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Abstract

We study the effect of biological confounders on the model selection problem between
Kingman coalescents with population growth, and Ξ-coalescents involving simultaneous mul-
tiple mergers. We use a low dimensional, computationally tractable summary statistic,
dubbed the singleton-tail statistic, to carry out approximate likelihood ratio tests between
these model classes. The singleton-tail statistic has been shown to distinguish between
them with high power in the simple setting of neutrally evolving, panmictic populations
without recombination. We extend this work by showing that cryptic recombination and
selection do not diminish the power of the test, but that misspecifying population structure
does. Furthermore, we demonstrate that the singleton-tail statistic can also solve the more
challenging model selection problem between multiple mergers due to selective sweeps, and
multiple mergers due to high fecundity with moderate power of up to 30%.

1 Introduction

The Kingman coalescent [Kingman, 1982a,b,c, Hudson, 1983a,b, Tajima, 1983] models ancestral
relations of samples from large populations as random, binary trees, and is an important tool for
predicting genetic diversity. A central assumption of the Kingman coalescent is low variance of
family sizes, so that large populations always consist of many relatively small families. Violations
of this assumption call for models with infinite variance family sizes, and lead to so called Λ-
coalescents, which allow more than two lineages to merge to a common ancestor simultaneously
[Donnelly and Kurtz, 1999a, Pitman, 1999, Sagitov, 1999].

There is growing evidence that Λ-coalescents are an appropriate model for organisms with high
fecundity coupled with a skewed offspring distribution [Beckenbach, 1994, Árnason, 2004, Eldon
and Wakeley, 2006, Sargsyan and Wakeley, 2008, Hedgecock and Pudovkin, 2011, Birkner et al.,
2011, Steinrücken et al., 2013, Tellier and Lemaire, 2014]. Consequently, development of sta-
tistical techniques for distinguishing the Kingman coalescent from Λ-coalescents has also been
an active area of research; see [Eldon et al., 2015, Koskela, 2018], and references therein. In
particular, attention has focused on distinguishing Λ-coalescents from Kingman coalescents with
population growth, because both classes of models predict an excess of singletons (mutations
only carried by one individual in a sample of DNA sequences) relative to the standard Kingman
coalescent under the infinitely many sites model of mutation [Watterson, 1975].

Koskela [2018] introduced a simple, two-dimensional summary statistic, referred to here as the
singleton-tail statistic, which distinguishes between these model classes with high power even
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from a data set consisting of 500 samples from bi-parental, diploid organisms sequenced at
around 10 unlinked chromosomes. The correct model could be selected with high power without
knowing the population-rescaled mutation rate, provided it is was not very low (see also [Eldon
et al., 2015, Supporting Information 12]). In this paper we investigate the impact of other
confounders on the prospect of discriminating between these models based on the singleton-tail
statistic, again in the bi-parental, diploid setting. In particular, we will focus on each of

1. weak natural selection modelled by the Ancestral Selection Graph [Krone and Neuhauser,
1997, Neuhauser and Krone, 1997, Donnelly and Kurtz, 1999b, Baake et al., 2016],

2. crossover recombination within chromosomes modelled by the Ancestral Recombination
Graph [Hudson, 1983a, Griffiths and Marjoram, 1997, Donnelly and Kurtz, 1999b, Birkner
et al., 2013],

3. population structure modelled by the structured coalescent [Herbots, 1997, Limic and
Sturm, 2006, Eldon, 2009].

We will demonstrate that the presence or absence of the first two has minimal effect on the
performance of the hypothesis test developed in [Koskela, 2018], while population structure is a
significant counfounder that must be correctly incorporated into the model.

There are four parental copies of each chromosome involved in each merger in the diploid, bi-
parental setting, allowing for up to four simultaneous mergers. Hence the models considered
in this paper are actually Ξ-coalescents [Schweinsberg, 2000, Möhle and Sagitov, 2001] which
allow simultaneous multiple mergers, despite the fact that the population will be assumed to
reproduce in a fashion consistent with the more restrictive Λ-coalescent permitting only one
multiple merger at a time.

We also use the singleton-tail statistic to distinguish two classes of Λ-coalescents: those aris-
ing from high fecundity reproduction, and those arising from selective sweeps [Durrett and
Schweinsberg, 2005]. This problem is more challenging than a null hypothesis consisting of
Kingman coalescents with population growth, because the marginal coalescent process at each
chromosome can be identical under the two hypotheses. However, high fecundity reproduc-
tion results in positively correlated coalescence times between unlinked chromosomes, whereas
unlinked chromosomes are independent under the selective sweep model. The positive correla-
tion results in increased sampling variance of the singleton-tail statistic, which yields tests with
moderate statistical power of up to 30%.

The rest of the paper is organised as follows. In Section 2 we recall the singleton-tail statistic of
[Koskela, 2018] as well as the associated hypothesis test for model selection. Section 3 presents
a unified, diploid coalescent model incorporating high fecundity reproduction and population
growth, as well as the three confounders of weak selection, crossover recombination, and discrete
spatial structure. Models with only population growth or high fecundity reproduction, as well
as any desired subset of confounders, can be recovered as special cases. Section 4 provides
simulation studies on the effect of each of the three confounders on the sampling distribution of
the singleton-tail statistic, as well as the associated hypothesis test. In Section 5 we introduce
a different model in which rapid selective sweeps result in multiple mergers acting locally on
the genome, and investigate whether the singleton-tail statistic can distinguish it from the Ξ-
coalescent introduced in Section 3. Section 6 concludes with a discussion.

2 The singleton-tail statistic

Suppose a sample of n ∈ N DNA sequences from a single chromosome is available, and that

derived mutations can be distinguished from ancestral states. Let [n] := {1, . . . , n}, and let ξ
(n)
i
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be the number of sites at which a mutant allele appears i ∈ [n− 1] times. Then

ξ(n) :=
(
ξ

(n)
1 , . . . , ξ

(n)
n−1

)
is the unfolded site-frequency spectrum (SFS). If mutant and ancestral types cannot be distin-

guished, the folded spectrum η(n) := (η
(n)
1 , . . . , η

(n)
bn/2c) [Fu, 1995] is used instead, where

η
(n)
i :=

ξ
(n)
i + ξ

(n)
n−i

1 + δi,n−i
, 1 ≤ i ≤ bn/2c,

and δi,j = 1 if i = j, and is zero otherwise. Let ζ(n) := (ζ
(n)
1 , . . . , ζ

(n)
n−1) be the normalised

unfolded SFS, whose entries are given by ζ
(n)
i := ξ

(n)
i /|ξ(n)|, where |ξ(n)| := ξ

(n)
1 + · · · + ξ

(n)
n−1

is the total number of segregating sites, and with the convention that ζ(n) = 0 if there are no
segregating sites.

