
Robust multi-objective optimal switching control

arising in 1,3-propanediol microbial fed-batch process

Chongyang Liua,c, Zhaohua Gonga, Kok Lay Teob,c, Jie Sunc, Louis Caccettac

aSchool of Mathematics and Information Science, Shandong Institute of Business and

Technology, Yantai 264005, Shandong, China
bSchool of Mathematics and Statistics, Changsha University of Science and Technology,

Changsha 410114, China
cDepartment of Mathematics and Statistics, Curtin University, Perth 6845, Australia

Abstract

This paper considers optimal control of glycerol producing 1,3-propanediol (1,3-
PD) via microbial fed-batch fermentation. The fed-batch process is formulated
as a nonlinear switched time-delay system. In general, the time-delay in the
fed-batch process cannot be exactly estimated. Our goal is to design an optimal
switching control scheme to simultaneously maximize 1,3-PD productivity and
1,3-PD yield under time-delay uncertainty. Accordingly, we propose a robust
multi-objective optimal switching control model, in which two objectives, i.e.,
1,3-PD productivity and 1,3-PD yield, and their sensitivities with respect to un-
certain time-delay are considered in the objective vector. The control variables
in this problem are the feeding rate of glycerol, the switching instants and the
terminal time of the process. By introducing an auxiliary dynamic system to
calculate the objective sensitivities and performing a time-scaling transforma-
tion, we obtain an equivalent multi-objective optimal switching control prob-
lem in standard form. We then convert the equivalent multi-objective optimal
control problem into a sequence of single-objective optimal switching control
problems by using a modified normal boundary intersection method. A novel
gradient-based single-objective solver combining control parameterization with
constraint transcription technique is developed to solve these resulting single-
objective optimal control problems. Finally, numerical results are provided to
verify the effectiveness of the proposed solution approach.

Key words: Switched time-delay system; Multi-objective optimal control;
Normal boundary intersection; Control parameterization; Fed-batch process

1. Introduction

1,3-Propanediol (1,3-PD) is a promising bulk chemical which has attracted
worldwide attention due to its enormous application in polymers, cosmetics,
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foods, lubricants and medicines [1]. Currently, the market for 1,3-PD amounts
to over 100 million pounds per year and is growing rapidly [2]. In general, pro-
duction routes for 1,3-PD can be divided into two categories: chemical synthesis
and microbial conversion. Compared with chemical synthesis, bioconversion of
1,3-PD via fermentation is particularly attractive in that the process is rela-
tively easy and does not generate toxic byproducts. This conversion could also
help to reduce glycerol surplus in the market [3]. Hence, improvement in the
microbial production of 1,3-PD is of considerable importance to industries. To
maximize the profit of 1,3-PD production, multi-objective optimization should
be applied to the production process.

Glycerol can be converted to 1,3-PD by several microorganisms [4]. Among
these, Klebsiella pneumoniae (K. pneumoniae) ferments glycerol to 1,3-PD in
a good yield [5]. Glycerol fermentation to produce 1,3-PD by K. pneumoniae is
a complex bioprocess [6]. Regarding the various fermentation techniques, fed-
batch fermentation appears to be the most efficient cultivation method. The
fed-batch fermentation is typically implemented by switching between batch
mode and feeding mode. This switching manner can reduce effectively the
substrate inhibition and improve the 1,3-PD productivity. Moreover, the con-
centration of substrate in a fed-batch process can be externally manipulated by
using appropriate feeding rate profiles. As a result, optimal control of fed-batch
processes has been a topic of research for many years [7, 8, 9].

The performance of optimal control depends on the accuracy of the process
model. Recently, it is found that the fed-batch process can be accurately mod-
elled as nonlinear dynamical systems. Under the assumption that the feed of
glycerol only occurs at impulsive instants, the process is modelled as nonlinear
impulsive system [10]. Taking the 1,3-PD concentration at the terminal time
as the objective, optimal control of nonlinear impulsive systems is discussed
in [11]. However, since the feeding rate of glycerol is finite, it is not reasonable
to describe the actual fed-batch process as an impulsive dynamical system. In
reality, the feed of glycerol is a continuous process. Thus, the fed-batch process
is modelled as nonlinear switched systems [12, 13]. Optimal control of nonlin-
ear switched systems is investigated in [14]. However, time-delays are ignored in
the above nonlinear systems. In fact, like most real systems, fed-batch bioreac-
tors are influenced by time-delays [15, 16]. Several reasons may be responsible
for the occurrence of the delays in the fed-batch process: a cell has to undergo
some change or growth process for which it needs some time before it reacts with
others; the substrate and the products have to be transported across the cell
membrane requiring a certain amount of time for transport; sometimes, either
because of lack of knowledge or in order to reduce complexity it is appropriate
to omit a number of intermediate steps in the reaction system for which the
processing time is not negligible and has to be implemented as a delay [17, 18].
As a result, a nonlinear switched time-delay system is proposed in [19]. More
recently, a published book [20] summarizes some optimal control results arising
in 1,3-PD production processes. Although the results obtained are interesting,
only one objective is considered in these optimal control problems and thus they
all belong to single-objective optimal control (SOC) problems. Moreover, it is
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difficult to determine the exact value of time-delay in the dynamic equation
describing the fed-batch process and only nominal time-delay can be obtained
using experimental data [19].

