
Robust Model Selection: Flatness-Based Optimal Experimental Design for a

Biocatalytic Reaction

Authors: 

Moritz Schulze, René Schenkendorf

Date Submitted: 2020-04-01

Keywords: nonlinear programming, point estimate method, parameter uncertainty, differential flatness, model-based design of experiments,

model selection

Abstract: 

Considering the competitive and strongly regulated pharmaceutical industry, mathematical modeling and process systems engineering

might be useful tools for implementing quality by design (QbD) and quality by control (QbC) strategies for low-cost but high-quality

drugs. However, a crucial task in modeling (bio)pharmaceutical manufacturing processes is the reliable identification of model

candidates from a set of various model hypotheses. To identify the best experimental design suitable for a reliable model selection and

system identification is challenging for nonlinear (bio)pharmaceutical process models in general. This paper is the first to exploit

differential flatness for model selection problems under uncertainty, and thus translates the model selection problem to advanced

concepts of systems theory and controllability aspects, respectively. Here, the optimal controls for improved model selection

trajectories are expressed analytically with low computational costs. We further demonstrate the impact of parameter uncertainties on

the differential flatness-based method and provide an effective robustification strategy with the point estimate method for uncertainty

quantification. In a simulation study, we consider a biocatalytic reaction step simulating the carboligation of aldehydes, where we

successfully derive optimal controls for improved model selection trajectories under uncertainty.

Record Type: Published Article

Submitted To: LAPSE (Living Archive for Process Systems Engineering)

Citation (overall record, always the latest version): LAPSE:2020.0334

Citation (this specific file, latest version): LAPSE:2020.0334-1

Citation (this specific file, this version): LAPSE:2020.0334-1v1

DOI of Published Version:  https://doi.org/10.3390/pr8020190

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Powered by TCPDF (www.tcpdf.org)



processes

Article

Robust Model Selection: Flatness-Based Optimal
Experimental Design for a Biocatalytic Reaction

Moritz Schulze 1,2 and René Schenkendorf 1,2,*

1 Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig,
Franz-Liszt-Straße 35, 38106 Braunschweig, Germany; mo.schulze@tu-braunschweig.de

2 Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35a,
38106 Braunschweig, Germany

* Correspondence: r.schenkendorf@tu-braunschweig.de

Received: 29 November 2019; Accepted: 27 January 2020; Published: 5 February 2020
����������
�������

Abstract: Considering the competitive and strongly regulated pharmaceutical industry, mathematical
modeling and process systems engineering might be useful tools for implementing quality by
design (QbD) and quality by control (QbC) strategies for low-cost but high-quality drugs. However,
a crucial task in modeling (bio)pharmaceutical manufacturing processes is the reliable identification
of model candidates from a set of various model hypotheses. To identify the best experimental
design suitable for a reliable model selection and system identification is challenging for nonlinear
(bio)pharmaceutical process models in general. This paper is the first to exploit differential flatness
for model selection problems under uncertainty, and thus translates the model selection problem
to advanced concepts of systems theory and controllability aspects, respectively. Here, the optimal
controls for improved model selection trajectories are expressed analytically with low computational
costs. We further demonstrate the impact of parameter uncertainties on the differential flatness-based
method and provide an effective robustification strategy with the point estimate method for
uncertainty quantification. In a simulation study, we consider a biocatalytic reaction step simulating
the carboligation of aldehydes, where we successfully derive optimal controls for improved model
selection trajectories under uncertainty.

Keywords: model selection; model-based design of experiments; differential flatness; parameter
uncertainty; point estimate method; nonlinear programming