Now, for any k ∈ [n− 1] define the lumped tail of the SFS as

ζ
(n)
k :=

n−1∑
j=k

ζ
(n)
j ,

and consider the summary statistic (ζ
(n)
1 , ζ

(n)
k ) for some fixed k. Data from multiple chromosomes

is incorporated by averaging: if L unlinked chromosomes are available, then the singleton-tail
statistic is

(ζ
(n)
1,L, ζ

(n)
k,L) :=

1

L

L∑
j=1

(ζ
(n)
1 (j), ζ

(n)
k (j)),

where (ζ
(n)
1 (j), ζ

(n)
k (j)) denotes the singleton class and lumped tail computed from the jth chro-

mosome.

For two classes of models Θ0 and Θ1, the likelihood ratio test statistic is

supΠ∈Θ1
PΠ(ζ

(n)
1,L, ζ

(n)
k,L)

supΠ∈Θ0
PΠ(ζ

(n)
1,L, ζ

(n)
k,L)

,

where PΠ denotes the sampling distribution of the singleton-tail statistic under coalescent Π.
A corresponding hypothesis test of size ω ∈ (0, 1) given an observed value of the singleton-tail
statistic is

Φ(ζ
(n)
1,L, ζ

(n)
k,L) =


0 if

supΠ∈Θ1
PΠ(ζ

(n)
1,L,ζ

(n)
k,L)

supΠ∈Θ0
PΠ(ζ

(n)
1,L,ζ

(n)
k,L)
≤ qω

1 if
supΠ∈Θ1

PΠ(ζ
(n)
1,L,ζ

(n)
k,L)

supΠ∈Θ0
PΠ(ζ

(n)
1,L,ζ

(n)
k,L)

> qω

, (1)

where Φ(ζ
(n)
1,L, ζ

(n)
k,L) = 1 corresponds to rejecting the null hypothesis Θ0, and qω is the quantile

qω := inf

q ≥ 0 : sup
Π∈Θ0

PΠ

supΠ∈Θ1
PΠ(ζ

(n)
1,L, ζ

(n)
k,L)

supΠ∈Θ0
PΠ(ζ

(n)
1,L, ζ

(n)
k,L)
≥ q

 ≤ ω
 .

The sampling distribution PΠ and the quantile qω are both intractable, but can easily be ap-
proximated by simulation due to the low dimensionality of the singleton-tail statistic to obtain
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an implementable hypothesis test with approximate size ω Koskela [2018]. In particular, we
consider the hypotheses

Θ0 := {Kingman coalescent with exponential growth at population-rescaled rate

γ ∈ {0, 0.1, 0.2, . . . , 0.9, 1, 1.25, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, . . . , 19, 20,

25, 30, 35, 40, 50, 60, . . . , 990, 1000}},
Θ1 := {Beta(2− α, α)-Ξ-coalescents with α ∈ {1, 1.025, . . . , 1.975, 2}}, (2)

In brief, data is simulated under both Θ0 and Θ1, and kernel density estimates (KDEs) P̂Π of
the intractable sampling distributions PΠ are obtained for Π ∈ Θ0 and Π ∈ Θ1. These KDEs,
along with more simulated data, can be used to accurately approximate the intractable quantile
qω, yielding an implementable hypothesis test. Our KDEs were obtained using the kde function
in the ks package (version 1.10.4) in R under default settings. In particular, this method uses
truncated Gaussian kernels, and determines bandwidths using the SAMSE estimator [Duong
and Hazelton, 2003, equation (6)].

Remark 1. The null hypothesis in Koskela [2018] was broader and included algebraic population
growth, in addition to exponential. However, results in Koskela [2018] showed that the two
growth models resulted in very similar sampling distributions for the singleton-tail statistic, and
hence we focus on the exponential growth model.

Simulating data in order to approximate the test (1) requires specification of the cutoff k for
the lumped tail of the singleton-tail statistic, as well as of the mutation rate θ. Sensitivity
analyses conducted in Koskela [2018] showed that the test was highly insensitive to the choice
of k provided k ' 6, as well as to misspecification of the mutation rate by up to a factor of ten.
We fix k = 15 throughout, and use the known, true mutation rate in our simulation studies. For
biological data sets with an unknown mutation rate, the analysis in Koskela [2018] demonstrated
that it is sufficient to use the generalised Watterson estimator,

θ̂ = |ξ(n)|/EΠ[T (n)],

where EΠ[T (n)] is the expected branch length from n leaves under coalescent Π.

3 An umbrella model

In this section we describe a general class of models incorporating diploidy, bi-parental, high
fecundity reproduction, population growth, weak natural selection, population structure in a
discrete geography, and crossover recombination. This generalises both the Ancestral Influence
Graph Donnelly and Kurtz [1999b], as well as time-inhomogeneous multiple merger coalescents
Möhle [2002], Matuszewski et al. [2018]. Models with any subset of the above forces can be
recovered as special cases.

Consider a geography of D demes, with the population size on deme i ∈ [D] at time t given by

2M
(i)
N (t), where N is a scaling parameter. We also define the total population size

2MN (t) :=
D∑
i=1

2M
(i)
N (t),

and the shorthand MN := MN (0).

Each individual carries a diploid genome consisting of L ∈ N pairs of unlinked chromosomes.
Each chromosome carries one of K ∈ N alleles, identified with [K], which are acted upon by
natural selection. In addition, each chromosome is identified with the unit interval [0, 1], on
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which neutral mutations and crossover recombination take place. For definiteness, we assume
that the selective allele is fully linked to the left end of the neutral interval.