In this paper, we consider robust multi-objective optimal control (RMOC)
of 1,3-PD fed-batch production in the presence of time-delay uncertainty. This
fed-batch process is formulated as a nonlinear switched time-delay system. The
optimal control problem is to design an optimal switching control scheme that
maximizes 1,3-PD productivity and 1,3-PD yield, and also minimizes their sen-
sitivities with respect to uncertain time-delay. Accordingly, we propose a robust
multi-objective optimal switching control model that regards the feeding rate of
glycerol, switching instants between batch and feeding modes, and the terminal
time of the fermentation process as control variables and is subjected to contin-
uous state inequality constraints. By the way, optimal control of switched sys-
tems is an important and challenging research topic for applied mathematician-
s [21, 22, 23, 24]. Nevertheless, optimal control for switched systems with time-
delays are scarce in the literature. Necessary conditions for determining optimal
switching times and/or optimal impulse magnitudes for such systems are derived
in [25]. Switching time and parameter optimization for nonlinear switched sys-
tems with multiple time-delays is considered in [26]. However, no time-delay
uncertainty is considered in these optimal switching control results. On the
other hand, muti-objective optimal control (MOC) problems often arise in bio-
processes and have been extensively investigated; see, for example [27, 28, 29].
Multiple objective approaches are often employed to tackle these MOC problem-
s: (i) scalarization methods, e.g., convex weighted sum (CWS) method [30], and
normal boundary intersection method (NBI) [31], which transform MOC prob-
lem into a sequence of parametric SOC problems, and (ii) vectorization methods,
e.g., genetic algorithm [32], and particle swarm optimization [33], which gener-
ate the Pareto set directly from the multi-objective formulation. It should be
noted that scalarization approaches, compared with vectorization methods, can
be combined with gradient-based deterministic optimization methods for finding
optimal solutions to large-scale and highly constrained MOC problems in a fast
and efficient way. As a result, scalarization approaches have been extensively
used to solve MOC problems in biochemical processes [34, 35].

In this paper, by introducing an auxiliary time-delay system to calculate
the objective sensitivities and performing a time-scaling transformation [36], we
first transform the RMOC problem into an equivalent one in standard form.
The equivalent problem is then converted into a sequence of parametric SOC
problems by using a modified NBI method. The advantages of this method
are that it can generate evenly distributed points in Pareto set and that it is
weakly efficient for MOC problem. Incidentally, the existing single-objective
solvers, including those developed in [28, 34, 35], only deal with SOC problems
involving ordinary differential systems and thus cannot be used to solve the
resulting SOC problems involving switched time-delay systems. For this reason,
we approximate the resulting SOC by a sequence of parameter optimization
problems through the application of the control parameterization method [37].
The continuous state inequality constraints are approximated as constraints in
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canonical form by employing the constraint transcription technique [38]. The
gradient formulas of the objectives and constraints with respect to the decision
variables are also provided. On this basis, a novel gradient-based solver is
developed to solve the resulting SOC problem. Finally, numerical results verify
the effectiveness of the proposed solution approach.

The paper is organized as follows. Section 2 gives the process model de-
scribing the fed-batch process. Section 3 presents the RMOC problem. Sec-
tion 4 gives the equivalent form of the RMOC problem. The numerical solution
method for the equivalent problem is developed in Section 5. Numerical results
are discussed in Section 6. Finally, Section 7 provides the main conclusions.

2. Process model

The fed-batch process for converting glycerol to 1,3-PD begins with a batch
mode, then batch-fed glycerol and alkali are poured into the reactor in order
to provide nutrition and maintain a suitable environment for the cells’ growth.
In particular, time-delays exist in the process [15, 16]. The process model of
fed-batch process is based on the following assumptions:

Assumption 1. The solution in the reactor is sufficiently well mixed so that
the concentrations of reactants are uniform.

Assumption 2. The concentrations of biomass, substrate, 1,3-PD, acetate and
ethanol in reactor at time t are determined by biomass concentration at time
t− α.

Under the above Assumptions 1 and 2, the mass balance relationships for
biomass, substrate and reaction products in the batch mode can be formulated
as



















ẋ1(t) = µ(t)x1(t− α),

ẋ2(t) = −q2(t)x1(t− α),

ẋℓ(t) = qℓ(t)x1(t− α), ℓ = 3, 4, 5,

ẋ6(t) = 0,

where t denotes process time; xi(t), i = 1, 2, 3, 4, 5, 6, are, respectively, the
extracellular concentrations of biomass, glycerol, 1,3-PD, acetic acid, ethanol,
and the volume of culture fluid at time t in the fermentor; α is a time-delay;
µ(t) is the specific growth rate of cells; q2(t) is the specific consumption rate of
substrate; and qℓ(t), ℓ = 3, 4, 5, are, respectively, the specific formation rates of
the reaction products 1,3-PD, acetic acid and ethanol.

The mass balance relationships in the feeding mode can be expressed as






















ẋ1(t) = µ(t)x1(t− α)−D(t)x1(t),

ẋ2(t) = D(t)
( cs0
1 + r

− x2(t)
)

− q2(t)x1(t− α),

ẋℓ(t) = qℓ(t)x1(t− α)−D(t)xℓ(t), ℓ = 3, 4, 5,

ẋ6(t) = (1 + r)u(t),
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where cs0 = 10672mmolL−1 is the concentration of the initial feed of glycerol;
r = 0.75 is the velocity ratio of adding alkali to glycerol; u(t) is the feeding rate
of glycerol in the feeding mode; and D(t) is the dilution rate at time t defined
by

D(t) :=
(1 + r)u(t)

x6(t)
.