1. Introduction

Quality by design (QbD) and quality by control (QbC) are critical aspects in pharmaceutical
manufacturing, aiming for low-cost but high-quality drugs [1]. For research and development costs in
the competitive and strongly regulated pharmaceutical industry have been rising over recent decades
leading to shrinking profit margins [2], QbD and QbC have attracted much notice. Mathematical
models and process systems engineering might be useful tools for implementing effective QbD/QbC
strategies, which is particularly true for the rapidly growing biopharmaceutical market [3–5]. A crucial
task in modeling biopharmaceutical manufacturing processes is the reliable identification of model
parameters and proper model candidates from a set of various model hypotheses. Model-based
design of experiment (MBDoE) approaches, where the challenge of precise parameter identification
and reliable model selection is formulated as an optimization problem, have proven beneficial over
the last few decades [6–9]. Please note that the literature distinguishes between statistical design of
experiment and MBDoE approaches. Methods of the former as response surface methods are popular
and commonly used because of their simplicity, but, for the same reason, are not able to sufficiently
handle complex dynamic systems [10]. On the other hand, the MBDoE approach frequently aims for
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optimal control actions, where commonly used numerical methods give rise to nonlinear programming
problems that need substantial amounts of computational time and efficient solvers [11]. Moreover,
robustification against model parameter uncertainties further complicates the problem, as statistical
quantities must be considered when solving the underlying optimization problem. In addition to
the actual MBDoE optimization framework and data acquisition, recent studies have shown that a
well-posed parameter identification and model selection problem is equally important [12–14]. In this
context, the consideration of input residuals in parameter estimation beyond the classical approach
of output residuals has drawn attention in the literature [13–16]. For an effective solution to the
robust model selection problem, we aim at implementing an inverse modeling technique by using
the differential flatness concept [17]. In systems theory, differential flatness implies that analytical
expressions of the system’s states and controls exist that are functions of so-called flat outputs and their
derivatives. Hence, by implementing a differential flatness strategy to solve an MBDoE problem, we can
avoid solving differential and sensitivity equations numerically as required by standard control vector
parameterization strategies for model selection. Please also note that while optimizing the flat output
trajectory, the number of continuous optimization variables is reduced to the number of flat outputs,
i.e., an additional reduction of computational costs as compared to standard nonlinear programming
techniques with control and state variable discretization [18]. Methods based on differential flatness
have been heavily used in research and industry—primarily in the design of open-loop controllers
and the planning of state trajectories in (electro)mechanical systems [19]. In the case of the MBDoE
technique, strategies exploiting differential flatness have barely been considered [15,16,20,21], and—to
our knowledge—have not been applied to model selection problems under uncertainty before. Thus,
this study addresses two open research challenges: (i) to apply the flatness concept to multi-model
problems, and (ii) to integrate parameter uncertainties into the flatness-based optimization problem
for robust model selection. In detail, we aim at discarding inappropriate model candidates from a
set of competing model hypotheses. To this end, we show that the considered model candidates
satisfy the differential flatness condition, and we solve an optimization problem under uncertainty
that makes use of the flatness property. For the sake of illustration, we consider a biocatalytic process
from a carboligation reaction system that forms an essential precursor in the synthesis of natural
products and pharmaceuticals [22]. Please note that carbon-carbon bond-forming reactions are the
backbone of numerous high-value molecules in industrial organic synthesis. However, biocatalytic
production of the related bulk and fine chemicals and active pharmaceutical ingredients (APIs) is
insufficiently explored today. Therefore, the application of enzymes in organic synthesis is currently an
important research topic to exploit the significant potential of improving manufacturing processes in
the chemical and pharmaceutical industry under the agenda of green chemistry [23,24]. An essential
problem with all mathematical models and model-based design concepts, including MBDoE, is the
uncertainty in model parameters. To ensure reliable inferences, parametric uncertainty should be
taken into account in the MBDoE approach [6,14,25,26]. In general, probability-based concepts
have attracted considerable attention in robust optimization. In the literature, between classical
and Bayesian settings for handling model predictive errors as a potential consequence of uncertain
model parameters can be distinguished. In the former, the strategies have in common that the model
output differences in the objective function are weighted by an error covariance matrix of the model
prediction to avoid experimental regions where model predictions are poor [7,27–29]. One drawback
of these strategies is that the prediction error covariance matrix is calculated from local sensitivities,
where designs of experiments for local sensitivities might provide misleading information compared
to designs based on global sensitivities [30]. On the other hand, Bayesian model selection with
consideration of parametric uncertainties requires the determination of computationally expensive
integrals, in particular, if the recommended bias-free numerical evaluation path is chosen [31,32].
More broadly speaking, uncertainty propagation and quantification still pose considerable challenges
in computational efficiency and numerical accuracy. In this context, we propose to diminish this
computational burden by using an efficient and effective rule to determine statistical moments
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circumventing a local approximation, namely the point estimate method (PEM). The PEM has proven
beneficial in various engineering problems [33], including robust optimization problems in complex
(bio)chemical process design [3,34].

The paper is organized as follows. In Section 2, we cover the basics of the inverse modeling and
differential flatness concept. In Section 3, we introduce the flatness-based MBDoE technique with the
PEM for its robustification under parameter uncertainties. In Section 4, we apply the proposed MBDoE
concept to a biocatalytic reaction network, and we discuss the results in Section 5. Conclusions can be
found in Section 6.

2. Inverse Modeling

In process systems engineering, dynamic process models are often mathematically described with
ordinary differential equations (ODEs). Their state-space formulation is

dx

dt
= f(x(t), u(t),θ), (1)

where t is the time, x(t) ∈ Rn is the system states, u(t) ∈ Rm is the system inputs, and θ ∈ Rp is the
parameter vector. The nonlinear function f: Rn ×Rm ×Rp −→ Rn represents the vector field of the
dynamic system. The output function is defined as

y(t) = h(x(t), u(t),θ), (2)

with the system output vector y(t) ∈ Rq and h: Rn × Rm × Rp −→ Rq as the (non-)linear output
function. Please note that in many cases, the system outputs are a (linear) function of the system states
only; that is, y(t) = h(x(t)). Equations (1) and (2) form the process model, M. Please note that in the
following, time and parameter dependencies are specified only when the context requires it.

As opposed to solving the ODE system (Equation (1)) in a forward manner to conventionally
exploit the outputs y given the inputs u, inverse modeling aims at reconstructing the inputs u for
given outputs y [35–37]. Please note that the process of inverse simulation is not to be confused
with inverse problems, where in the latter the goal is to estimate unknown model parameters θ̂ [35].
The different principles of forward simulation, inverse modeling, and the inverse problem of parameter
identification are visualized in Figure 1.

M(θ)
u y

(a) Forward modeling

M−1(θ)
u y

(b) Inverse modeling

M(θ)
u y

θ̂

(c) Inverse problem

Figure 1. Illustration of the different principles of a standard process simulation configuration (a),
the inverse modeling setting to reconstruct system inputs (b), and the inverse problem for parameter
identification (c).

In addition to numerical inversion approaches as model inversion- or inverse simulation-based
techniques [38], algebraic methods have been proposed for inverse modeling [39], among which
strategies based on differential flatness are important representatives.