The populations evolve in discrete time with non-overlapping generations. At each time t,
the individuals in each deme form pairs uniformly at random. The pairs are ordered in a
fixed but arbitrary way, and pair j on deme i has a random number of offspring denoted by

ν
(i)
j (t) + β

(i)
j (t). The two summands will be associated with neutral reproduction and natural

selection, respectively. As such, the distribution of β
(i)
j (t) will depend on the alleles of the

two parents, though this dependence is suppressed for legibility. Likewise, we will frequently

suppress the time-dependence in the family sizes, and write ν
(i)
j and β

(i)
j . For future convenience,

we define β̃
(i)
j (t) as the random number of selective offspring that pair j on deme i at time t

would have had if they carried the fittest possible combination of alleles.

The neutral offspring vectors (ν
(i)
1 , . . . , ν

(i)

M
(i)
N (t)

) are assumed to be exchangeable, and indepen-

dent across demes as well as time steps. The selective offspring vectors (β
(i)
1 , . . . , β

(i)

M
(i)
N (t)

) are

independent across demes and time steps. In addition, both vectors on each deme are assumed
to satisfy the almost sure constraint

M
(i)
N (t)∑
j=1

ν
(i)
j + β

(i)
j ≡ 2M

(i)
N (t+ 1).

Each offspring inherits one copy of each of its L chromosome pairs from each of its parents.
Each inherited chromosome is a mosaic of the two chromosomes carried by the parent, with the
number of recombination breakpoints having the Poisson distribution with parameter rN , and
each break point being uniformly distributed along the chromosome. All of the Poisson and
uniform random variables are independent of each other, as well as of the wider reproduction
mechanism. Each locus inherits its allele from the parental chromosome assigned to its leftmost
segment, with selective mutations happening independently at random with probability µN .
Mutant types are drawn from a stochastic matrix M = (Mij)

K
i,j=1, where Mij is the probability

of a mutant locus having allele j given its parent had allele i.

After the reproduction step is complete, a deterministic fraction m
(N)
ij of children chosen uni-

formly at random from deme i migrate to deme j, for each pair of demes. These migration
fractions are assumed to satisfy

M
(i)
N (t)

D∑
j=1

m
(N)
ij ≡

D∑
j=1

M
(j)
N (t)m

(N)
ji , (3)

for each t ≥ 0, so that the population sizes of demes remain unchanged by migration. For

notational brevity we set m
(N)
ii ≡ 0.

We now reverse the direction of time, so that time t ∈ N corresponds to t generations in the
past in the model specified above. For n ∈ N and k ∈ N let (n)k := n(n − 1) . . . (n − k + 1)
denote the falling factorial, and define

c
(i)
N (t) :=

M
(i)
N (t)

4(2M
(i)
N (t− 1))2

E[(ν
(i)
1 )2],

cN :=
1

4(2MN )2

D∑
i=1

M
(i)
N (1)E[(ν

(i)
1 )2], (4)

as the probability that two chromosomes sampled uniformly at random from deme i ∈ [D]
(resp. the whole population) at time t ∈ N (resp. t = 0) were born to a common family in
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the previous generation, made the same choice from two available parents, and also the same

choice of chromosome within that parent. In other words, c
(i)
N (t) is the probability of two time t

chromosomes on island i merging to a common ancestor in one generation, while cN is the same
probability for two chromosomes sampled uniformly from the whole population at time t = 0.

We make the following assumptions for each i, j ∈ [D], and each t ∈ (0,∞), as N → ∞, where
each Λi is a probability measure on [0, 1], and each λi(t) is a positive function bounded away
from 0, with λ1(0) + . . . + λD(0) = 1 and inft≥0,i 6=j{λi(t)/λj(t)} > 0, and γ ∈ [0, 1) and C > 0
are constant independent of N , i, and t:

cN → 0, (5)

inf
i∈[D],t≥0

{M (i)
N (t)} → ∞, (6)

E[(ν
(i)
1 (t))2] ∼ CM (i)

N (t)γ , (7)

M
(i)
N (bt/cNc)
MN

→ λi(t), (8)

(M
(i)
N (bt/cNc))2E[(ν

(i)
1 + β̃

(i)
1 )2(ν

(i)
2 + β̃

(i)
2 )2]

(2M
(i)
N (bt/cNc − 1))4cN

→ 0, (9)

M
(i)
N (bt/cNc − 1)

c
(i)
N (bt/cNc)

P(ν
(i)
1 > 2M

(i)
N (bt/cNc − 1)x)→

∫ 1

x

Λi(dy)

y2
, (10)

µN/cN → θ ∈ [0,∞), (11)

rN/cN → ρ ∈ [0,∞), (12)

m
(N)
ij /cN → mij ∈ [0,∞), (13)

E[β̃
(i)
1 ]/cN → σi ∈ [0,∞), (14)

1

cN
sup
k≥1

E

β̃(i)
1

ν(i)
1 +

M
(i)
N (bt/cN c)∑
j=1

β̃
(i)
j


k
→ 0. (15)

Remark 2. It is well known that if Λi = δ0, the Dirac delta-measure at 0, in (10), then the
assumption is equivalent to

E[(ν
(i)
1 )3]

4(2M
(i)
N (bt/cNc − 1))2c

(i)
N (bt/cNc)

∼

(∑D
j=1 λj(0)γ+1

)
E[(ν

(i)
1 )3]

16M2
Nλi(t)

γ+1cN
→ 0

for each t ∈ (0,∞) and i ∈ [D], where the second representation follows from (8) and

c
(i)
N (bt/cNc) ∼

λi(t)
γ−1∑D

j=1 λj(0)γ+1
cN , (16)

itself a consequence of (7) and (8). See [Möhle and Sagitov, 2003, Section 5] for details. This
assumption disallows multiple mergers in the limiting ancestry, which will thus only consist
of isolated binary mergers. Any other choice of Λi will yield an ancestry with up to four
simultaneous multiple mergers at each chromosome, corresponding to the four possible parental
chromosomes involved in the forwards-in-time reproduction event, and thus produce ancestries
described by a Ξ-coalescent. See [Möhle and Sagitov, 2003, Section 6] for details of Ξ-coalescents
arising out of diploid reproduction in this way.