Based on the work in [19], the specific growth rate of cells can be expressed
as follows:

µ(t) :=
∆1x2(t)

x2(t) + k1

5
∏

ℓ=2

(

1−
xℓ(t)

x∗ℓ

)

, (1)

where ∆1 is the maximum specific growth rate; k1 is the Monod saturation
constant; x∗ℓ are the maximal residual concentrations of substrate and reaction
products. The specific consumption rate of substrate is

q2(t) := m2 +
µ(t)

Y2
+

∆2x2(t)

x2(t) + k2
, (2)

where m2 is the maintenance term of substrate consumption under substrate-
limited conditions; Y2 is the maximum growth yield; ∆2 is the maximum incre-
ment of substrate consumption rate under substrate-sufficient conditions; and k2
is the saturation constant for substrate. The specific formation rates of 1,3-PD
and acetate are defined as

qℓ(t) := mℓ + Yℓµ(t) +
∆ℓx2(t)

x2(t) + kℓ
, ℓ = 3, 4, (3)

where m3 and m4 are the maintenance terms of product formations under
substrate-limited conditions; Y3 and Y4 are the maximum product yields; ∆3

and ∆4 are the maximum increments of product formation rates under substrate-
sufficient conditions; and k3 and k4 are saturation constants for 1,3-PD and
acetate. The specific formation rate of ethanol can be described by

q5(t) := q2(t)

(

c1
c2 + µ(t)x2(t)

+
c3

c4 + µ(t)x2(t)

)

, (4)

where c1, c2, c3 and c4 are given parameters for the determination of the yield
of ethanol on glycerol. Under anaerobic conditions at 37◦C and pH 7.0, the
maximal residual concentrations are x∗2 = 2039mmolL−1, x∗3 = 1036mmolL−1,
x∗4 = 1026mmolL−1 and x∗5 = 360.9mmolL−1. The values of kinetic parameters
in (1)-(4) are listed in Table 1.

Let N be the total number of batch and feeding modes. Then, the complete
fed-batch process can be expressed as the following nonlinear switched time-
delay system:

{

ẋ(t) = f i(x(t), x(t − α), u(t)), t ∈ (τi−1, τi], i = 1, . . . , N,

x(t) = φ(t), t ≤ τ0,
(5)
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Table 1: The values of kinetic parameters in system (1)-(4) [19].

ℓ mℓ Yℓ ∆ℓ kℓ cℓ
1 - - 0.8 0.28 0.025
2 1.927 0.0063 6.8489 17.7296 0.06
3 -3.2819 80.6096 10.3687 15.50 2.81
4 -0.97 33.07 5.74 85.71 65.5226

where x(t) := (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t))
⊤ is the state; x(t−α) is the

delayed state; u(t) is the control function;

f2j+1(x(t), x(t − α), u(t)) :=

















µ(t)x1(t− α)
−q2(t)x1(t− α)
q3(t)x1(t− α)
q4(t)x1(t− α)
q5(t)x1(t− α)
0,

















, j = 0, . . . ,

⌊

N − 1

2

⌋

;

f2j(x(t), x(t − α), u(t))

:=



















µ(t)x1(t− α)−D(t)x1(t)

D(t)
( cs0
1 + r

− x2(t)
)

− q2(t)x1(t− α)

q3(t)x1(t− α)−D(t)x3(t)
q4(t)x1(t− α)−D(t)x4(t)
q5(t)x1(t− α)−D(t)x5(t)
(1 + r)u(t)



















, j = 1, . . . ,

⌊

N

2

⌋

;

⌊·⌋ denotes the floor function; τ1, . . . , τN−1, are switching instants such that
0 = τ0 ≤ τ1 ≤ · · · ≤ τN = tf ; tf is the terminal time; and φ : R → R6 is a given
history function. Note that the number N is determined by the terminal time
and the state of system (5) does not undergo jumps at the switching instants.

In system (5), the time-delay α may not be known exactly when the process
is optimized, i.e., it can be uncertain. Nevertheless, the nominal time-delay α
can be estimated using experimental data; see, for example [19]. Moreover, the
concentrations of biomass, glycerol, reaction products and volume of culture
fluid must be restricted to biological meaningful ranges. Hence, define

x(t) ∈ W :=

6
∏

ℓ=1

[x∗ℓ, x
∗

ℓ ], t ∈ [0, tf ], (6)

where x∗1 = 0.01gL−1, x∗2 = 15mmolL−1, x∗3 = x∗4 = x∗5 = 0mmolL−1 and
x∗6 = 4L are the lower thresholds for cell growth for biomass, glycerol, 1,3-
PD, acetic acid, ethanol and volume of culture fluid, respectively; and x∗1 =
6gL−1, x∗6 = 6.55L, x∗2, x

∗
3, x

∗
4 and x∗5 (as used in the formula for µ(t)) are the

corresponding upper thresholds.
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3. Robust multi-objective optimal switching control problem

The control variables in the switched time-delay system (5) include the feed-
ing rate of glycerol u(t), switching instants τi, i = 1, . . . , N−1, and the terminal
time tf . There are maximal and minimal time durations that are spent on each
of the batch and feeding modes since biological considerations limit the rate of
switching. On this basis, define

Γ := {(τ1, . . . , τN−1, tf )
⊤ ∈ RN | ρi ≤ τi − τi−1 ≤ δi, i = 1, . . . , N − 1,

ρN ≤ tf ≤ δN}, (7)

where ρi and δi are lower and upper bounds, respectively. Any τ ∈ Γ is called
an admissible vector of switching instants and terminal time.

During the batch mode, the feeding rate of glycerol is clearly zero. Moreover,
during the feeding mode, the feeding rate of glycerol cannot be unbounded.
Thus, define

Ui :=

{

[ai, bi], if i is even,

{0}, if i is odd,

where ai > 0 and bi > 0 are lower and upper bounds for the feeding rate of
glycerol during the ith feeding mode, respectively. Furthermore, we define

U := {u ∈ L∞([0, δN ], R)| u(t) ∈ Ui, i = 1, . . . , N}, (8)

where L∞([0, δN ], R) is the space of essentially bounded measurable functions
from [0, δN ] into R. Any u ∈ U is called an admissible control function. Ac-
cordingly, any pair (u, τ) ∈ U × Γ is called an admissible control pair. Let
x(·|u, τ, α) denote the unique continuous solution of system (5) corresponding
to the admissible control pair (u, τ) ∈ U × Γ and the nominal time-delay α.

