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Abstract Here we present a robust method for monocular visual odometry capable

of accurate position estimation even when operating in undulating terrain. Our al-

gorithm uses a steering model to separately recover rotation and translation. Robot

3DOF orientation is recovered by minimizing image projection error, while, robot

translation is recovered by solving an NP-hard optimization problem through an

approximation. The decoupled estimation ensures a low computational cost. The

proposed method handles undulating terrain by approximating ground patches as

locally flat but not necessarily level, and recovers the inclination angle of the local

ground in motion estimation. Also, it can automatically detect when the assumption

is violated by analysis of the residuals. If the imaged terrain cannot be sufficient-

ly approximated by locally flat patches, wheel odometry is used to provide robust

estimation. Our field experiments show a mean relative error of less than 1%.

1 Introduction

The task of visual odometry is to estimate motion of a camera, and by association

the vehicle it is attached to, using a sequence of camera images. Typically, visual

odometry is used in those cases where GPS is not available (eg. in planetary environ-

ments), or is too heavy carry (eg. on a small air vehicle), or, is insufficiently accurate

at a low cost (eg. in agricultural applications). In ground vehicle applications, visual

odometry can provide an alternative or compliment to wheel odometry since it is

not prone to problems such as wheel slippage that can cause serious errors. Recent

developments show significant progress in visual odometry and it now possible to

estimate 6DOF motion using stereo cameras [1–3]. Stereo cameras help provide s-

cale and some constraints to help recovery of motion but their use comes at a cost.

Accuracy is dependant on inter-camera calibration which can be hard to ensure if

the cameras are separated significantly. The use of stereo cameras also reduces the
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Fig. 1 (a) An example of the type of terrain over which our ground vehicle based visual odometry

is intended to work (b) An example of the type of scene that can be imaged by the visual odometry

system. Monocular visual odometry systems that assume a flat environments fail in such a case.

field of view because only features that lie in the intersection of the field of view of

two cameras can be used. Finally, cost in components, interfacing, synchronization,

and computing are higher for stereo cameras compared to a monocular camera.

While it is impossible to recover scale in translation for arbitrary camera motion

in 6DOF when using monocular imaging, it is possible to recover scale when some

additional information such as the distance and attitude of camera from the ground

plane, such as is reasonably constant on a ground vehicle, is available. Recent work

shows that under the assumption that the imaged areas are flat and level, it is pos-

sible to use visual odometry with monocular imaging [4–6]. This is a significant

constraint in that such methods fail if the imaged areas are not guaranteed to be flat.

Here we report on relaxing the constraint such that visual odometry coupled with

wheel odometry can be viable in undulating and even in severely 3D settings (Fig. 1)

using monocular vision. We do this in two ways. First, our formulation of visu-

al odometry only requires the imaged areas to be locally flat but not necessarily

level. Our method recovers the ground inclination angle by finding coplanar fea-

tures tracked on the ground. Second, the method can automatically determine when

the imaged areas are not well approximated by locally flat patches and uses wheel

odometry. The result is a monocular system that recovers differential motion with

non-holonomic constraint in 3DOF rotation and 1DOF translation. When used on

a ground vehicle, our experiments indicate an accuracy comparable to that from

state-of-the-art stereo systems even the vehicle is tested in undulating terrain.

To estimate motion from imagery, the standard way is formulating visual odom-

etry into a bundle adjustment problem and solves numerically through iteration. Al-

ternatively, by using a steering model, the proposed method decouples the problems

of estimating rotation and translation. In the first step, we estimate robot orientation

using QR factorization [7] applied to a RANSAC algorithm [8] that minimizes the

image reprojection error. In the second step, we use the same set of inlier features

found by the RANSAC algorithm and solve an optimization problem that recovers

translation together with the ground inclination angles. Since the full blown problem

is believed to be NP hard, we utilize an approximation that ensures computational

feasibility. The proposed two-step estimation algorithm is able to run with very low

computational cost. Further, if the ground patches cannot be approximated as locally
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flat, the second step estimation becomes inaccurate. Then, wheel odometry is used

to compute translation, and visual odometry is only for recovering rotation.

The rest of this paper is organized as follows. In section 2, we present related

work. In section 3, we define our problem. The problem is mathematically solved in

Section 4 with implementation details provided. Experimental results are shown in

Section 5 and conclusions are made in Section 6.

