unsteady Burgers’ equation

We consider here the system (7) in � = [0, 2π ] with periodic boundary conditions and

the initial conditions parameterized by

u0(x;μ) = μ
∣

∣ sin(2x)
∣

∣+ 0.1,

whereμ ∈ [0, 1]. In this setting, the solution develops a shock thatmoves with the velocity

σμ = 0.55μ. A dictionaryD is constructed by sampling the parameters {0, 0.2, 0.4, 0.6, 1.0}

(r = 5) and the solution sought for the predictive case μ⋆ = 0.5. A shock appears at

t = 1. We display the solutions obtained by L1-norm by LP minimization procedure for

t = π
4 < 1, t = π

2 and t = π in Figs. 2, 3.

After the shock, the L1-norm-type solutions are all close to each other and the shock is

rather well reproduced with, however, an artifact that develops for longer times, as seen
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Fig. 2 Unsteady Burgers’ equation: predicted solutions at target parameter μ⋆ = 0.5 at t = π
4
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(a)

3210
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0.4
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Exact
L1_LP

T=pi

(b)

Fig. 3 Unsteady Burgers’ equation: predicted solutions at target parameter μ⋆ = 0.5 at t = π
2 (left) and

t = π (right)

at t = π . Nevertheless, the L1-norm-type solutions are within the bounds of the “exact”

solution, and no large oscillation develops.

In a second set of numerical experiments, we consider the influence of the sam-

pling parameter set included in the dictionary D. We consider two dictionaries D1 =

{0.4, 0.45, 0.55, 0.6} and D0 = {0, 0.2, 0.4, 0.45, 0.55, 0.6, 1.0}, for the same target value of
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Fig. 4 Unsteady Burgers’ equation: predicted solutions at target parameter μ⋆ = 0.5 at t = π for two

dictionaries associated with two samples of the parameter domain P

μ⋆ = 0.5. These choices amounts to selecting samples close to the target value 0.5 while

varying elements of the dictionary that are not close to 0.5 (see Fig. 4).

We see that refining the dictionary has a positive influence as the target solution ismuch

closer to the dictionary elements. This is confirmed by additional experiments where the

samples of μ used to generate the dictionary where more numerous and closer to 0.5 (not

reported here). The L1-norm-type solutions are however unaffected by the presence of

these “outliers” in the dictionary.

Euler equations

The one-dimensional Euler equations are considered on � = [0, 1]

∂

∂t

⎛

⎜

⎝

ρ

ρu

E

⎞

⎟

⎠
+

∂

∂x

⎛

⎜

⎝

ρu

ρu2 + p

u(E + p)

⎞

⎟

⎠
= 0, (12a)

for which U = (ρ, ρu, E)T and the pressure is given by

p = (γ − 1)

(

E −
1

2
ρu2

)

(12b)

with γ = 1.4.

This problem is parametrized by the initial conditions U0(x;μ). To define the para-

metrized initial conditions of the problem, the Lax and Sod cases are first introduced as

follows.

The state USod(x) is defined by the primal physical quantities:

VSod(x) =

⎧

⎪

⎨

⎪

⎩

ρ = 1 if x ≤ 0.5, 0.125 otherwise,

u = 0.0

p = 1.0 if x ≤ 0.5, 0.1 otherwise,

(12c)

and ULax(x) defined by

VLax(x) =

⎧

⎪

⎨

⎪

⎩

ρ = 0.445 if x ≤ 0.5, 0.5 otherwise,

u = 0.698 if x ≤ 0.5, 0.0 otherwise,

p = 3.528 if x ≤ 0.5, 0.571 otherwise.

(12d)

The Sod condition presents a fan, followed by a contact and a shock. For the density and

the pressure, the solution behaves monotonically, and the contact is moderate. The Lax
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solution has a very different behavior and the contact is much stronger. This is depicted

in Fig. 5 where the two solutions are shown for t = 0.16.

The initial condition are parametrized for μ ∈ [0, 1] as

V0(x;μ) = μVSod(x) + (1 − μ)VLax(x) (12e)

and the conservative initial variables U0(x;μ) constructed from V0(x;μ).

In the subsequent numerical experiments, two strategies are exploited to construct,

from the dictionary D, the approximation u
n(μ) of the solution at each time step n:

• Either we reconstruct together the discretized density vectors ρ, momentumm = ρu

and energy E, i.e. the state variable at time tn using only one coefficient vector αn =

(αn
1 , . . . ,α

n
r )

u
n =

⎛

⎜

⎝

ρn

m
n

E
n

⎞

⎟

⎠
≈

r
∑

j=1

αn
j u

n(μj). (13)

Here the {αn
j }

r
j=1 are obtained byminimizing J on the density components of the state

because the density enable to detect fans, contact discontinuities and shocks, con-

trarily to pressure and velocity which are constant across contact waves. Doing so we

expect to control better the numerical oscillations, if any, than with the other physical

variables. Similar arguments could be applied with the other conserved variables as

well.