Suppose that we are given a nominal time-delay α. The control objective
in the fed-batch process is to maximize 1,3-PD productivity and 1,3-PD yield,
simultaneously. The 1,3-PD productivity is the ratio between 1,3-PD mass and
the process duration:

G1(u, τ |α) :=
x3(tf |u, τ, α)x6(tf |u, τ, α)

tf
. (9)

The 1,3-PD yield is the ratio of the amount of 1,3-PD formed and the amount
of substrate consumed:

G2(u, τ |α) :=
x3(tf |u, τ, α)x6(tf |u, τ, α)

(x6(tf |u, τ, α)− φ6(0))cs0
. (10)

Let
J(u, τ |α) := (−G1(u, τ |α),−G2(u, τ |α))

⊤ (11)
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be the objective vector to be minimized. Then, taking into consideration of
constraints (6), (7) and (8), we present the following MOC problem:

(MOP) min J(u, τ |α)

s.t. x(t|u, τ, α) ∈W, t ∈ [0, tf ],

(u, τ) ∈ U × Γ.

In (MOP), the optimal control pair is determined under the assumption
that the nominal time-delay α is exact. However, this is usually not the case
in practice; the nominal time-delay is only an approximation of the true time-
delay. Thus, we consider the following measure of productivity sensitivity with
respect to the uncertain time-delay:

G3(u, τ |α) :=

(

∂G1(u, τ |α)

∂α

)2

. (12)

Clearly, (12) measures the rate at which productivity changes in response to
small change in time-delay. Thus, a low value for productivity sensitivity indi-
cates that the control pair is robust for productivity. Similarly, we present the
following measure of yield sensitivity with respect to the uncertain time-delay:

G4(u, τ |α) :=

(

∂G2(u, τ |α)

∂α

)2

. (13)

Equation (13) measures the rate at which yield changes in response to small
change in time-delay. Likewise, a low value for yield sensitivity implies that the
control pair is robust for yield. We now propose the following modified objective
vector that simultaneously minimizes (11), (12) and (13):

Jβ(u, τ |α) := (−G1(u, τ |α) + βG3(u, τ |α),−G2(u, τ |α) + βG4(u, τ |α))
⊤, (14)

where β ≥ 0 is a weight factor.
Thus, our RMOC problem can be stated as:

(RMOP
β
) min Jβ(u, τ |α)

s.t. x(t|u, τ, α) ∈W, t ∈ [0, tf ],

(u, τ) ∈ U × Γ.

Note that (RMOPβ) becomes (MOP) when the weight factor β is equal to zero.

4. Problem transformation

Problem (RMOP
β
) exhibits two non-standard aspects: (i) the objective vec-

tor contains non-standard sensitivity terms; and (ii) the terminal time is free

instead of fixed. Thus, it is difficult to solve (RMOP
β
) by numerical optimiza-

tion algorithms [37, 39]. In the following subsections, we will circumvent these
two challenges by problem transformation.
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4.1. Computing sensitivity

Let

ζ(t|u, τ, α) :=

{

φ̇(t), if t ≤ τ0,

f i(x(t), x(t − α), u(t)), if t ∈ (τi−1, τi], i ∈ {1, . . . , N}.

Obviously, for almost all t ∈ (−∞, tf ], we have ẋ(t|u, τ, α) = ζ(t|u, τ, α).
For a given nominal time-delay α, we consider the following auxiliary time-

delay system:































ϕ̇(t) =
∂f i(x(t), x(t − α), u(t))

∂x
ϕ(t) +

∂f i(x(t), x(t − α), u(t))

∂x(t− α)

×ϕ(t− α)−
∂f i(x(t), x(t − α), u(t))

∂x(t− α)
ζ(t− α|u, τ, α),

t ∈ (τi−1, τi], i = 1, 2, . . . , N,

ϕ(t) = 0, t ≤ τ0.

(15)

Let ϕ(·|u, τ, α) be the unique continuous solution of the auxiliary time-delay
system (15) corresponding to the admissible control pair (u, τ) ∈ U ×Γ and the
nominal time-delay α. It can be shown (see, for example [40, 41]) that the state
x(t|u, τ, α) is differentiable with respect to α and

∂x(t|u, τ, α)

∂α
= ϕ(t|u, τ, α), t ∈ (−∞, tf ]. (16)

On this basis, we obtain the following results which give the sensitivity terms
with respect to α.

Theorem 1. Let (u, τ) ∈ U × Γ. Then, for a given nominal time-delay α,

(

∂G1(u, τ |α)

∂α

)2

=
(ϕ3(tf )x6(tf ) + ϕ6(tf )x3(tf ))

2

t2f
,

and
(

∂G2(u, τ |α)

∂α

)2

=
(ϕ3(tf )x

2
6(tf )− φ6(0)(ϕ3(tf )x6(tf ) + ϕ6(tf )x3(tf )))

2

(x6(tf )− φ6(0))
4c2s0

,

where x(tf ) = x(tf |u, τ, α); and ϕ(tf ) = ϕ(tf |u, τ, α).