2 Related Work

Today, it is commonly possible to estimate camera motion using visual odometry,

that is through the tracking of features in an image sequence. [2, 3]. Typically, the

camera motion is assumed to be unconstrained in the 3D space. For stereo system-

s [9–11], the baseline between the two cameras functions as a reference from which

the scale of motion can be recovered. For example Paz, et al’s method estimates the

motion of stereo hand-hold cameras where scale is solved using features close to the

cameras [12]. Konolige, at al’s stereo visual odometry recovers 6DOF camera mo-

tion from bundle adjustment [1]. The method is integrated with an IMU that handles

the orientational drift of visual odometry. It is able to work for lone distance navi-

gation in off-road environments. For monocular systems [13–15], if camera motion

is unconstrained, scale ambiguity is unsolvable. Using a monocular camera, Civera,

et al formulate the motion estimation and camera calibration into one problem [16].

The approach recovers camera intrinsic parameters and 6DOF motion up to scale.

When a monocular system is used in such a way that the camera motion is con-

strained to a surface, recovering scale is possible. For example, Kitt, et al’s method

solves scale ambiguity using Ackermann steering model and assumes the vehicle

drives on a planar road surface [5]. Nourani Vatani and Borges use Ackermann s-

teering model along with a downward facing camera to estimate the planar motion

of a vehicle [6]. Since the method only recovers the vehicle planar motion, an INS

system is used to obtain vehicle pitch and roll angles. Scaramuzza, et al’s approach

adopts a single omnidirectional camera [4], where Ackermann steering model and

steering encoder readings are used as constrains. This approach can recover motion

at a low computational cost with a single feature point, and shows significantly im-

proved accuracy compared to unconstrained cases. Scaramuzza also shows that a

monocular camera placed with an offset to the vehicle rotation center can recover

scale when the vehicle is turning [17]. In straight driving, however, the formulation

degenerates and the scale is no longer recoverable.

In [4–6, 17], the methods all assume a planar ground model. However, violation

of the assumption can make motion estimation fail. Compared to the existing work,

our method does not require the imaged terrain to be flat and level. Our method

simultaneously estimates the inclination angle of the ground while recovering mo-

tion. Further, our method combines wheel odometry to deal with the case where the

system automatically determines if the terrain cannot be well approximated by a lo-

cal flat patch. Here, we summarize our theoretical analysis of the motion estimation

due to space limitations. A more complete analysis will be published in the future.
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3 Problem Definition

We assume that the vehicle uses Ackermann steering [18] which limits the steering

to be perpendicular to the axles of the robots. We also assume that the camera is well

modeled as a pinhole camera [7] in which the intrinsic and extrinsic parameters are

calibrated.

3.1 Notations and Coordinate Systems

As a convention in this paper, we use right uppercase superscription to indicate the

coordinate systems, and right subscription k, k ∈ Z+ to indicate the image frames.

We use I to denote the set of feature points in the image frames.

• Camera coordinate system {C} is a 3D coordinate system. As shown in Fig. 2,

the origin of {C} is at the camera optical center with the z-axis coinciding with

the camera principal axis. The x− y plane is parallel to the camera image sensor

with the x-axis parallel to the horizontal direction of the image pointing to the

left. A point i, i ∈ I , in {Ck} is denoted as XC
(k,i).

• Vehicle coordinate system {V} is a 3D coordinate system. The origin of {V} is

coinciding with the origin of {C}, the x-axis is parallel to the robot axles pointing

to the robot left hand side, the y-axis is pointing upward, and the z-axis is pointing

forward. A point i, i ∈ I , in {Vk} is denoted as XV
(k,i).

• Image coordinate system {I} is a 2D coordinate system with its origin at the right

bottom corner of the image. The u- and v- axes in {I} are pointing to the same

directions as the x- and y- axes in {C}. A point i, i ∈ I , in {Ik} is XI
(k,i).