2.1. Differential Flatness

In systems theory, within the context of algebraic model inversion techniques and aiming
at feedforward control problems, differential flatness was introduced by Fliess et al. [17] in 1992.
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A (non-)linear process model (Equations (1) and (2)) is called differentially flat or shortly flat if there
exists an output vector

yflat = hflat(x, u, u̇, . . . , u(s),θ), (3)

with a finite value s ∈ N and the smooth mapping function hflat : Rn × (Rm)s+1 ×Rp −→ Rq, referred to
as a flat output which fulfills the following conditions:

1. The states and the controls can be described as a function of the flat output and its derivatives:

x = Ψx(y
flat, ẏflat, . . . , yflat(r),θ), (4)

u = Ψu(y
flat, ẏflat, . . . , yflat(r+1)

,θ), (5)

with the smooth mapping functions Ψx : (Rm)r+1 ×Rp −→ Rn and Ψu : (Rm)r+2 ×Rp −→ Rm.
2. The dimensions of the control and the flat output vector are equal:

dim yflat = dim u. (6)

Here, r ∈ N specifies the number of occurring derivatives. Generally speaking, r is not known
beforehand, apart from single-input single-output (SISO) systems, where r = n − 1 [40]. There is an
infinite number of flat output candidates, and often, they are a function of the states only [40]—similar
to the fact that the real output function of a dynamic system is, in many cases, exclusively a function of
the states.

Flat outputs might have no direct physical meaning, or they might be identical to measurable
quantities; then also referred to as flat inputs [41]. Moreover, between local and global flatness must be
distinguished, where for the local form, the differential flatness is valid only for a restricted domain
bound by occurring singularities [42]. For certain kinds of singularities, a globally flat system can be
designed following a superposition concept. To this end, individual local model inversion domains
are created from different local flat outputs where the union of the local domains provides a global
framework for the flatness-based model inversion [42]. Alternatively, a transformation approach
exists to bypass points of a singularity [43]. In addition to differential flatness of ODE systems,
flatness-based methods are also being used for discrete-time systems and partial differential equations
(PDEs); see [44–46], and references within. Application scenarios based on differential flatness cover
predominantly (electro)mechanical problems, but also process technologies like heat exchangers [47],
crystallizers [48] or (bio)reactors [45,49], lithium-ion batteries [50], and more.

2.2. Flat Output Identification

To implement a flatness-based concept, two key challenges exist: First, determining if a system is
differentially flat, and second, constructing a flat output alternatively. There is no general method for
either of those challenges. However, exceptions exist, and include systems that are linearizable by static
feedback control, which are flat by definition. Considering a linear system, controllability conditions
differential flatness and vice versa [43]. Methods of determining flat outputs and the mapping function
hflat, respectively, are currently being researched, and the interested reader is referred to [19,51,52] and
the references therein. Moreover, the construction of so-called flat inputs (i.e., reconstructed inputs
based on the given output function (Equation (2))) was shown for SISO systems and a limited set of
multi-input and multi-output (MIMO) cases [53].

Alternatively, in systems theory, valuable information about system characterization based on
the interaction of inputs, system states and outputs can also be extracted from graph theory [39,54,55].
Typically, observability or controllability measures are derived for (non)linear state-space models using
directed graphs (digraphs) [56–58]. A digraph D = [V, E] with n + m + q vertices vi ∈ V and edges
e ∈ E can be constructed from adjacency matrices Au, Ax, and Ay of the process model for the inputs,
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system states, and outputs, respectively. The ai,j-th element of Ax or Au is set to 1 if derivatives ∂ fi(x,u)
∂xj

or ∂ fi(x,u)
∂uj

exist, respectively, and to 0 if this is not the case. If these derivatives exist (i.e., ∂ fi/∂xj 6= 0 or

∂ fi/∂uj 6= 0), then there is an edge from vertex vj to vertex vi. Analogously, the adjacency matrix for
the outputs y and the output function h(x, u) can be defined. Regarding the flatness property, in the
paper by Csercsik et al. [55], an algorithm for flatness analysis of MIMO systems is introduced that uses
an explicit expressibility graph. Please note that from a given digraph, the explicit expressibility graph
is formed with reversed edge directions, with the outputs replaced by the flat outputs, and with the
self-loop system states dependencies omitted. The following theorem then gives a necessary condition
for differential flatness based on the adjacency matrices Au, Ax, and Ay [55].

Theorem 1. For a prospective set of flat output-input pairs, m pairwise disjoint paths must exist in the explicit

expressibility graph, the union of which covers each vertex of the graph.

In summary, existing construction methods are often restrictive and require cumbersome
calculations. In practice, for the identification of flat outputs (Equation (3)) a sequential strategy
including an expert guessing for a flat output candidate followed by a subsequent validation step
in terms of Equations (4)–(6) has proven favorable. This trial-and-error approach is facilitated by
two facts. First, numerous technical systems are indeed flat systems. Second, frequently, comparable
to Lyapunov functions in control theory, informative flat outputs have physical signification [40].
Once the flat output configuration is identified, the flat output functions yflat must be parameterized
using for instance spline functions.

2.3. Basis Splines

The flat outputs yflat have to be parameterized while limited by the fact that they have to satisfy
solutions of the dynamic system (Equations (1) and (2)). For flat outputs, basis functions from
a large set of possibilities, ranging from simple polynomials to more complex functions, can be
chosen. Basis splines, i.e., piece-wise polynomial functions also known as B-splines, offer great
freedom of action, are flexible and well-studied, and libraries for their usage are implemented in many
different programming languages [59]. The classical application of splines is the approximation and
interpolation of data points.

A flat output based on B-splines is defined by

yflat(t) =
l

∑
i=1

θ⋆i Ni,k(t), (7)

where Ni,k are B-splines of order k on l collocation points, and θ⋆i is a coefficient vector, whose elements
are referred to as meta-parameters. Please note that the meta-parameters θ⋆i constitute the decision
variables in the flatness-based optimal experimental design framework for model selection, which is
introduced in the following section.