Proof. Differentiate G1 and G2 with respect to α and then apply equation (16).
�

From Theorem 1, we see that the sensitivity terms of G1 and G2 with respect
to α can be computed by solving the auxiliary time-delay system (15) with
the switched time-delay system (5), simultaneously. Furthermore, based on
Theorem 1, sensitivities (12) and (13) become

Ḡ3(u, τ |α) :=
(ϕ3(tf )x6(tf ) + ϕ6(tf )x3(tf ))

2

t2f
, (17)
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and

Ḡ4(u, τ |α) :=
(ϕ3(tf )x

2
6(tf )− φ6(0)(ϕ3(tf )x6(tf ) + ϕ6(tf )x3(tf )))

2

(x6(tf )− φ6(0))
4c2s0

, (18)

where x(tf ) = x(tf |u, τ, α); and ϕ(tf ) = ϕ(tf |u, τ, α).

4.2. Time-scaling transformation

The terminal time tf in the switched time-delay system (5) and the auxiliary
time-delay system (15) is free, that is, these systems must be integrated over a
variable time horizon. For non-delay systems, this difficulty can be overcome by
applying the following time-scaling transformation [36] to map interval [0, tf ]
into the fixed interval [0, 1]:

t = t(s) = tfs, (19)

where s ∈ [0, 1] is a new time variable. Clearly, s = 0 corresponds to t = 0,
s = 1 corresponds to t = tf . This transformation is well known in the optimal
control of non-delay systems. We now investigate its use for the switched time-
delay system (5) and the auxiliary time-delay system (15). Let x̃(s) := x(tfs),
ũ(s) := u(tfs) and θi := τi/tf , i = 1, . . . , N . Under the transformation (19),
system (5) is transformed to the following switched time-delay system with fixed
terminal time:
{

˙̃x(s) = f̃ i(x̃(s), x̃(s− t−1
f α), ũ(s), tf ), s ∈ (θi−1, θi], i = 1, . . . , N,

x̃(s) = φ̃(s), s ≤ θ0,
(20)

where θ0 = 0; f̃ i(x̃(s), x̃(s− t−1
f α), ũ(s), tf ) := tff

i(x̃(s), x̃(s− t−1
f α), ũ(s)); and

φ̃(s) := φ(tfs). In addition, constraint (7) becomes

Θ := {θ̃ = (θ1, . . . , θN−1, tf )
⊤ ∈ RN | ρ̃i ≤ θi − θi−1 ≤ δ̃i, i = 1, . . . , N − 1,

ρN ≤ tf ≤ δN},

where ρ̃i := ρi/tf ; and δ̃i := δi/tf . For the set defined by (8), it becomes

Ũ := {ũ ∈ L∞([0, 1], R)| ũ(s) ∈ Ui, i = 1, . . . , N}. (21)

Accordingly, let ϕ̃(s) := ϕ(tfs) and let ∂x̂ denote differentiation with respect
to x̃(s− t−1

f α). Then, the auxiliary time-delay system (15) is transformed into
an equivalent form given below:











































˙̃ϕ(s) =
∂f̃ i(x̃(s), x̃(s− t−1

f α), ũ(s), tf )
∂x̃ ϕ̃(s)

+
∂f̃ i(x̃(s), x̃(s− t−1

f α), ũ(s), tf )

∂x̂
ϕ̃(s− t−1

f α)

−t−1
f

∂f̃ i(x̃(s), x̃(s− t−1
f α), ũ(s), tf )

∂x̂
ζ̃(s− t−1

f α|ũ, θ̃, α),

s ∈ (θi−1, θi], i = 1, . . . , N,

ϕ̃(s) = 0, s ≤ θ0,

(22)
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where

ζ̃(s|ũ, θ̃, α)

:=

{

tf
˙̃
φ(s), if s ≤ θ0,

f̃ i(x̃(s), x̃(s− t−1
f α), ũ(s), tf ), if s ∈ (θi−1, θi], i ∈ {1, . . . , N}.

Denote the unique continuous solutions of systems (20) and (22) by x̃(·|ũ, θ̃, α)
and ϕ̃(·|ũ, θ̃, α) corresponding to the admissible control pair (ũ, θ̃) ∈ Ũ ×Θ and
the nominal time-delay α on (−∞, 1]. Then, constraint (6) changes to

x̃(s|ũ, θ̃, α) ∈ W, s ∈ [0, 1]. (23)

Moreover, substituting x̃(·|ũ, θ̃, α) and ϕ̃(·|ũ, θ̃, α) into equations (9), (10), (17)
and (18) yields

G̃1(ũ, θ̃|α) :=
x̃3(1)x̃6(1)

tf
, (24)

G̃2(ũ, θ̃|α) :=
x̃3(1)x̃6(1)

(x̃6(1)− φ̃6(0))cs0
, (25)

G̃3(ũ, θ̃|α) :=
(ϕ̃3(1)x̃6(1) + ϕ̃6(1)x̃3(1))

2

t2f
, (26)

and

G̃4(ũ, θ̃|α) :=
(ϕ̃3(1)x̃

2
6(1)− φ̃6(0)(ϕ̃3(1)x̃6(1) + ϕ̃6(1)x̃3(1)))

2

(x̃6(1)− φ̃6(0))
4c2s0

, (27)

where x̃(1) = x̃(1|ũ, θ̃, α); and ϕ̃(1) := ϕ̃(1|ũ, θ̃, α). Then, objective vector (14)
turns into

J̃β(ũ, θ̃|α) := (−G̃1(ũ, θ̃|α) + βG̃3(ũ, θ̃|α),−G̃2(ũ, θ̃|α) + βG̃4(ũ, θ̃|α))
⊤. (28)

As a result, (RMOPβ) can be stated as the following equivalent problem:

(ERMOPβ) min J̃β(ũ, θ̃|α)

s.t. x̃(s|ũ, θ̃, α) ∈W, s ∈ [0, 1],

(ũ, θ̃) ∈ Ũ ×Θ.

Obviously, (ERMOPβ) is a MOC problem with the terminal state cost and the
fixed terminal time.