3.2 Problem Description

Since our robot remains on the ground and follows the Ackermann steering model,

the translation is limited to the z-direction in {V}. Let ∆z be robot translation be-

tween frames k−1 and k, ∆z is in the {Vk−1} coordinates. In this paper, we treat the

features on the ground in the near front of the robot as coplanar. As shown in Fig. 3,
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Fig. 2 Illustration of the vehicle coordinate system {V} and the camera coordinate system {C}.
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Fig. 3 Modeling the ground. The blue colored curve represents the ground, P is the projection of

the camera center, and W is the plane representing the ground in the near front of the robot. W has

pitch and roll DOFs around P.

let W indicate the plane. Let d0 be the height of the camera above the ground, d0

is set as a known constant. Let P be the projection of the camera center. We model

W with 2 rotational DOFs around P. Let N be the normal of W, and let tk and rk

be the Euler angles of N around the x- and z- axes in {Vk}, respectively. tk and rk

represent the pitch and roll inclination angles of the ground. Let ∆ p, ∆ t, and ∆r be

robot rotation angles around the y-, x-, and z- axes of {Vk−1} between frames k−1

and k, we have ∆ t = tk − tk−1 and ∆r = rk − rk−1. In this paper, we want to measure

the robot motion between consecutive frames. Our visual odometry problem can be

defined as

Problem 1 Given a set of image frames k, k ∈ Z+, and the camera height d0, com-

pute ∆ p, ∆ t, ∆r, and ∆z for each frame k.

4 Visual Odometry Algorithm

4.1 Rotation Estimation

In this section, we recover the 3DOF robot orientation. We will show that by using

the Ackermann steering model, robot orientation can be recovered regardless of

translation. From the pin-hole camera model, we have the following relationship

between {I} and {C},

ςXI
(k,i) = KXC

(k,i), (1)

where ςk is a scale factor, and K is the camera intrinsic matrix, which is known from

the pre-calibration [7].

The relationship between {C} and {V} is expressed as

XC
(k,i) = Rz(r0)Rx(t0)Ry(p0)X

V
(k,i), (2)

where Rx(·), Ry(·), and Rz(·) are rotation matrices around the x-, y-, and z- axes in

{V}, respectively, and p0, t0, and r0 are corresponding rotation angles from {V} to

{C}. Here, note that p0, t0, and r0 are the camera extrinsic parameters, which are

known from the pre-calibration [7].

Let X̃
V
(k,i) be the normalized term of XV

(k,i), we have

X̃
V
(k,i) = XV

(k,i)/zV
(k,i). (3)
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where zV
(k,i) is the 3rd entry of XV

(k,i). X̃
V
(k,i) can be computed by substituting (2) into

(1) and scaling XV
(k,i) such that the 3rd entry becomes one.

From the robot motion, we can establish a relationship between {Vk−1} and {Vk}
as follows,

XV
(k,i) = Rz(∆r)Rx(∆ t)Ry(∆ p)XV

(k−1,i)+[0, 0, ∆z]T , (4)

where Rx(·), Ry(·), and Rz(·) are the same rotation matrices as in (2).

Substituting (3) into (4) for frame k−1 and k, and since ∆ p, ∆ t, and ∆r are small

angles in practice, we perform linearization to obtain the following equations,

cix̃
V
(k,i) = x̃V

(k−1,i)+∆ p+ ỹV
(k−1,i)∆r, (5)

ciỹ
V
(k,i) = ỹV

(k−1,i)+∆ t − x̃V
(k−1,i)∆r, (6)

ci = 1− x̃V
(k−1,i)∆ p− ỹV

(k−1,i)∆ t +∆z/zV
(k−1,i), (7)

where x̃V
(l,i) and ỹV

(l,i), l = k−1,k, are the 1st and the 2nd entries of X̃
V
(l,i), respectively,

zV
(l,i) is the 3rd entry of XV

(l,i), and ci is a scale factor, ci = zV
(k,i)/zV

(k−1,i).

Eq. (5) and (6) describe a relationship of ∆ p, ∆ t, and ∆r without interfering with

∆z. This indicates that by using the Ackermann steering model, we can decouple

the estimation problem and recover ∆ p, ∆ t, and ∆r separately from ∆z. Stacking

(5) and (6) for different features, we have

AX = b, (8)

where

A =















1 0 ỹV
(k−1,1) −x̃V

(k,1) 0 0 ...

0 1 −x̃V
(k−1,1) −ỹV

(k,1) 0 0 ...

1 0 ỹV
(k−1,2) 0 −x̃V

(k,2) 0 ...

0 1 −x̃V
(k−1,2) 0 −ỹV

(k,2) 0 ...

... ... ... ... ... ... ...