3. Robust Design of Experiments for Model Selection

To maximize the information provided by an experiment for the aim of discriminating between
different model hypotheses, we incorporate the inverse modeling approach into the design of
experiments setting. First, a generic scheme for a standard MBDoE strategy for model selection
is given in Figure 2. Starting with the model-building process, several competing model hypotheses
and candidates may exist. Thus, the MBDoE technique predicts operating conditions and experimental
data that ensure better model selection and falsification. Next, the optimized experimental setup is
implemented, and new informative data are recorded. With these new data, the model parameters of all
model candidates are refined and updated. Finally, based on the recalculated mismatch of experimental
data and simulation results, the difference in the competing model candidates may become more
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significant, and some model candidates might be excluded in terms of falsification. As indicated in
Figure 2, the MBDoE workflow is an iterative process; that is, the prediction of improved experiments,
the data acquisition, the adaption of the model parameters, and the assessment of the remaining model
candidates is repeated until the most suitable model candidate is identified.

Experi-

ment

Model

rejection/

falsification

Parameter

estimation

Model

building

start

end
MBDoE

Number

of models

left?

0

1

>1

Figure 2. MBDoE workflow for model selection adapted from [20].

Mathematically, the MBDoE approach can be stated as an optimal control problem (OCP) of the form

max
φ(t)∈Φ

J (φ(tf))

s.t. Process model : Equation (1),

x(t0) = x0,

geq(x(t), u(t),θ) = 0,

gineq(x(t), u(t),θ) ≤ 0,

φmin ≤ φ ≤ φmax.

(8)

J is the scalar objective function aiming to maximize the difference between the trajectories of the
output functions of competing model candidates, and φ(t) = φ(u(t), x0) is the design vector within
the design space Φ specified by the control u(t) and the initial states x0. Please note that t ∈ [t0, t0 + tf],
where t0 = 0 is the initial time, and tf is the time duration of the experiment. The objective function
is given in Mayer form without loss of generality as the Lagrange and Bolza problem types can be
converted to the former [18]. Both equality constraints geq : Rn×m×p → R

neq and inequality constraints
gineq : Rn×m×p → R

nineq can be considered in the optimization problem. Exemplarily, they might be
introduced to avoid negative values of system states or to restrict a species’ concentration to a certain
limit. [φmin,φmax] are the upper and lower boundaries for the design variables.

Solving the dynamic optimization problem (Equation (8)) can be performed following two
different discretization strategies of the time-dependent functions in Equation (8): Optimize then

Discretize, also called the indirect or variational approach, or Discretize then Optimize, its direct counterpart.
The first strategy focuses on the solution of the first-order optimality conditions for the OCP, resulting
in a boundary value problem (BVP). The difficulties associated with solving BVPs led to research
activities dealing with the conversion of the OCP to constrained, finite-dimensional problems to exploit
state-of-the-art large-scale nonlinear program (NLP) solvers [18]. Methods applying NLP solvers can
be classified further into sequential and simultaneous strategies. In the sequential approach referred
to as single shooting, the control vector is parameterized, and the resulting NLP problem is solved
using control vector parameterization (CVP) methods [60,61]. In contrast, the simultaneous approach
multiple shooting divides the OCP into smaller subproblems requiring next to CVP initial states in the
individual problems and serves as a bridge to the direct transcription approach, where all variables, i.e.,
states and controls, are discretized [18]. The discretization of the states and controls is usually realized
using collocation and control parameterization techniques that lead to complex optimization problems
for which efficient solvers and great computational power are needed [11].

Various scalar objective functions J for the MBDoE approach (Equation (8)) have been proposed
in the literature [7,62–66]. The general goal of the optimal control problem for model selection (8) is to
maximize some measure on the distance between the different model candidates by searching for an
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optimal control profile while meeting the specified constraints, including the solving of the underlying
ODE system (Equation (1)).

The proposed flatness-based approach for the MBDoE performs differently. It literally operates
in an inverse manner. Optimized flat output trajectories maximize the difference between the model
outputs of the competing model candidates. The related controls u and the initial states x0 are
reconstructed from the flat model M−1 and have to be identical for all model candidates and their
optimized flat outputs yflat. Using the Euclidean distance as a discrepancy measure between model
outputs and assuming M model candidates, the original OCP given in Equation (8) becomes

max
yflat

tf
∫

t0

M−1

∑
i=1

M

∑
j=i+1

[

yi(yflat,i, ẏflat,i, . . . , yflat,i(r))

− yj(yflat,j, ẏflat,j, . . . , yflat,j(r))
]2

dt

s.t. ∆u(yflat) = 0,

∆x0(y
flat) = 0,

geq(y
flat) = 0,

gineq(y
flat) ≤ 0.

(9)

The inputs, states and outputs in the optimization formulation are expressed according to
Equations (2), (4), and (5). The differences between the recalculated inputs and the initial states
for all M model candidates are measured by the delta function ∆(·) that might be the Euclidean
distance alike. For the flat outputs are of functional form, time-dependent empirical basis functions
yflat,i = yflat,i(θ⋆,i, t) ∀ i ∈ {1, ..., M} with meta-parameters θ⋆,i have to be specified; see also Section 2.3.
The optimal control problem stated in Equation (8) is readily transformed in an algebraic nonlinear
optimization problem as the system inputs and outputs are available in closed form, where the need for
integrating the underlying ODE system and the need for control and or state vector parameterization
are dropped. As a last step, the resulting optimal control profiles and initial conditions are employed
to conduct a new experiment that is expected to deliver additional informative data regarding
model falsification.