Remark 3. Before showing that (5) – (15) lead to the desired ancestral process, some intuition
behind the role of each assumption is in order. (5) yields a limit process evolving in continuous
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time. Assumptions (6) – (8) ensure that the population sizes and time scales on demes are
comparable. The conditions on the relative population sizes λi(t) are sufficient to ensure finite
waiting times between merger and migration events, and could be relaxed in specific examples.
For exponential population growth, they hold as long as the growth rates on all demes coincide.
For models in the domain of attraction of Kingman’s coalescent, (7) will typically hold with
γ = 0, while e.g. the Beta(2− α, α)-coalescents of Schweinsberg [2003] have γ = 2− α (c.f. (4)
and [Schweinsberg, 2003, Lemma 13]). The γ ∈ [0, 1) condition ensures that (5) and (7) can
hold simultaneously. Conditions (9) and (10) are well known to be necessary and sufficient for a
Λ-coalescent limit, resulting in no more than four simultaneous multiple mergers in the diploid,
biparental setting. (11) – (14) ensure that mutation, recombination, migration, and selection all
take place on the coalescent time scale, while (15) disallows multiple selective branching events,
as well as simultaneous selective and neutral merger events.

The aim is to show that the ancestry of a sample from the above particle system converges to
a structured, time-inhomogeneous Ξ-Ancestral Influence Graph [Donnelly and Kurtz, 1999b] as
N → ∞, when time is measured in units of cN . To establish this fact, we identify the limiting
rates of coalescence, mutation, recombination, migration and branching due to selection, and
show that these are the only dynamics which affect the ancestry of the process. Specifically,
that r ≤ 4 simultaneous mergers of sizes b1, . . . , br, with 2 ≤ bj ≤ ni at time t happen on deme
i at rate

cNλi(t)
γ−1∑D

j=1 λj(0)γ+1

(ni−b)∧(4−r)∑
l=0

(
ni − b
l

)
(4)r+l
4b+l

∫ 1

0
xb+l−2(1− x)ni−b−lΛi(dx),

events in which one lineage branches into 4L+1 lineages occur at rate niσi/2, branching into two
lineages due to crossover recombination happens at rate niρ, mutations occur ate rate niθ, and

that migration to deme j 6= i happens at rate ni
λj(t)
λi(t)

mji, where ni is the number of lineages on
deme i. Between migration events, the ancestries of subpopulations on different demes evolve
independently. Convergence will then follow from a straightforward analogue of [Möhle and
Sagitov, 2003, Theorem 4.2]. Throughout, we assume that our sample consists of ni lineages
on deme i, and that each lineage carries ancestral material on only one chromosome. This
assumption is justified later by verifying that a separation of timescales phenomenon [Möhle,
1998] takes place, establishing that distinct chromosomes disperse to separate active lineages
instantaneously on the coalescent time scale.

Multiple mergers via a single large family

By the Kingman formula for exchangeable, diploid offspring distributions [Möhle and Sagitov,
2003, equation (9)], the probability of b ≤ ni chromosomes merging by belonging to the same
family in the previous time step, and picking the same parental chromosome out of the four
possibilities, is

41−b (M
(i)
N (bt/cNc))ni−b+1

(2M
(i)
N (bt/cNc − 1))ni

E[(ν
(i)
1 )bν

(i)
2 . . . ν

(i)
ni−b+1].

Analogously to [Möhle and Sagitov, 2003, equations (28) and (29)], conditions (9) and (10)
imply that

M
(i)
N (bt/cNc)ni−b+1

2ni−b+1M
(i)
N (bt/cNc − 1)ni

E[(ν
(i)
1 )bν

(i)
2 . . . ν

(i)
ni−b+1] = c

(i)
N (t)42−b

∫ 1

0
xb−2(1− x)ni−bΛi(dx)

=
cNλi(t)

γ−142−b∑D
j=1 λj(0)γ+1

∫ 1

0
xb−2(1− x)ni−bΛi(dx),
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where the last step follows from (16). The rate of a particular combination of r ≤ 4 simultaneous
mergers with sizes bj ≥ 2 for j ∈ [r] is obtained by summing over all ways in which such a merger
can happen, resulting in the overall rate

cNλi(t)
γ−1∑D

j=1 λj(0)γ+1

(ni−b)∧(4−r)∑
l=0

(
ni − b
l

)
(4)r+l
4b+l

∫ 1

0
xb+l−2(1− x)ni−b−lΛi(dx) (17)

where b1 + . . . br = b ≤ ni [Birkner et al., 2013, equation (27)].

Multiple mergers via two or more large families

By (9), the probability of mergers via two or more large families, i.e. families with at least two
offspring in the sample, is bounded from above by

1

(2M
(i)
N (bt/cNc − 1))ni

M
(i)
N (bt/cN c)∑
j1 6=j2=1

E

(ν
(i)
j1

+ β̃
(i)
j1

)2(ν
(i)
j2

+ β̃
(i)
j2

)2

M
(i)
N (bt/cN c)∑
k=1

ν
(i)
k + β

(i)
k


ni−4

≤
(M

(i)
N (bt/cNc))2

(2M
(i)
N (bt/cNc − 1))4

E[(ν
(i)
1 + β̃

(i)
1 )2(ν

(i)
j + β̃

(i)
2 )2] = o(cN ).

A single migration event

The event that all ni lineages belong to different families in the previous generation, and that
one individual migrates from deme i to j in reverse time, has asymptotic probability(

1−
D∑
k=1

m
(N)
ik

)ni−1

ni
M

(j)
N (bt/cNc − 1)m

(N)
ji

M
(i)
N (bt/cNc − 1)

∼ cNni
λj(t)

λi(t)
mji,

by (3), (8), and (13).

A similar calculation demonstrates that the analogous probability for more than one simul-
taneous migration event is o(cN ), while combining the above with the first two calculations
demonstrates that a single migration occurring simultaneously with one or more large families
is also an o(cN ) event.

A single mutation event

An analogous calculation to the migration case using (11) shows that the probability of one site
mutating in the previous time step with no other accompanying events converges to cNniθ.