,

b =−
[

x̃V
(k−1,1), ỹV

(k−1,1), x̃V
(k−1,2), ỹV

(k−1,2), ...
]T

,

X = [∆ p, ∆ t, ∆r, c1, c2, ...]
T .

Eq. (8) can be solved using the QR factorization method. Since A is a sparse

matrix, the QR factorization can be implemented very efficiently. Let x̃′V(k−1,i) and

ỹ′V(k−1,i) be the reprojected coordinates of x̃V
(k,i) and ỹV

(k,i) in {Vk−1}. The QR factor-

ization minimizes the image reprojection error,

min
∆ p,∆ t,∆r,

∑
i∈I

(x̃V
(k−1,i)− x̃′V(k−1,i))

2 +(ỹV
(k−1,i)− ỹ′V(k−1,i))

2.

ci, i ∈ I

(9)
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With (8) solved, let ex
(k−1,i) = x̃V

(k−1,i) − x̃′V(k−1,i) and e
y

(k−1,i)
= ỹV

(k−1,i) − ỹ′V(k−1,i),

ex
(k−1,i) and e

y

(k−1,i)
represent the reprojection errors of feature i, i ∈ I , in {Vk−1}.

Using (5) and (6), we can compute ex
(k−1,i) and e

y

(k−1,i)
as,

ex
(k−1,i) = x̃V

(k−1,i)+∆ p+ ỹV
(k−1,i)∆r− cix̃

V
(k,i), (10)

e
y

(k−1,i)
= ỹV

(k−1,i)+∆ t − x̃V
(k−1,i)∆r− ciỹ

V
(k,i). (11)

Similarly, let ex
(k,i) and e

y

(k,i)
be the reprojection errors in {Vk}, ex

(k,i) and e
y

(k,i)
can be

obtained as

ex
(k,i) = ex

(k−1,i)/ci, e
y

(k,i)
= e

y

(k−1,i)
/ci. (12)

Define Σ(l,i), l ∈ {k−1,k}, as a 2×2 matrix,

Σ(l,i) = diag
[

(ex
(l,i))

2,(ey

(l,i)
)2
]

, l ∈ {k−1,k}. (13)

Σ(l,i) contains the covariance of X̃
V
(l,i) measured from the image reprojection error,

which will be useful in the following sections.

4.2 Robot Translation

With robot orientation recovered, we derive the expression of translation in this sec-

tion. The task of recovering translation is formulated into an optimization problem

in the next section, and solved in the same section. An shown in Fig. 3, recall that

W is the plane representing the local ground in the near front of the robot, and tk
and rk are the pitch and roll angles of W. For a feature i, i ∈I , on W, the following

relationship holds from geometric relationship,

−zV
(k,i)(ỹ

V
(k,i)− tanrkx̃V

(k,i)+ tan tk) = d0, (14)

where d0 is the height of the camera above the ground.

Since tk and rk are small angles in practice, we approximate tan tk ≈ tk and

tanrk ≈ rk. Then, by substituting (14) into (7) for frames k−1 and k, we can derive

αtk +β rk = γ, (15)

where

α =−x̃V
(k−1,i)∆ p+ ỹV

(k−1,i)∆ t − ci +1,

β = (α +1)x̃V
(k,i)− x̃V

(k−1,i),

γ =−(α +1)(∆ t + x̃V
(k,i)∆r− ỹV

(k,i))− ỹV
(k−1,i).

Eq. (15) contains two unknown parameters, tk and rk, which indicates that we

can solve the function by using two features. Let (i, j) be a pair of features, i, j ∈I ,
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here we use (i, j) to solve (15). Then, let ∆z(i, j) be the translation computed from

feature pair (i, j). From (14), we can derive

∆z(i, j) =
1

2
(T(k,i)+T(k, j)−T(k−1,i)−T(k−1, j)), (16)

where

T(l,h) = d/(ỹV
(l,h)+ x̃V

(l,h)rk + tk), l ∈ {k−1,k}, h ∈ {i, j},

Now, let σ(i, j) be the standard deviation of ∆z(i, j) measured from the image re-

projection error, σ(i, j) will be useful in the next section. From (16), it indicates that

∆z(i, j) is a function of X̃
V
(l,h), l ∈ {k−1,k}, h ∈ {i, j}. Let J(l,h) be the Jacobian ma-

trix of that function with respect to X̃
V
(l,h), J(l,h) = ∂∆z(i, j)/∂ X̃

V
(l,h), we can compute

σ2
(i, j) = ∑

l∈{k−1,k}
∑

h∈{i, j}

J(l,h)Σ(l,h)J
T
(l,h), (17)