After conducting the optimally designed experiment, gathering of corresponding data, and the
model parameters update, the model assessment is performed. Criteria for model assessment and
selection are subject to different dimensions: falsifiability, explanatory adequacy, interpretability,
faithfulness, goodness-of-fit, complexity/simplicity and generalizability [35]. For instance,
a well-known and commonly used criterion is the Akaike information criterion (AIC) or its
small-sample analog, the corrected Akaike information criterion AICc [67], which evaluates the
model response residuals, as well as the model complexity in terms of the dimension of the model
parameter vector. In general, however, there is no master strategy for model discrimination and
therefore, no universal criterion. The method applied depends on the stage of modeling, the type
of uncertainty expected, and the strategy chosen [68]. For instance, the so-called overlap approach
emphasizes the fact that in reality, model parameters are uncertain, which is in turn not regarded
in many common discrimination criteria as the AIC or the Bayesian information criterion BIC [31].
Assuming additive measurement noise and according to the Doob–Dynkin lemma [69], the identified
model parameters θ̂ can be considered to be random variables, where the probability space (Ω,F , P)
contains the sample space Ω, the σ-algebra F , and the probability measure P. Thus, the overlap
approach accounts for parameter uncertainties by considering the trajectory confidence intervals,
which is in contrast to the AIC, where only the point estimate at the maximum likelihood and the
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corresponding model responses are used [68]. Adjusted to the requirements at hand, the overlap of
two models considering parametric uncertainties is

OVL =
T

∑
k=0

2
√

σ2
1,kσ2

2,k

σ2
1,k + σ2

2,k
exp

−0.5(µ1,k − µ2,k)
2

σ2
1,k + σ2

2,k
, (10)

where µi,k and σi,k are the expected value and the variance of the output function of model i at time
point k resulting from the stochastic nature of the parameters, respectively. In the next subsection,
we illustrate how these statistical quantities in Equation (10) can be quantified efficiently with the
point estimate method (PEM).

3.1. Point Estimate Method

The mean and variance occurring in the overlap formula (Equation (10)) are known as the first
raw and second central moments of a continuous random variable and are defined as

µ = E[k(θ)] =
∫

Ω
k(θ)P(θ)dθ, (11a)

σ2 = V[k(θ)] =
∫

Ω
(k(θ)− µ)2P(θ)dθ, (11b)

where P(θ) is the probability density function related to the random model parameter vector θ of
a process model M (Equations (1) and (2)). k(·) represents a generic nonlinear function. Usually,
no closed solutions of the integrals on the right side of Equations (11a) and (11b) are available, and
must be evaluated numerically. For accurate results, Monte Carlo simulations can be performed that
draw many samples from the probability density functions. Thus, in particular, in the case of complex
functions k(θ) and many model parameters, the evaluation of the integral becomes computationally
expensive or even prohibitive due to the so-called curse of dimensionality. Alternatively, the PEM,
initially developed for generic multi-dimensional integration problems over symmetrical regions, is a
credible and practical method for uncertainty propagation with low computational cost; see [33] and
references within. In process systems engineering, the PEM has been successfully applied to robustify
various optimization problems, including non-symmetrical probability density functions, correlated
model parameters, and imprecise parameter uncertainties [3,70,71].

The PEM approximates the integrals in Equation (11) by summing over nPEM weighted
sampling points

∫

Ω
k(θ)P(θ)dθ ≈

nPEM

∑
l=1

wlk(θl), (12)

with weight factors wl and parameter vector realizations θl . In detail, assuming a nominal parameter
vector θ0, dedicated model parameter vector realizations, θl , form a parameter vector set, θl ∈ O :=
{θ0,O1,−O1,O2,−O2,O3,−O3}, where

O1 := {θ0[i] + ϑ, ∀i ∈ {1, . . . , p}},

O2 := {θ0[(i, j)] + [+ϑ,+ϑ], ∀i, j
j>i

∈ {1, . . . , p}},

O3 := {θ0[(i, j)] + [−ϑ,+ϑ], ∀i, j
j>i

∈ {1, . . . , p}}.

Here, θ0[i] means that the ith element of the nominal parameter vector, θ0, is permuted via the
spreading parameter, ϑ, and θ0[(i, j)] that the ith and the jth elements are modified, respectively.
Note that the weight factors, wl , as well as the spreading parameter, ϑ, are determined via a
corresponding algebraic equation system; the interested reader is referred to [33] and references
therein. Based on the parameter samples, θl , we can approximate the statistics of a given nonlinear
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function. For instance, the approximations of the expected value and the variance as stated in
Equations (11a) and (11b) read as

µ ≈ w0k(θ0) + w1

|Ow1 |

∑
l

k(θl) + w2

|Ow2 |

∑
l

k(θl), (14a)

σ2 ≈ w0(k(θ0)− µ)2 + w1

|Ow1 |

∑
l

(k(θl)− µ)2 + w2

|Ow2 |

∑
l

(k(θl)− µ)2, (14b)

with Ow1 := {O1,−O1} and Ow2 := {O2,−O2,O3,−O3}. Please note that the overall parameter
sample number, nPEM, used in Equations (14a) and (14b) scales quadratically to the dimension of
uncertain model parameters:

nPEM = 2p2 + 1. (15)

At the cost of accuracy (i.e., approximation error introduced via Equation (13)), the required sample
numbers in Equations (14a) and (14b) can be reduced according to:

µ ≈ w0k(θ0) + w1

|Ow1 |

∑
l

k(θl), (16a)

σ2 ≈ w0(k(θ0)− µ)2 + w1

|Ow1 |

∑
l

(k(θl)− µ)2, (16b)

where the overall parameter sample number, nPEM, scales linearly to the dimension of uncertain
model parameters:

nPEM = 2p + 1. (17)

Equations (14) and (16) are exact for monomials of up to degrees five and three [33]. Thus, in what
follows, we use the terms PEM5 and PEM3 to distinguish between the two PEM approximation
schemes. In Table 1, we summarize the values for the weights, wl , and the spread parameter, ϑ,
assuming a standard Gaussian distribution. In the case of PEM3, the spread parameter, ϑ, can be
considered to be a design parameter, which is frequently set to the corresponding PEM5 value; that is,
ϑ =

√
3.