A single recombination event

Likewise, an analogous calculation to the migration case using (12) shows that the probability
of one chromosome recombining in the previous time step with no other accompanying events
converges to cNniρ.

A single branching event due to a selective birth

The probability of a lineage belonging to a selective birth by a family in the previous generation
depends on the fitness of its parents, which is unknown. An elegant solution is to add selective
events at the greatest possible rate, add the 4L chromosomes belonging to the two potential
parents into the sample along with retaining the child lineage whenever a selection event happens,
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and track this extended sample to its ultimate ancestor : the most recent common ancestor of
the original sample, as well as all potential selective parents encountered along the way [Krone
and Neuhauser, 1997, Neuhauser and Krone, 1997]. The type of the ultimate ancestor can
then be sampled from the stationary distribution of M (or any other desired initial law), with
mutations occurring along lineages and alleles propagated to children as before. Now the alleles,
and thus the fitness of the selective parents are known at each potential selective event, and
the true ancestry of each child lineage can be assigned to either a randomly chosen parent with

probability E[β
(i)
j ]/E[β̃

(i)
j ], or to remain with the ongoing child lineage with the complementary

probability.

From the point of view of the ancestral process, such selective branching events in which one
lineage on deme i ∈ [D] branches into 4L+ 1 lineages (corresponding to the single-chromosome
child lineage, as well as the 4L parental chromosomes which immediately disperse into separate
lineages due to separation of time scales) happens with asymptotic probability

1

(2M
(i)
N (bt/cNc − 1))ni

M
(i)
N (bt/cN c)∑

j1 6=... 6=jni=1
all distinct

E[β̃
(i)
j1
ν

(i)
j2
. . . ν

(i)
jni

]

=
1

(2M
(i)
N (bt/cNc − 1))ni

M
(i)
N (bt/cN c)∑
j=1

E

β̃(i)
j

M
(i)
N (bt/cN c)∑
k 6=j

ν
(i)
k


ni−1

=
M

(i)
N (bt/cNc)

(2M
(i)
N (bt/cNc − 1))ni

E

β̃(i)
1

2M
(i)
N (bt/cNc − 1)− ν(i)

1 −
M

(i)
N (bt/cN c)∑
k=1

β
(i)
k


ni−1 .

A binomial expansion followed by (14) and (15) yield

1

(2M
(i)
N (bt/cNc − 1))ni

M
(i)
N (bt/cN c)∑

j1 6=... 6=jni=1
all distinct

E[β̃
(i)
j1
ν

(i)
j2
. . . ν

(i)
jni

]

=
M

(i)
N (bt/cNc)

(2M
(i)
N (bt/cNc − 1))ni

ni−1∑
l=0

(
ni − 1

l

)
[2M

(i)
N (bt/cNc − 1)]ni−1−l(−1)l

× E

β̃(i)
1

ν(i)
1 +

M
(i)
N (bt/cN c)/2∑

k=1

β
(i)
k


l

∼
M

(i)
N (bt/cNc)

2M
(i)
N (bt/cNc − 1)

E[β̃
(i)
1 ] + o(cN ) ∼ cN

σi
2

+ o(cN ),

as required.

Multiple simultaneous branching events

Multiple simultaneous selective events can take place in one of three ways: two (or more)
simultaneous selective births in the same family, two (or more) simultaneous selective births in
a combination of families, or a combination of selective and neutral births in the same family.
The probability of all three kinds of events is bounded above by
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M
(i)
N (bt/cNc)

(2M
(i)
N (bt/cNc − 1))ni

E

β̃(i)
1

2M
(i)
N (bt/cNc)ni−1 −

M
(i)
N (bt/cN c)∑

i2 6=... 6=ia 6=1
all distinct

ν
(i)
i2
. . . ν

(i)
ia




≤
M

(i)
N (bt/cNc)

(2M
(i)
N (bt/cNc − 1))ni

E

[
β̃

(i)
1

{
2M

(i)
N (bt/cNc − 1)ni−1

−

2M
(i)
N (bt/cNc − 1)−

M
(i)
N (bt/cN c)∑
j=1

β̃
(i)
j


ni−1}]

= o(cN ),

by a binomial expansion and (15).

Dispersal of chromosomes into distinct, single-marked individuals

Finally, we abandon the assumption that all lineages carry ancestral material on only one chro-
mosome in order to verify the separation of time scales phenomenon. The probability that n/2
individuals with ancestral material both chromosomes (or so-called double-marked individuals)
in a pair disperse into n parents, each of whom carries ancestral material on only one copy of
the chromosome (so-called single-marked individuals), in the previous generation is O(1). To
see why, note that every individual is replaced at every time step, and individuals always inherit
one chromosome from each parent. Thus, complete dispersal of n/2 double-marked individuals
happens in one generation provided that all n/2 individuals originate from different families,
which has probability at least

D∏
i=1

(M
(i)
N (t))ni

(2M
(i)
N (t− 1))ni

E[ν
(i)
1 . . . ν(i)

ni
] = O(1).

Likewise, the probability of two active chromosomes splitting apart into distinct ancestors is
1/2 = O(1) because assignments of parents to chromosomes is done independently and uniformly
at random. Hence, the probability of a lineage with 2L ancestral chromosomes dispersing into
2L lineages with a single ancestral chromosome each in at most 2L−1 generations happens with
probability at least (

1

2

)2L 2L∏
t=1

D∏
i=1

(M
(i)
N (t))ni

(2M
(i)
N (t− 1))ni

E[ν
(i)
1 . . . ν(i)

ni
] = O(1).

Probabilities of merger, recombination, selection or migration events were all established above
to be O(cN ), and thus the probability of complete dispersal before any merger, recombination,
selection or migration events is of order

1

1 +AcN
→ 1,

where A > 0 is a constant independent of both n and N . Thus an analogue of the separa-
tion of timescales result in [Möhle, 1998] holds, which justifies considering only single-marked
configurations in the previous computations of transition probabilities.