4.3 Translation Recovery by Optimization

In the above section, we showed that the translation can be recovered using a pair

of features. In this section, we want to estimate translation using multiple features,

by solving an optimization problem that minimizes the error variance of translation

estimation. Suppose we have a total number of n features, n ∈ Z+, combination of

any two features can provide n(n− 1)/2 feature pairs. Let J be a set of feature

pairs, 1 ≤ |J | ≤ n(n− 1)/2. Here, we use the feature pairs in J to compute the

translation ∆z. Define ∆z as the weighted sum of ∆z(i, j), (i, j) ∈ J ,

∆z = ∑
(i, j)∈J

w(i, j)∆z(i, j), (18)

where w(i, j) is the weight for feature pair (i, j), such that

∑
(i, j)∈J

w(i, j) = 1, and w(i, j) ≥ 0, (i, j) ∈ J . (19)

Define σ as the standard deviation of ∆z measured from the image reprojection

error. Here, we want to compute ∆z such that σ is minimized. We start with our first

question. For a given set of feature pairs J , how to assign the weights w(i, j), (i, j)∈
J , such that σ is the minimum? Mathematically, the problem can be expressed as,

Problem 2 Given σ(i, j), (i, j) ∈ J , compute

{w(i, j), (i, j) ∈ J }= arg min
w(i, j)

σ2, (20)

subject to the constraints in (19).
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To solve this problem, we can prove that if each feature i, i ∈ I belongs to

at most one feature pair in J , then Problem 2 is analytically solvable using the

Lagrange multiplier method [19]. However, if a feature exists in multiple feature

pairs, the problem becomes a convex optimization problem that has to be solved

numerically [20]. Here, we directly give the solution for Problem 2,

min
w(i, j)

σ2 = ∑
(i, j)∈J

w2
(i, j)σ

2
(i, j), (21)

where

w(i, j) =
1/σ2

(i, j)

∑(p,q)∈J 1/σ2
(p,q)

, (i, j) ∈ J . (22)

With Problem 2 solved, we come to our second question. How to select the fea-

ture pairs in J such that σ is the minimum? Mathematically, the problem is

Problem 3 Given I and σ(i, j), i, j ∈ I , determine

{J = {(i, j)}, i, j ∈ I }= argmin
J

(min
w(i, j)

σ2), (23)

such that each feature i, i ∈ I belongs to at most one feature pair in J .

Problem 3 can be reformulated into a balanced graph partition problem [21],

which is believed to be NP-hard [22]. Here, we focus on an approximation algorith-

m. The following two inequalities help us to construct the approximation algorithm.

First, we find a sufficient condition for selecting the feature pairs. For feature pair

(i, j), i, j ∈ I , if the following inequality is satisfied, then (i, j) ∈ J ,

1

σ2
(i, j)

>
1

σ2
(i,q)

+
1

σ2
(p, j)

, ∀p,q ∈ I , p,q 6= i, j. (24)

Second, we find that if we select the feature pairs (i, j), i, j ∈I in the increasing

order of σ(i, j), we can obtain a set of feature pairs, let it be J̃ , and let σ̃ be the

standard deviation of ∆z computed using feature pairs in J̃ . Let σ∗ be the standard

deviation of solving Problem 3 without approximation, we can prove that,

σ̃2 ≤ 2σ2
∗ . (25)

Eq. (25) indicates that we can solve Problem 3 with an approximation factor of 2.

Consequently, the feature pair selection algorithm is shown in Algorithm 1. In Line

5, we first sort the feature pairs in the increasing order of σ(i, j), i, j ∈ I . Then in

Lines 6-14, we go through each feature pair and check if (24) is satisfied. If yes, the

feature pair is selected. Then, in Lines 15-19, we select the rest of the feature pairs

in the increasing order of σ(i, j), i, j ∈ I . The algorithm returns J in Line 20.
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Algorithm 1: Feature Pair Selection

1 input : I and σ(i, j), i, j ∈ I

2 output : J
3 begin

4 J = /0;

5 Sort σ(i, j), i, j ∈ I in increasing order;

6 Create a variable σi for each i ∈ I ;

7 for the decreasing order of σ(i, j), i, j ∈ I do

8 σi = σ(i, j), σ j = σ(i, j);