Table 1. Weights and spread parameter of the PEM for a standard Gaussian distribution [33].

Approximation Scheme w0 w1 w2 ϑ

PEM5 (Equations (14a) and (14b)) 1 + p2−p
18

4−p
18

1
36

√
3

PEM3 (Equations (16a) and (16b)) 1 − p

ϑ2
1

2ϑ2 - ϑ

Please note that any parametric or non-parametric probability distribution of relevant
model parameters can be considered via a (non)linear transformation step, including parameter
correlations [70].

3.2. Robust Flatness-Based Objective Function

For the robust formulation of the nominal optimization problem (Equation (9)), we aim at
introducing an additional term in the objective function that penalizes the propagated uncertainty
that is quantified by the variances V of the models’ inputs u. In this vein, we expect the calculated
overlap (Equation (10)) to decrease as the confidence bands of the trajectories tighten. The objective
function is balanced by a weight factor α ∈ [0, 1] leading to Pareto optimal points for its different
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values. The optimization problem for a flatness-based robust design of experiments for model selection
is then stated as

max
θ∗

T

∑
k=0

(

α
M−1

∑
i=1

M

∑
j=i+1

[

yi(θ∗
i , tk)− yj(θ∗

j , tk)
]2

(1 − α)
M

∑
i=1

V[ui(θ
∗
i , tk)]

)

s.t. ∆u(θ∗, tk) = 0,

∆x0(θ
∗, tk) = 0,

geq(θ
∗, tk) = 0,

gineq(θ
∗, tk) ≤ 0.

(18)

The decision variables of the optimization problem are the meta-parameters present in the basis
functions for the flat outputs, i.e., the control vectors of the B-spline curves. As previously in the
nominal optimization problem (Equation (9)), the robust formulation is a programming problem for
which all occurring functions are algebraically available. Thus, the nominal version (Equation (9)) and
the robust version (Equation (18)) are readily stated as an NLP without any use of parameterization
methods. Furthermore, the possibility of deriving functions for exact gradients is given as opposed to
the application of automatic differentiation or finite differences methods. A flow chart for the proposed
robust MBDoE strategy using differential flatness is given in Figure 3.

Models
Mi

Inversion
by flatness,
Equation (3)

to (6)

M−1
i

Choose basis
functions

for yflat
i (θ∗

i ),
Equation (7)

Set α

Optimize,
Equation (18); calculate

V[u] with PEM,
Equation (14) or (16)

Optimal flat output
trajectories yflat,∗(θ∗

opt)
Decrease α

Output uncertainties
with PEM,

Equation (16) or (14)

OVL,
Equation (10)

Small
enough?end

no

yes

Figure 3. Robust MBDoE strategy.

3.3. Computational Methods

The whole program is coded in Julia [72]. The derivation of flat systems is based on the
comprehensive Julia suite on differential equations [73]. For symbolic calculation, the Python package
SymPy is used where its functions can be accessed from Julia via an interface. As modeling language for
the optimization problems, Julia-based JuMP was chosen [74]. The nonlinear programming problems
were solved with the open-source large-scale interior point solver IPOPT [75]. All calculations were
run on a standard desktop machine and finished within an hour, where the bulk of the computational
load was spent in symbolic calculations and the quantification of the propagated uncertainty.

4. Case Study

Biocatalytic reactions appear in numerous syntheses of natural products and active pharmaceutical
ingredients. For example, chiral hydroxy ketones are important building blocks in the pharmaceutical
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industry and can be produced from aldehydes via enzymatic carboligation [22]. A lack of mechanistic
kinetic models for biocatalytic carboligation and simultaneous inactivation of the benzaldehyde lyase
was studied in [76] using MBDoE, where the model quality of the different model candidates was
analyzed using the AIC. Motivated by the biocatalytic carboligation of ketones from aldehydes,
in this simulation study, we consider two models simulating the enzymatic step from benzaldehyde
to benzoin [22]. In the enzymatic reaction chain, the forward reaction forming the intermediate is
significantly larger than its reverse counterpart leading to the two model candidates in Tables 2 and 3.

Table 2. Reaction scheme of model M1.

Model M1

2 S1 + E k1 C1
k2 P + E

S2 + E k3 C2

Table 3. Reaction scheme of model M2.

Model M2

2 S1 + E k1 C1
k2 P + E

The two model candidates differ in that way that model candidate M1 suffers from a loss reaction
where a second substrate S2 is irreversibly inhibiting. Additionally, substrate S2 is expected to be
constant via proper control actions over the experimental run. The corresponding ODE systems of the
two model candidates are

M1 =











































dx1

dt
= −2k1x2

1x3 + u1

dx2

dt
= k1x2

1x3 − k2x2

dx3

dt
= −k1x2

1x3 + k2x2 − k3[S2]x3 + u2

dx4

dt
= k2x2

, (19)

M2 =











































dx1

dt
= −2k1x2

1x3 + u1

dx2

dt
= k1x2

1x3 − k2x2

dx3

dt
= −k1x2

1x3 + k2x2 + u2

dx4

dt
= k2x2

, (20)

where the indices are assigned according to {1, 2, 3, 4} = {S1, C1, E, P}, and substrate S1 and
enzyme E can be dosed over the course of the experiment. Please note that in model
M1, the differential equations of the second substrate S2, which is assumed to be constant,
and the loss product C2 are not specified, as information about their time behavior does not
influence the other differential equations, and therefore, is not relevant to the problem at hand.
The measured concentrations are the concentrations of the substrate and the final product;
that is, y = (x1, x4)

⊤. The kinetic constants have the following expected values: For model
M1 (k1, k2, k3) = (0.215 L2/(mmol2 min), 91.475 min−1, 0.019 L/(mmol min)), and for model M2
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(k1, k2) = (0.204 L2/(mmol2 min), 103.344 min−1). The variances of the parameters equal 5 % of their
expected values in the absence of parameter correlations.