4 Robustness results

The following three subsections quantify the respective effect of selection, recombination, and
population structure on the sampling distribution of the singleton-tail statistic. Each subsection
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specialises the model of Section 3 to consist of only the relevant force by a particular choice of
parameters. We assume the model of Schweinsberg [2003] for the evolution of the population, and
thus consider a one-dimensional family of coalescents specified by Λi(dx) = Beta(2 − α, α)(dx)
in (10) for α ∈ (1, 2), with corresponding time scaling cN ∼ N1−α and γ = 2− α in (7). Under
the alternative hypothesis α < 2, the population sizes on demes will be constant, i.e. λi(t) = di
for relative deme sizes d1 + . . .+dD = 1. Under the null hypothesis α = 2, populations on demes

will undergo exponential growth forwards in time, corresponding to M
(i)
N (t) := bNdi(1+γN )−tc,

resulting in λi(t) = die
−γt for the population-rescaled growth rate γ = limN→∞ γN/cN .

It will also be necessary to distinguish between two kinds of data sets: simulated data used
to fit KDEs to approximate likelihoods, and compute the quantile qω in (1), as well as ob-
served data, which will also be simulated in this instance, but which will typically be a bi-
ological data set. We will refer to the former as calibration data, and the latter as pseudo-
observed data. Pseudo-observed data is reserved solely for plugging into KDE approximations
of likelihoods (computed from calibration data) to obtain likelihood ratio test statistics. A
C++ implementation of the algorithm used to generate the data in this section is available at
https://github.com/JereKoskela/Beta-Xi-Sim.

We set the number of simulation replicates per model at 1000 (note that Θ0 contains 133 models,
and Θ1 a further 41), the sample size at n = 500, the lumped tail cutoff at k = 15, and assume
the true mutation rate is known. The number of unlinked chromosomes per sample is set to 23
to match the number of linkage groups in Atlantic cod [Tørresen et al., 2017, Supplementary
Table 3] — an organism for which multiple merger have frequently been suggested as an impor-
tant evolutionary mechanism [Steinrücken et al., 2013, Tellier and Lemaire, 2014]. Results are
averaged across chromosomes as outlined in Section 2. The lengths of the 23 chromosomes have
also been set (by multiplying the total rate of mutation on each chromosome by the number
of sites it contains) to match those reported in [Tørresen et al., 2017, Supplementary Table 3].
The approximate size of hypothesis tests is set at ω = 0.01 throughout.

4.1 Weak selection

In this section we consider the model of Section 3 with a single deme (D = 1), and no recombina-
tion (ρ = 0). The resulting process is a Ξ-coalescent analogue of the Complex Selection Graph
(CSG) Fearnhead [2003]. We compute realisations of the singleton-tail statistic by assuming
that neutral, infinitely-many-sites mutations occur on each chromosome along the branches of
the realised non-neutral tree sampled from the Ξ-CSG, but that the selective types of individuals
are unobserved. This assumption is reasonable if the fitness of individuals cannot be observed,
or if mutations with a fitness effect are either much less frequent than neutral mutations, or
occur in unobserved regions.

Figure 1 shows the sampling distributions of the neutral and non-neutral models. The fitness
model assumes two alleles, a and A, with each chromosome pair contributing fitness σ > 0 if
either parent carries at least one A allele at that pair, and 0 otherwise. The selection rates are
necessarily low, because the cost of simulating the ASGs is known to increase exponentially in
σ [Fearnhead, 2001, Appendix A]. Efficiency gains resulting from perfect simulation techniques
[Fearnhead, 2001, 2003] cannot be employed because they rely on terminating the simulation
before reaching the MRCA, and thus the SFS cannot be resolved.

The results in Figure 1 show striking agreement between sampling distributions in the neutral
and selective cases. We also conducted the hypothesis test (1) using calibration data simulated
from a neutral model, and applied the resulting misspecified test to pseudo-observed data sim-
ulated from a model with weak selection. Figure 2 shows that the performance of the test was
excellent, with high power and size well below the formal threshold of ω = 0.01 for the majority
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Figure 1: 99th percentiles of KDEs fitted to 1000 realisations of the singleton-tail statistic for
each model in Θ0 and Θ1. Each sample consists of 23 chromosomes, and (Left) σ = 0, or (Right)
σ ∈ (0.0000016, 0.0008) per chromosome pair as α varies from 1 to 2.

of the parameter ranges.
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Figure 2: Empirical size (Left) and power (Right) of a Θ0 vs Θ1 test conducted using calibra-
tion data simulated under neutral models, but applied to pseudo-observed data simulated from
selective models. The simulation parameters are as in Figure 1.

To investigate the effect of a larger selection coefficient, we also simulated realisations of the
singleton-tail statistic under a single chromosome model. In this setting, each selective branching
event results in five lineages, as opposed to 4× 23 + 1 = 93 as in the 23 chromosome case. The
sampling variance under a single locus is too large for a powerful statistical test, but Figure 3
demonstrates that the sampling distributions with and without selection remain very similar.
Taken together, these simulations show that the distribution of realised relative branch lengths
under the CSG is similar to that under a neutral coalescent, at least for external branches, as
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well as for the oldest branches before the MRCA is reached. Hence, the singleton-tail statistic
cannot be used to detect weak selection, but can discriminate between population growth and
Ξ-coalescents without knowing whether weak selection is taking place.
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Figure 3: 99th percentiles of KDEs fitted to 1000 realisations of the singleton-tail statistic for
each model in Θ0 and Θ1. Each sample consists of one chromosome, and (Left) σ = 0, or (Right)
σ ∈ (0.0024, 1.2) as α varies from 1 to 2.

4.2 Recombination

In this section we consider the model of Section 3 with a single deme (D = 1), and no selec-
tion (σi ≡ 0). Realisations of the singleton-tail statistic are computed by assuming a neutral,
infinitely-many-sites mutation model along the branches of the realised Ξ-Ancestral Recombi-
nation Graph.

Figure 4 presents a comparison between models with and without recombination. As was the
case with weak selection (see Figure 1), the presence of recombination makes no discernible
difference to the sampling distribution of the singleton-tail statistic, although the distribution of
intermediate SFS entries was observed to be different (results not shown). Figure 5 demonstrates
that the size and power of statistical tests are unaffected when a misspecified model which
wrongly neglects recombination is used to generate calibration data, and the hypothesis test is
conducted on pseudo-observed data with recombination.