9 end

10 for each i, j ∈ I do

11 if 1/σ2
(i, j) > 1/σ2

i +1/σ2
j then

12 Put (i, j) in J , then delete i, j from I ;

13 end

14 end

15 for the increasing order of σ(i, j), i, j ∈ I do

16 if i, j ∈ I then

17 Put (i, j) in J , then delete i, j from I ;

18 end

19 end

20 Return J .

21 end

4.4 Implementation and Hybrid with Wheel Odometry

To implement the algorithm, we select a number of ”good features” with the local

maximum eigenvalues using the openCV library, and track the feature points be-

tween consecutive frames using the Lucas Kanade Tomasi (LKT) method [23]. To

estimate robot rotation, we solve (8) using QR factorization method. The QR fac-

torization is applied to a RANSAC algorithm that iteratively selects a subset of the

tracked features as inliers, and uses the inliers to recover the 3DOF rotation, namely

∆ p, ∆ t, and ∆r. After recovering the rotation, we also obtain the error covariance

for each feature point from (13). Using the inliers selected by the RANSAC algo-

rithm and the corresponding error covariance, we can select the feature pairs based

on Algorithm 1 and recover robot translation ∆z based on (18), (16), and (22).

In the two-step estimation process, the translation estimation requires the ground

patches to be locally flat, while the rotation estimation does not rely on such re-

quirement. Therefore, when this requirement is violated, the translation estimation

becomes inaccurate. To deal with this case, a checking mechanism is implemented.

If the error variance σ2, the ground inclination angle tk or rk is larger than a corre-

sponding threshold, a hybrid odometry system is used. The wheel odometry is used

for computing translation, and the visual odometry is for recovering rotation. This

strategy allows the system to work robustly even when the camera field of view is

blocked by obstacles.
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Fig. 4 (a) Our robot, and (b) A monocular camera attached in front of the robot.

5 Experiments

We conduct experiments using an electrical vehicle as shown in Fig. 4(a). The ve-

hicle measures 3.04m in length and 1.50m in width. The wheelbase of the vehicle

is 2.11m. The vehicle is embedded with wheel encoders that measures the driving

speed. An Imagingsource DFK 21BUC03 camera is attached in front of the vehi-

cle, as shown in Fig. 4(b). The camera resolution is set at 640×480 pixels and the

focal length is 4mm (horizontal filed of view 64◦). The vehicle is equipped with a

high accuracy INS/GPS system (Applanix Pos-LV), accurate to better than 10 cm

for ground truth acquisition.

5.1 Computation Time

We first show computation time of the proposed visual odometry algorithm. The

algorithm is tested on a laptop computer with Quad 2.5GHz CPUs and 6G RAM.

We track 300 features at each frame. As shown in Table 1, the feature tracking

takes 38ms and consumes an entire core. The state estimation takes 5ms and runs

on another core. The proposed algorithm is able to run at 26Hz on average.

5.2 Accuracy of Test Results

To demonstrate the accuracy of the proposed visual odometry algorithm, we conduct

experiments with relatively long driving distance. The test configuration is shown in

Table 2. The experiments are conducted with different elevation change and ground

material. The overall driving distance for the 6 tests is about 5km. The mean relative

error of the visual odometry is 0.83%. Specifically, the trajectories of Test 1-2 are

presented in Fig. 5.

Table 1 Computation time of the visual odometry algorithm using 300 features.

Feature Tracking State Estimation Overall

38ms 5ms 43ms
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Table 2 Accuracy test configuration and relative error computed from 3D coordinates.

Configuration

Test Driving Elevation Ground Relative

No. Distance Change Material Error

1 903m 18m Grass 0.71%

2 1117m 27m Asphalt 0.87%

3 674m 15m Grass+Soil 0.74%

4 713m 17m Concrete 1.13%

5 576m 21m Asphalt 0.76%

6 983m 13m Soil 0.81%
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Fig. 5 (a) Planar view and (b) 3D view of the robot trajectories in accuracy test 1-2 (Table 1). The

black colored dots are the starting points. The green colored curve is the visual odometry output

for Test 1, and the red colored curve is the corresponding ground truth. The blue colored curve is

the visual odometry output for Test 2, and the black colored curve is the ground truth. Ground truth

is measured by a high accuracy INS/GPS system.