5. Results

For the case study given in Section 4, we analyzed the differential flatness property, and then,
we designed discriminating input controls based on the proposed MBDoE approach, which makes use
of the differential flatness concept. The effect of model parameter uncertainties was studied as well,
and the robust MBDoE approach was applied as an appropriate countermeasure.

5.1. Differential Flatness Property

We derive the flat outputs for both models following heuristic methods to (1) obtain a flat
output candidate according to Equation (3) and (2), with the help of graph theory, to show that the
candidate fulfills the differential flatness conditions given Equations (4)–(6). Drawing the directed
graphs (digraphs) for model M1 and model M2, we observe that they look alike. The corresponding
adjacency matrices are

Au =











u1 u2

x1 1 0
x2 0 0
x3 0 1
x4 0 0











, Ax =











x1 x2 x3 x4

x1 1 0 1 0
x2 1 1 1 0
x3 1 1 1 0
x4 0 1 0 0











, Ay =

(

x1 x2 x3 x4

y1 1 0 0 0
y2 0 0 0 1

)

,

and the resulting digraph is shown in Figure 4a. The digraph is composed of 8 vertices, V = {u1, u2} ∪
{x1, x2, x3, x4} ∪ {y1, y2}, and 13 edges corresponding to the non-zero entries in the adjacency matrices
Au, Ax, and Ay. The self-loops of {x1, x2, x3} ∈ V are related to the non-zero diagonal elements of Ax.

y1 x1 u1

x3 u2

x2

x4y2

(a)

γ1 x1 u1

x3 u2

x2

x4γ2

(b)

Figure 4. Digraph and explicit expressibility graph to study the differential flatness property.
(a) Digraph for model M1 and M2; (b) Explicit expressibility graph.

The control vector dimension in both models is 2. Therefore, to comply with condition given
in Equation (6), the dimension of the flat output vector must be 2 as well. Inspecting the system of
differential equations in Equation (19) one might observe that x4 does not appear on the right side of
any of the differential equations. The corresponding node in the digraph (see Figure 4a) represents a
dead end (i.e., no edge from x4 ∈ V to {x1, x2, x3} ∈ V), and therefore, must be part of the flat output.
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Obviously, the second element of the flat output vector should be chosen from the concentrations left
as they have direct physical meaning for the study case at hand. We consider the flat output candidate

yflat =

(

γ1

γ2

)

=

(

x1

x4

)

(21)

that evidently satisfies Equation (3).
The explicit expressibility graph, which can be readily obtained from the digraph, is shown in

Figure 4b. Please note that in comparison to the digraph (Figure 4a), the self-loops are omitted, and
the edge directions are reversed. In Figure 4b, two disjoint paths are drawn that cover all vertices
related to the inputs, system states, and flat outputs. Therefore, the flat output vector (Equation (21)) is
supposed to form a differentially flat system which we will confirm using its definition in the following.
From the ODE system, after several reformulations and substitutions, we obtain the inverse models:

M−1
1 =







































































x1 = γ1

x2 = γ̇2
k2

x3 =
γ̈2
k2

−γ̇2

k1γ2
1

x4 = γ2

u1 = γ̇1 + 2γ2
1

γ̈2
k2

−γ̇2

γ2
1

u3 = F1(γ1, γ̇1, γ2, γ̇2, γ̈2,
...
γ2)

(22)

and

M−1
2 =







































































x1 = γ1

x2 = γ̇2
k2

x3 =
γ̈2
k2

−γ̇2

k1γ2
1

x4 = γ2

u1 = γ̇1 + 2γ2
1

γ̈2
k2

−γ̇2

γ2
1

u3 = F2(γ1, γ̇1, γ2, γ̇2, γ̈2,
...
γ2)

. (23)

Please note that we omitted to write out the equations for the second element of the output
vector u2 for model M1 and model M2 due to readability reasons. However, keep in mind that
the functions F1 and F2 in Equations (22) and (23) differ. The inverse model (Equation (22)) with
its flat output (Equation (21)) satisfies the set containing all three conditions for differential flatness
(Equations (4)–(6)). Accordingly, the inverse model of model M2 (Equation (23)) fulfills the conditions
for differential flatness. Thus, both models are differentially flat models. For prescribed trajectories
γ∗

1 = x∗1 and γ∗
2 = x∗4 , the necessary experimental conditions for the controls are readily available by

differentiation; for an example, see [20].

5.2. Non-Optimized Experimental Design

We first consider the non-optimized experimental design, i.e., the initial situation before any
optimization iteration. Please note that a batch process is assumed, and thus, the controls are zero and
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not explicitly shown. Plots for the measured states and the measured states with confidence bands are
shown in Figure 5 on the left side and on the right side, respectively.
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Figure 5. Measured states before applying the MBDoE approach. (a) Output trajectories neglecting
parameter uncertainties; (b) Confidence intervals due to parameter uncertainties.

For the nominal case in Figure 5a, it is impossible to distinguish the two models from each other,
even if the experimental data were close to one of the models. In Figure 5b, it is well observable that
the uncertainties in the measured states given as confidence intervals are low. To better compare
the results with the expected results from the optimization part, we normalize the overlap measure
(Equation (10)) to the overlap corresponding to Figure 5b; that is, OVLN = 1.0.