4.3 Population structure

In this section we consider the model of Section 3 with a no selection (σi ≡ 0), no recombination
(ρ = 0), and two different patterns of population structure.

Figure 6 shows sampling distributions corresponding to a four deme model with symmetric mi-
gration between all pairs of demes, as well as a two deme model with asymmetric migration.
The contours differ markedly from the panmictic results in Figures 1 and 4, and also from each
other. Figure 7 demonstrates that misspecifying spatial structure results in very poor perfor-
mance of the hypothesis test, with both the size and power curves showing complex behaviour
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n = 500; k = 15; L = 23
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Figure 4: 99th percentiles of KDEs fitted to 1000 realisations of the singleton-tail statistic for
each model in Θ0 and Θ1. (Left) ρ = 0. (Right) ρ ∈ (0.001, 0.5) as α varies from 1 to 2.
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Figure 5: Empirical size (Left) and power (Right) of a Θ0 vs Θ1 test conducted using calibration
data from models without recombination, but applied to pseudo-observed data from models with
recombination. The simulation parameters are as in Figure 4.

that depends on the patterns of overlap between the distribution of the misspecified calibration
data, and the pseudo-observed data.

5 Distinguishing high fecundity from selective sweeps

This section focuses on distinguishing multiple mergers due to selective sweeps from multiple
mergers due to high fecundity. The high fecundity model is the Ξ-coalescent introduced in
Section 3 with a single deme (D = 1), no recombination ρ = 0, no selection σi = 0, and a
constant population size λ1(t) = 1. For selective sweeps, we assume a population of constant
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n = 500; k = 15; L = 23
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Figure 6: 99th percentiles of KDEs fitted to 1000 realisations of the singleton-tail statistic for each
model in Θ0 and Θ1. (Left) Four demes with equal population sizes and symmetric migration
between all pairs of demes at reverse-time rate m̃ ∈ (0.01, 5) as α varies from 1 to 2. (Right)
Two demes with relative population sizes (0.75, 0.25), and reverse-time migration rates ranging
from (m̃12, m̃21) = (0.01, 0.03) when α = 1 to (m̃12, m̃21) = (5, 15) when α = 2.

size evolving in non-overlapping generations, in which mutations providing a selective advantage
x ∈ (0, 1) occur at points of a Poisson process with rate x−2 Beta(2 − α, α)(dx), and sweep to
fixation instantaneously on the coalescent time scale.

We also assume that recombination within chromosomes results in incomplete sweeps, so that
when viewed backwards in time each individual has a random chance to participate in the merger
resulting from each sweep. Recombination is specified implicitly by setting the probability of
a lineage participating in a sweep arising from a mutation with advantage x ∈ (0, 1) to x.
Genetic material that is unlinked to the beneficial mutation escapes the selective sweep, and
thus multiple mergers affect one chromosome at a time. Neutral mutations continue to accrue
along ancestral branches according to the infinite sites model with mutation rate θ > 0. When
the population is diploid and biparental, these dynamics result in an ancestral process in which
the marginal coalescent at each locus is the Ξ-coalescent with merger rates given by (17).

Remark 4. The model described above has not been derived as a scaling limit of a finite
population model of evolution. Instead, it has been chosen to make the task of distinguishing
between selective sweeps and high fecundity as difficult as possible. For the same reason, we also
scale the mutation rate as θ ∝ limN→∞N

α−1µN as in the model of Schweinsberg [2003]. For
biological motivation, note that this model closely resembles the Λ-coalescent of Durrett and
Schweinsberg [2005], which was derived as a scaling limit of finite population models undergoing
selective sweeps and recombination in much the same way as above. However, their convergence
result can only be used to obtain Λ-coalescents in which Λ has an atom at 0, and hence it cannot
be immediately used to obtain our model [Durrett and Schweinsberg, 2005, Example 2.5]. A
model akin to ours could be obtained as a similar scaling limit by letting selective sweeps occur
more frequently than the time scale of pairwise coalescence, thus causing the atom at 0 to vanish
in the large population limit [Gillespie, 2000, Durrett and Schweinsberg, 2005].

We fix our null hypothesis as the class of selective sweep models described above with the
parameter α ∈ (1, 2) discretised as in (2). The alternative hypothesis is the high fecundity
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Figure 7: (Top Row) Empirical size (Left) and power (Right) of a test of Θ0 vs Θ1 conducted
using calibration data from panmictic models, but applied to pseudo-observed data from four
deme models. (Bottom Row) Empirical size (Left) and power (Right) of a test of Θ0 vs Θ1

conducted using calibration data from four deme models, but applied to pseudo-observed data
from two deme models. The simulation parameters in both cases are as in Figure 6.

Ξ-coalescent described at the beginning of this section. The only difference between the two
model classes is whether coalescence times at unlinked chromosomes are independent (under the
selective sweep model), or positively correlated (under the high fecundity model). The marginal
coalescents at each chromosome coincide.

Figure 8 demonstrates that the singleton-tail statistic exhibits higher sampling variance under
the alternative hypothesis than under the null due to positive correlation of coalescence times
between unlinked chromosomes. While the sampling distributions under both hypotheses centre
on the same mean, increased variance means that the null hypothesis can be correctly rejected
with moderate power of around 30% for the majority of the parameter range. Reversing the
roles of the hypotheses caused the power to vanish, as the bulk of the sampling distribution
under the alternative (selective sweep) hypothesis is fully contained in that of the null (high
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Figure 8: (Top Left) 99th percentile of a kernel density estimator fitted to 1000 realisations of
the singleton-tail statistic under each model in Θ0 and Θ1. (Top Right) Empirical power and
(Bottom) empirical size of the likelihood ratio test (1).

fecundity) hypothesis (results not shown).

6 Discussion

We have derived a coalescent model of population growth and high fecundity involving multiple
chromosomes under the joint effect of weak selection, recombination, and spatial structure.
We studied the effect of these three confounders on the ability of the singleton-tail statistic
Koskela [2018] to distinguish between population growth models and Ξ-coalescent models of
high fecundity.