5. Numerical solution method

In this section, we will develop a numerical solution method combining a
modified NBI with a single-objective optimal control solver to solve (ERMOPβ).
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5.1. Modified normal boundary intersection

NBI method is one of the multi-objective optimization approaches developed
in [42]. This approach is a powerful algorithm for producing an evenly distribut-
ed points in Pareto set and it is also proved that the method is independent of
the relative scales of the objective functions [31].

Each objective function has a minimum value in its objective space called
individual minima. This value is obtained independently by minimizing the
following SOC problem:

(ERMOP
β

k ) min J̃β
k (ũ, θ̃|α), k ∈ {1, 2} (29)

s.t. x̃(s|ũ, θ̃, α) ∈ W, s ∈ [0, 1],

(ũ, θ̃) ∈ Ũ ×Θ,

where J̃β
k is the kth component of the vector objective J̃β . The obtained min-

ima points for each objective function form important boundary points of the
Pareto set, which is called the convex hull individual minima (CHIM). Utopia
point is defined as the vector containing individual minima for each objective
function (29):

J̃β∗ := (J̃β
1 (ũ

1∗, θ̃1∗|α), J̃β
2 (ũ

2∗, θ̃2∗|α))⊤,

where (ũ1∗, θ̃1∗) and (ũ2∗, θ̃2∗) are the minimizers of the objectives J̃β
1 and J̃β

2 ,
respectively. Then, the pay-off matrix Φ is defined as

Φ :=

[

0 J̃β
1 (ũ

2∗, θ̃2∗|α)− J̃β
1 (ũ

1∗, θ̃1∗|α)

J̃β
2 (ũ

1∗, θ̃1∗|α)− J̃β
2 (ũ

2∗, θ̃2∗|α) 0

]

. (30)

Let ω := (ω1, ω2)
⊤ be a vector such that ω1 + ω2 = 1 with ω1, ω2 ≥ 0. Φω

describes a point in the CHIM. Moreover, let e := (1, 1)⊤ be the unit vector
to CHIM. −Φe defines the quasi-normal to the CHIM pointing towards the o-
rigin. The rationale behind the original NBI method is that the intersection
point between the boundary of the objective space and the quasi-normal point-
ing towards the origin emanating from any point in the CHIM is expected to be
Pareto optimal. Hereto, the multi-objective optimization problem is reformulat-
ed to maximize the distance from a point on the CHIM along the quasi-normal
through this point, without violating the original constraints. Technically, this
requirement of lying on the quasi-normal introduces additional equality con-
straints. Therefore, (ERMOPβ) can be reformulated as the following parametric
SOC problem by the original NBI method:

(ERMOP
β

oNBI) max ν

s.t. Φω − νΦe = J̃β(ũ, θ̃|α)− J̃β∗,

x̃(s|ũ, θ̃, α) ∈W, s ∈ [0, 1],

(ũ, θ̃) ∈ Ũ ×Θ.

The main problem with the original NBI method is that it may return non-
Pareto optimal points. The method aims at getting boundary points rather
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than Pareto-optimal points. Pareto-optimal points are a subset of boundary
points and, therefore, these obtained points may or may not be Pareto-optimal
points. Using the concept of the goal attainment approach [43], we present a
modified NBI method in which the following parametric SOC problem is solved:

(ERMOPβ
mNBI) max ν

s.t. Φω − νΦe ≥ J̃β(ũ, θ̃|α)− J̃β∗,

x̃(s|ũ, θ̃, α) ∈ W, s ∈ [0, 1],

(ũ, θ̃) ∈ Ũ ×Θ.

This change in formulation increases the feasible space so as to check for points
which dominate the points on the CHIM. By a similar argument as given for
Lemma 1 in [44], it can be shown that if (ν∗, ũ∗, θ̃∗) is an optimal solution

of (ERMOP
β
mNBI) then (ũ∗, θ̃∗) is weakly efficient for (ERMOPβ). Moreover, a

Pareto filter is designed to remove all non-global Pareto points whose definitions
are given in [45]. This filter works by comparing a point in the Pareto set
with every other generated point. If a point is not globally Pareto, then it is
eliminated.

5.2. Single-objective optimal control solver

A sequence of resulting SOC problems must be solved when applying the
modified NBI strategy. In this subsection, we shall develop a gradient-based
single-objective optimal control solver combining the control parameterization
method with a constraint transcription technique.

5.2.1. Control parameterization

The control parameterization method involves approximating the control
by a linear combination of basis functions, thereby yielding an approximate
optimization problem with a finite number of decision variables. Here, we focus
on piecewise-constant basis functions, as these are the most widely used in
practice. Other basis functions can be handled similarly; see, for example [37].

For each pi ≥ 1, i ∈ {1, . . . , N}, let the time subinterval [θi−1, θi] be parti-
tioned into npi

subintervals with npi
+ 1 partition points denoted by

θpi

0 , . . . , θ
pi
npi
, θpi

0 = θi−1, θ
pi
npi

= θi, and θ
pi

l−1 < θpi

l .

Let npi
be chosen such that npi+1 ≥ npi

. With piecewise-constant basis func-
tions, the control ũ is approximated as follows:

ũ(s) ≈ ũp(s) = σpi,l, s ∈ (θpi

l−1, θ
pi

l ], l = 1, . . . , npi
, i = 1, . . . , N,

where σpi,l is the value of the control on the lth subinterval of (θi−1, θi] which
is to be chosen optimally. The approximate piecewise-constant control can be
written as follows:

ũp(s|σp, θ̃) :=

N
∑

i=1

npi
∑

l=1

σpi,lχ(θ
pi
l−1

,θ
pi
l

](s), s ∈ [0, 1], (31)
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where
σp := ((σp1 )⊤, . . . , (σpN )⊤)⊤

with σpi := (σpi,1, . . . , σpi,npi )⊤; and for interval I, χI : R → R is the charac-
teristic function defined by

χI(s) :=

{

1, if s ∈ I,

0, if s /∈ I.