5.3. Optimized Experimental Design without Uncertainty: The Nominal Case

Before optimizing, suitable B-spline types must be chosen. In contrast to the classical application
of splines in approximation or interpolation of available data, they are used to express smooth control
and state trajectories along the time axis, and are created from their definition as opposed to a fitting
process. Thus, common problems experienced in spline approximation and interpolation, like cusps
and loops [77], are less likely to occur. From the different methods for splines, we choose the uniform

method where the data points are uniformly distributed over the domain range. Furthermore, for each
element of the flat output vectors, a B-spline curve of order 6 with 12 control points and clamped end
conditions was used, resulting in a 48-dimensional decision space for the optimization problem. In the
first optimization step, we follow the classical deterministic optimization by setting α = 1 in the setting
(Equation (18)). The results for the measured states of the nominal case are shown in Figure 6, again,
without uncertainty and with uncertainty vis-à-vis. The corresponding control curves are displayed in
Figure 7 on the left side.

In the plot without propagated uncertainties, it is clearly visible that the expected values of the
measured states are significantly driven apart. However, a look at the plot on the right reveals that (1)
the uncertainties have substantially enlarged compared to the initial situation, and (2) the confidence
bands of both models overlap noticeably. The overlap values are given in Table 4. The overlap has
decreased versus the initial situation, i.e., it is 6 percentage points lower compared to before the
optimization. However, we also came across simulation runs where the overlap worsened in the sense
of a larger overlap value if the nominal optimization state was compared with the non-optimized.
In this context, the question arises if we can perform better, i.e., further lower the overlap by inherently
taking care of the parametric uncertainties in the optimization setting. Therefore, we robustify the
optimization by considering the variances in the objective function as described in Section 3.1.
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Figure 6. Measured states for the nominal design. (a) Output trajectories neglecting parameter
uncertainties; (b) Confidence intervals due to parameter uncertainties.
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Figure 7. Optimized input controls (u1: y-axis on the left, u2: y-axis on the right). (a) Nominal design;
(b) Robust design (PEM5).

5.4. Robust Experimental Design

For the robust MBDoE setting (Equation (18)), we set α = 0.5; that is, the Euclidean distance of
the flat outputs of model M1 and M2 as well as the resulting uncertainties in the recalculated model
inputs are equally weighted. Compared with the nominal optimization, the computational time to
solve reaching satisfying convergence increases multiple-fold despite the low number of sampling
points that the PEM is using. In particular, when PEM5 is employed, the computational time increases
considerably due to the higher sample number; see Equations (15) and (17). The concentration curves
for the resulting states of the robust flatness-based design are shown in Figure 8.

The trajectories for the expected values in the left subfigure clearly drift apart, but less strongly
than in the nominal optimization case; see Figure 6. Considering 100 equally spaced points, the norms
of the model output distances in the robust case are roughly half as large as in the nominal case.
The presumption that the overlap has decreased can be confirmed when looking at the overlap values
in Table 4.
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Figure 8. Measured states for the robust flatness-based design. (a) Output trajectories neglecting
parameter uncertainties; (b) Confidence intervals due to parameter uncertainties.

Table 4. Results for the overlap.

Design None Nominal PEM3 PEM5

OVLN 1.0 0.94 0.81 0.80

The overlap value has decreased by 19 percentage points and by 13 percentage points when
compared with the initial situation and the nominal optimization, respectively. The propagated
uncertainties can be extracted from the graphs shown in Figure 9 where the variances for both outputs
of model 1 are considerably lower when the nominal case on the left is compared with the robust
one on the right. Furthermore, the approximation of the propagated uncertainty using the PEM is
sufficiently good, as the results are in proximity to the Monte Carlo results with 104 samples. Thus,
the inclusion of the propagated uncertainty as a penalty in the objective function has delivered the
desired outcome. Prospectively, a different choice of α or the drawing of a Pareto front might further
decrease the overlap between the two model outcomes. The corresponding optimal controls for the
substrate and enzyme are drawn in Figure 7 on the right side. Please note that the realization of the
profiles in a laboratory setup is constrained by the available pump devices. These constraints could be
included in the robust MBDoE framework (Equation (18)), but the technical realization of these input
controls is beyond the scope of this study.
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Figure 9. Cont.
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Figure 9. Variances of model outputs for model M1. (a) Nominal design, y1; (b) Robust design, y1;
(c) Nominal design, y2; (d) Robust design, y2.

6. Conclusions

We have extended a novel approach to the model-based design of experiments for model selection
using the differential flatness property of the systems by robustifying the optimization problem against
parametric uncertainty. In comparison with commonly used methods for model discrimination,
the resulting optimal control problem does not require approximation methods for solving the
underlying system of differential equations as both controls and states can be derived analytically in
differentially flat systems without numerical integration. Likewise, parameterization of the controls
and potentially the states is obsolete for we directly arrive at a nonlinear programming problem.
Moreover, the possibility to provide analytic gradients to the optimization solver, even for highly
nonlinear systems, is given. The robustification strategy comprised the consideration of propagated
uncertainties; that is, the variances of the reconstructed model inputs were added as a penalty term in
the objective function. The corresponding uncertainty quantification was performed using the point
estimate method, a computationally cheap but reasonably accurate method compared with standard
Monte Carlo simulations for uncertainty quantification. We successfully applied the strategy to a
nonlinear enzymatic reaction using B-splines as the parameterization technique for expressing the
flat outputs, and thus, obtained optimal experimental input controls for the subsequent experiment.
We showed that a nominal optimization without the consideration of parameter uncertainties might
result in unreliable optimal controls, i.e., not leading to the possibility of selecting one model over
another after having performed the subsequent experiment. In contrast, if parametric uncertainties
were inherently considered in the optimal experimental design problem, more reliable MBDoE results
were identified. We emphasize the importance of including the quantification of uncertainties
over classic deterministic optimization where the differential flatness concept shows promising
characteristics for advanced system identification strategies in terms of precise parameter estimates
and reliable model selection.
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