Crossover recombination and weak natural selection had no visible effect on the sampling dis-
tribution of the singleton-tail statistic. Therefore, the statistic retained its ability to distinguish
high fecundity from population growth with high power based on multi-locus data under these
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confounders. Moreover, model selection can be based on calibration data simulated from a neu-
tral model without recombination. This reduces the number of nuisance parameters, and yields
significant efficiency gains because selection and recombination are very expensive to simulate.
The computational speedup compensates for the relatively large sample size of 500, which ap-
pears to be necessary for a high-powered test, as samples of size 100 were shown in Koskela
[2018] to have noticeably lower power even without any of the confounders considered in this
article.

Population structure had a significant effect on the sampling distribution of the singleton-tail
statistic. Misspecifying population structure when simulating calibration data rendered the hy-
pothesis test inaccurate, with erratic false positives and false negative probabilities. It is well
known that spatial structure results in an excess of intermediate and high frequency polymor-
phisms under the Kingman coalescent [Wakeley and Alicar, 2001, De and Durrett, 2007]. Our
results confirm that similar phenomena also hold for Ξ-coalescents (Figure 6 shows a clear ex-
cess of high frequency polymorphisms and deficit of singletons), and that the exact amount of
excess is sensitive to the details of the population structure. This finding motivates research
into methods which can infer population structure without assuming a particular coalescent or
growth scenario.

Finally, we investigated the ability of the singleton-tail statistic to distinguish multiple mergers
due to selective sweeps from multiple mergers due to high fecundity. This is a challenging
problem because the marginal models at single chromosomes coincide under the two hypotheses.
However, ancestral trees at unlinked chromosomes are independent under selective sweeps, which
affect the genome locally, and positively correlated under high fecundity which affects all loci
simultaneously (c.f. [Koskela, 2018, Remark 1] for a formal justification). Positive correlation
increases the sampling variance of the multi-locus singleton-tail statistic, which enabled us to
distinguish a high fecundity alternative hypothesis from a selective sweep null hypothesis with
moderate power. Reversing the roles of the hypotheses caused the power of the test to vanish,
and thus model selection can only be successfully performed in one direction based on this
method.
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E Árnason. Mitochondrial cytochrome b variation in the high-fecundity Atlantic cod: trans-
Atlantic clines and shallow gene genealogy. Genetics, 166:1871–1885, 2004.

E Baake, U Lenz, and A Wakolbinger. The common ancestor type distribution of a Λ-Wright-
Fisher process with selection and mutation. Electron Commun Probab, 21(59):1–16, 2016.

A T Beckenbach. Mitochondrial haplotype frequencies in oysters: neutral alternatives to selec-
tion models. In B Golding, editor, Non-Neutral Evolution, pages 188–198. Chapman & Hall,
New York, 1994.

18



M Birkner, J Blath, and M Steinrücken. Importance sampling for Lambda-coalescents in the
infinitely many sites model. Theor Pop Biol, 79:155–173, 2011.

M Birkner, J Blath, and B Eldon. An ancestral recombination graph for diploid populations
with skewed offspring distribution. Genetics, 193:255–290, 2013.

A De and R Durrett. Stepping-stone spatial structure causes slow decay of linkage disequilibrium
and shifts the site frequency spectrum. Genetics, 176:969–981, 2007.

P Donnelly and T G Kurtz. Particle representations for measure-valued population models. Ann
Probab, 27:166–205, 1999a.

P Donnelly and T G Kurtz. Genealogical processes for Fleming-Viot models with selection and
recombination. Ann Appl Probab, 9:1091–1148, 1999b.

T Duong and M L Hazelton. Plug-in bandwidth matrices for bivariate kernel density estimation.
J. Nonparametr. Statist., 15:17–30, 2003.

R Durrett and J Schweinsberg. A coalescent model for the effect of advantageous mutations on
the genealogy of a population. Stoch Proc Appl, 115:1628–1657, 2005.

B Eldon. Structured coalescent processes from a modified Moran model with large offspring
numbers. Theor Pop Biol, 76:92–104, 2009.

B Eldon and J Wakeley. Coalescent processes when the distribution of offspring number among
individuals is highly skewed. Genetics, 172:2621–2633, 2006.

B Eldon, M Birkner, J Blath, and F Freund. Can the site frequency spectrum distinguish
exponential population growth from multiple-merger coalescents. Genetics, 199(3):841–856,
2015.

P Fearnhead. Perfect simulation from population genetic models with selection. Theor Pop Biol,
59:263–279, 2001.

P Fearnhead. Ancestral process for non-neutral models of complex diseases. Theor Pop Biol,
63:115–130, 2003.

Y X Fu. Statistical properties of segregating sites. Theor Pop Biol, 48:172–197, 1995.

J H Gillespie. Genetic drift in an infinite population: the pseudohitchhiking model. Genetics,
155:909–919, 2000.

R C Griffiths and P Marjoram. An ancestral recombination graph. In P Donnelly and S Tavaré,
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population genetics, pages 231–255. Springer, New York, 1997.

R R Hudson. Properties of a neutral allele model with intragenic recombination. Theor Pop
Biol, 23:183–201, 1983a.

R R Hudson. Testing the constant-rate neutral allele model with protein sequence data. Evolu-
tion, 37:203–217, 1983b.

J F C Kingman. The coalescent. Stoch Proc Appl, 13:235–248, 1982a.

19



J F C Kingman. Exchangeability and the evolution of large populations. In G Koch and
F Spizzichino, editors, Exchangeability in probability and statistics, pages 97–112. North-
Holland, Amsterdam, 1982b.

J F C Kingman. On the genealogy of large populations. J Appl Probab, 19A:27–43, 1982c.

J Koskela. Multi-locus data distinguishes between population growth and multiple merger coa-
lescents. Stat Appl Genet Mol Biol, 17(3):20170011, 2018.

S M Krone and C Neuhauser. Ancestral processes with selection. Theor Pop Biol, 51:210–237,
1997.

V Limic and A Sturm. The spatial Λ-coalescent. Electron. J. Probab., 11:363–393, 2006.

S Matuszewski, M E Hildebrandt, G Achaz, and J D Jensen. Coalescent processes with skewed
offspring distributions and non-equilibrium demography. Genetics, 208(1):1323–1338, 2018.
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