5.3 Experimental Results

To test the robustness of the proposed method, we conduct experiments with obsta-

cles on the driving path. When the camera field of view is blocked by an obstacle,

the requirement on local flatness of the ground pathes is violated. In this case, a hy-

brid odometry system is used. The translation is measured by wheel odometry and

the rotation is estimated by visual odometry. As shown in Table 3, the robustness

tests are conducted with different number of obstacles. By using the hybrid odom-

etry system, the relative error is kept much lower than using the visual odometry

only. Specifically, the trajectories and obstacles of Test 1 are shown in Fig. 6.

5.4 Analysis of Optimization

Finally, we analyze the effectiveness of the optimization procedure in Section 4.3.

We compare three different versions of visual odometry algorithms as follows.

1. Visual Odometry (VO): The proposed visual odometry algorithm of this paper.
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Table 3 Robustness test configuration and relative error computed from 3D coordinates.

Configuration Relative Error

Test Driving Obstacle Visual+Wheel Visual

No. Distance No. Odometry Odometry

1 167m 4 0.43% 1.83%

2 124m 3 0.39% 2.46%

3 182m 4 0.54% 1.54%

4 263m 6 0.61% 4.13%

5 106m 3 0.47% 2.76%

6 137m 5 0.41% 3.81%
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Fig. 6 (a) Robot trajectories for robustness test 1 (Table 2). The test includes 4 obstacles labeled

with numbers. The corresponding obstacles are shown in (b)-(e). The black colored dot is the s-

tarting point. The blue-green colored curve is measured by the hybrid odometry system, the blue

colored segments are measured by visual odometry and the green colored segments are measured

by visual odometry for rotation and wheel odometry for translation, the red colored curve is mea-

sures by visual odometry only, and the black colored curve is the ground truth.

2. Visual Odometry Random Pair Selection (VORPS): In this version, we turn off

the feature pair selection and use randomly selected the feature pairs. By using

this algorithm, we can inspect the effect of Problem 3.

3. Visual Odometry Equal Weight (VOEW): In this version, we completely turn off

the optimization and use equal weights instead of optimized weights in (18). By

doing this, we can inspect the effect of Problem 2.

For comparison, we define two evaluation metrics. Let σ̄ as the mean standard

deviation of the one-step translation ∆z, and let ε̄ be the mean relative error of the

visual odometry output, σ̄ and ε̄ are computed using combination of the data in

Table 2. Comparison of the results is presented in Fig. 7. Since σ̄ of VOEW is

significantly larger than that of VO or VORPS, we have to show the full scaled
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Fig. 7 Comparison of 3 different versions of the visual odometry. VO is the proposed visual odom-

etry algorithm of this paper. VORPS is another version without the feature pair selection, randomly

selected feature pairs are used. VOEW uses equal weights instead of optimized weights in (18).

σ̄ is the mean standard deviation of the one-step translation ∆z. A full scaled comparison of σ̄
is shown in the small thumbnail at the left-top corner. ε̄ is the mean relative error of the visual

odometry. The results are obtained using combination of the data in Table 2.

comparison in a small thumbnail at the left-top corner of the figure. From Fig. 7,

it is obvious that the errors of VOEW and VORPS are larger then those of VO,

especially the errors of VOEW are significantly larger. This result indicates that the

optimization functions effectively, while using the optimized weights (Problem 2)

plays a more important role than using the selected feature pairs (Problem 3) for

reducing the visual odometry error.

6 Conclusion and Future Work

Estimation of camera motion by tracking visual features is difficult because it de-

pends on the shape of the terrain which is generally unknown. The estimation prob-

lem is furthermore difficult when a monocular system is used because scale of the

translation component cannot be recovered. Our method succeeds in two ways. First,

it simultaneously estimates a planar patch in front of the camera along with camera

motion, and second recovers scale by taking advantage of the fixed distance from

the camera to the ground. In some cases, approximating the terrain in front of the

vehicle as a planar patch cannot be justified. Our method automatically detects these

cases and uses a hybrid odometry system in which rotation is estimated from visual

odometry and translation is recovered by wheel odometry.

Since this paper relies on a kinematical vehicle steering model, lateral wheel

slip is not considered. For the future work, we are considering a revision to the

vehicle motion model such that the algorithm can handle more complicated ground

conditions where lateral wheel slip is noticeable.
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