Fig. 5 One-dimensional Euler equations: density, velocity and pressure for the Lax and Sod problems



Abgrall et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:1 Page 13 of 16

• Alternatively, we reconstruct each conserved variable separately

ρn ≈

r
∑

j=1

αn
j ρ

n(μj), m
n ≈

r
∑

j=1

αn
j m

n(μj), E
n ≈

r
∑

j=1

αn
j E

n(μj). (14)

where the minimization procedures are done independently on each conserved vari-

able.

In order to test these approaches, the PDE is discretized by finite volumes using a dis-

cretization resulting inNp = 3000 dofs. The parameter rangeD = {0.0, 0.2, 0.4, 0.5, 0.8, 1}

is considered together with a target μ⋆ = 0.6. The results using the first strategy, see eq.

(13), are displayed in Fig. 6 and those using the second strategy, see eq. (14), reported in

Fig. 7.

From both figures, we can see that the overall structure of the solutions is correct.

Nevertheless, there are differences that can be highlighted. From Fig. 6, we can observe

that the density predictions, besides an undershoot at the shock, are well reproduced.

However, we cannot recover correct values of the initial velocity (see left boundary),

because there is no reason to believe that the coefficient α, evaluated from the density

only, will also be correct for the momentum. A careful observation of the pressure plot

also reveals the same behavior which is not satisfactory. For the same reason, if any other

single variable is used for a global approximation of each conservative variables, there no

reason why better qualitative results could be obtained.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Exact
L1_LP

(a) (b)

(c)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

Exact
L1_LP

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2 Exact
L1_LP

Density ρ Velocity u

Pressure p

Fig. 6 One-dimensional Euler equations: predicted solutions with strategy (13) based on a single expansion
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Density ρ Velocity u

Pressure p

Fig. 7 One-dimensional Euler equations: predicted solutions with strategy (14) based on multiple

expansions

This problem does not occur with the second strategy for the reconstruction (14): the

correct initial values are recovered.Wehave some slight problemson the velocity, between

the contact and the shock.

In order to obtain these results we have been faced to the following issue. Take the

momentum, for example. For at least half of the mesh points, its value is 0, and for half

of the points, its value is set to a constant. Hence, the matrix A used in the minimization

procedure and built on the momentum dictionary has rank 2 only. The same is true for

the other variables, and we are looking here for r coefficients. Several approaches can be

followed to address this issue. The first one relies on Gram-Schmidt orthogonalization of

the solutions prior to their use as a basis for the solution. The second approach, followed

here, consists into perturbing infinitesimally and randomly the matrices involved in the

procedure, so Aij is replaced by Aij + εij . The distribution of εij is uniform. This has the

effect of giving the maximum possible rank to the perturbed matrix. We have expressed

that ǫij should depend on the variable, we have chosen

εij = ǫijLref

where Lref is the difference between the minimum and the maximum, over the dictionary,

of the considered variable. Choosing the same εij for all variables, this has the effect of

increasing the amplitude of the oscillations after then shock.

All this being said, the solution using three distinct coefficients obtained independently

is of significantly much better quality than the one using only one expansion.
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Fig. 8 Steady Nozzle flow: predicted solutions at target parameter μ = 1.5

Model reduction of steady problems

Nozzle flow

To illustrate the ability of the reduced model, we consider the nozzle flow numerical

experiment. The PDF is

∂F

∂x
= S(U )

where

U = (ρ, ρu, E)T , F (U ) =
(

Aρu, A
(

ρu2 + p
)

, Au(E + p)
)T

, S(U ) =

(

0, p
∂A

∂x
, 0

)T

and A is the area of the nozzle flow. Depending on the boundary conditions, we can have

a fully smooth flow or a flow with steady discontinuity. We illustrate the method on a

case where a discontinuity exists (see Fig. 8). All the other variables behave in the same

manner. The experiment has been conducted for the density case with the choice of the

target parameter μ = 1.5.

Conclusions

A novel model reduction that relies on a dictionary approach is developed and tested on

several steady andunsteady hyperbolic problems.All of the solutions of the problem tested

are parametrized and have regions of their spatial domain with discontinuities, leading to

solutions with very distinct behaviors, such as different wave speeds and shock locations,

making them challenging to reduce using classical projection-based model reduction

techniques. To address this challenge, the proposed approach is based on a dictionary of

solutions is coupled with a functional minimization. The analysis and numerical exper-

iments conducted in this work show that the proposed approach is robust (at least for

one-dimensional problems) and performs the best when the functional is of L1-norm-

type. As an extension to this work, other related minimization techniques which are less

CPU intensive will be considered.

Current work includes a multidimensional fluid case, an error estimate, the storage of

the dictionary and an application of the hyper-reduction to the dictionary framework.
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