From (21), we obtain the following bound constraints on σp:

σpi,l ∈ Ui, l = 1, . . . , npi
, i = 1, . . . , N. (32)

Let Ξp denote the set of all σp satisfying constraint (32).
Substituting (31) into system (20) yields











˙̃x(s) = f̃ i(x̃(s), x̃(s− t−1
f α), σpi,l, tf ), s ∈ (θpi

l−1, θ
pi

l ],

l = 1, . . . , npi
, i = 1, . . . , N,

x̃(s) = φ̃(s), s ≤ θ0,

(33)

Furthermore, substituting (31) into the auxiliary time-delay system (22) gives


















































˙̃ϕ(s) =
∂f̃ i(x̃(s), x̃(s− t−1

f α), σpi,l, tf )

∂x̃
ϕ̃(s)

+
∂f̃ i(x̃(s), x̃(s− t−1

f α), σpi,l, tf )

∂x̂
ϕ̃(s− t−1

f α)

−t−1
f

∂f̃ i(x̃(s), x̃(s− t−1
f α), σpi,l, tf )

∂x̂
ζ̃p(s− t−1

f α|σp, θ̃, α),

s ∈ (θpi

l−1, θ
pi

l ], l = 1, . . . , npi
, i = 1, 2, . . . , N,

ϕ̃(s) = 0, s ≤ θ0,

(34)

where

ζ̃p(s|σp, θ̃, α)

:=

{

tf
˙̃
φ(s), if s ≤ θ0,

f̃ i(x̃(s), x̃(s− t−1
f α), σp, tf), if s ∈ (θi−1, θi], i ∈ {1, . . . , N}.

(35)

Let x̃p(·|σp, θ̃, α) and ϕ̃p(·|σp, θ̃, α) be the unique continuous solutions of
systems (33) and (34) corresponding to the parameterized control pair (σp, θ̃) ∈
Ξp ×Θ and the nominal time-delay α. Then, constraint (23) becomes

x̃p(s|σp, θ̃, α) ∈ W, s ∈ [0, 1]. (36)

The objective vector (28) changes to

J̃β,p(σp, θ̃|α)

:= (−G̃p
1(σ

p, θ̃|α) + βG̃p
3(σ

p, θ̃|α),−G̃p
2(σ

p, θ̃|α) + βG̃p
4(σ

p, θ̃|α))⊤, (37)
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where G̃p
1, G̃

p
2, G̃

p
3 and G̃p

4 are obtained by substituting the solutions x̃p and ϕ̃p

into equations (24), (25), (26) and (27), respectively.

Thus, by the control parameterization technique, (ERMOPβ
mNBI) can be

approximated by the following parameter optimization problem:

(ERMOP
β,p

mNBI) max ν (38)

s.t. Φpω − νΦpe ≥ J̃β,p(σp, θ̃|α)− J̃β,p∗, (39)

x̃p(s|σp, θ̃, α) ∈W, s ∈ [0, 1],

(σp, θ̃) ∈ Ξp ×Θ,

where (σp1∗, θ̃1∗) and (σp2∗, θ̃2∗) are the minimizers of the objectives J̃β,p
1 and

J̃β,p
2 , respectively; J̃β,p∗ := (J̃β,p

1 (σp1∗, θ̃1∗|α), J̃β,p
2 (σp2∗, θ̃2∗|α))⊤; and Φp is

obtained by replacing (ũ1∗, ũ2∗) in (30) with (σp1∗, σp2∗).

5.2.2. Constraint transcription

In essence, constraint (36) is a continuous state inequality constraint. This
type of constraint often arises in many real-world applications [46, 47]. Notwith-
standing, it is difficult to deal with such constraints in the numerical computa-
tion. To achieve this, an integral penalty method [48], an equivalent end-point
constraints method [49] and an exact penalty method [50] were introduced.
However, a common characteristic of all these techniques is that the penalty
terms or end-point constraints introduced have zero gradients with respect to
optimization variables at the optimal solution. This, in turn, can result in a
reduced convergence rate near the optimal solution. We will apply a constraint
transcription technique [38] to approximate constraint (36) by a sequence of
constraints in canonical form.

Let

hℓ(x̃
p(s|σp, θ̃, α)) := x∗ℓ − x̃pℓ (s|σ

p, θ̃, α),

h6+ℓ(x̃
p(s|σp, θ̃, α)) := x̃ℓ(s|σ

p, θ̃, α) − x∗ℓ, ℓ = 1, . . . , 6.

Then, constraint (36) can be transformed into the following canonical equality
constraint:

12
∑

ı=1

∫ 1

0

min{0, hı(x̃
p(s|σp, θ̃, α))}ds = 0. (40)

However, (40) is a non-smooth constraint since min{0, ·} is non-differentiable
at the origin. Thus, gradient-based optimization methods, such as sequential
quadratic programming (SQP) [51], will typically struggle to handle this con-
straint. As a result, we consider the following smooth approximation of the
function min{0, ·}:

min{0, η} ≈ πǫ(η) :=











η, if η < −ǫ,

−(η − ǫ)2/4ǫ, if − ǫ ≤ η ≤ ǫ,

0, otherwise,
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where ǫ > 0 is an adjustable parameter. It is easy to verify that πǫ is contin-
uously differentiable and non-positive. Substituting min{0, η} ≈ πǫ(η) into the
left-hand side of (40) gives the following constraint:

12
∑

ı=1

∫ 1

0

πǫ(hı(x̃
p(s|σp, θ̃, α)))ds = 0. (41)

However, this constraint is not suitable for numerical computation since it
does not satisfy the linear independence constraint qualification—a fundamen-
tal condition required for the convergence of nonlinear programming algorithms.
Therefore, we further approximate (41) by

Hǫ,γ(σp, θ̃|α) := γ +

12
∑

ı=1

∫ 1

0

πǫ(hı(x̃
p(s|σp, θ̃, α)))ds ≥ 0, (42)

where γ > 0 is an adjustable parameter. Replacing (36) in (ERMOPp
mNBI) with

(42) yields standard nonlinear programming problems. In addition, it can be
shown, as in [38], that for each ǫ > 0, there exists a corresponding γ(ǫ) > 0
such that whenever 0 < γ < γ(ǫ), constraint (42) implies constraint (36). From
the results in [38], we see that ǫ and γ are closely related to each other. At the
solution of a particular problem, if a constraint is active over a large fraction
of time horizon, then it appears that γ = O(ǫ) should be chosen. On the other
hand, if the constraint is active only over a very small fraction of time horizon,
then γ = O(ǫ2).

5.2.3. Gradient formulas

To solve each of the resulting SOC problems using the control parameteriza-
tion in conjunction with the constraint transcription technique in the previous
Subsections 5.2.1 and 5.2.2, we need to solve a sequence of standard nonlin-
ear programming problems using optimization methods. Among various opti-
mization techniques, a gradient-based optimization, such as SQP, is much more
efficient [38]. For this, we need the gradients of the objective vector (37) and
constraint function (42) with respect to σp and θ̃. These gradients are presented
in the following theorems whose proofs are similar to those given for Theorems
1-3 in [36]. Note that, in the sequel, we will use ∂x̄ to denote differentiation
with respect to x̃(s+ t−1

f α)
First, define

f̂ i,l(s|σp, θ̃, α) := f̃ i(x̃p(s|σp, θ̃, α), x̃p(s− t−1
f α|σp, θ̃, α), σpi,l, tf ), (43)

ψ(s|σp, θ̃, α)

:=

{

0, if s ≤ θ0,

f̄ i,l(s|σp, θ̃, α), if s ∈ (θpi

l−1, θ
pi

l ], l ∈ {1, . . . , npi
}, i ∈ {1, . . . , N},

(44)
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and

̟(s|σp, θ̃, α)

:=







tf
d2φ(s)

ds2
, if s ≤ θ0,

ϑ(s|σp, θ̃, α) if s ∈ (θpi

l−1, θ
pi

l ], l ∈ {1, . . . , npi
}, i ∈ {1, . . . , N},

(45)

where

f̄ i,l(s|σp, θ̃, α)

=
∂f̂ i,l(s|σp, θ̃, α)

∂x̃
ϕ̃p(s|σp, θ̃, α) +

∂f̂ i,l(s|σp, θ̃, α)

∂x̂
ϕ̃p(s− t−1

f α|σp, θ̃, α)

− t−1
f

∂f̂ i,l(s|σp, θ̃, α))

∂x̂
ζ̃p(s− t−1

f α|σp, θ̃, α); (46)

and

ϑ(s|σp, θ̃, α)

=
∂f̂ i,l(s|σp, θ̃, α)

∂x̃
f̂ i,l(s|σp, θ̃, α) +

∂f̂ i,l(s|σp, θ̃, α)

∂x̂
ζ̃p(s− t−1

f α|σp, θ̃, α).

Obviously, for almost all s ∈ (−∞, 1], we have ˙̃ϕp(s|σp, θ̃, α) = ψ(s|σp, θ̃, α) and
˙̃ζp(s|σp, θ̃, α) = ̟(s|σp, θ̃, α). Furthermore, define

Spi

l (θ, tf , α) := (θpi

l−1 − t−1
f α, θpi

l − t−1
f α].

Then, the following theorem gives the gradient formulas of J̃β,p
1 (σp, θ̃|α) with

respect to σp and θ̃.

Theorem 2. Let (σp, θ̃) ∈ Ξp ×Θ. Then, for a given nominal time-delay α,

∂J̃β,p
1 (σp, θ̃|α)

∂θ̃i
= µ⊤(θ̃i)f̄

i,npi (θ̃i|σ
p, θ̃, α)− µ⊤(θ̃i)f̄

i+1,1(θ̃i|σ
p, θ̃, α)

+ λ⊤(θ̃i)f̂
i,npi (θ̃i|σ

p, θ̃, α)− λ⊤(θ̃i)f̂
i+1,1(θ̃i|σ

p, θ̃, α),

i = 1, . . . , N − 1,

∂J̃β,p
1 (σp, θ̃|α)

∂σpi,l
=

∫ θ
pi
l

θ
pi
l−1

{

µ⊤(s)
∂f̄ i,l(s|σp, θ̃, α)

∂σpi,l
+ λ⊤(s)

∂f̂ i,l(s|σp, θ̃, α)

∂σpi,l

}

ds,

l = 1, . . . , npi
, i = 1, . . .N,
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and

∂J̃β,p
1 (σp, θ̃|α)

∂tf
= t−2

f

[

x̃p3(1)x̃
p
6(1)− 2βϕ̃p

3(1)x̃
p
6(1)− 2βϕ̃p

6(1)x̃
p
3(1)

]

+
N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

θ
pi
l−1

{

µ⊤(s)L1(s) + λ⊤(s)L2(s)
}

ds

+

N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

−t
−1

f
α

θ
pi
l−1

−t
−1

f
α

{

{

µ⊤(s+ t−1
f α)L3(s) + λ⊤(s+ t−1

f α)L4(s)
}

× sφ̇(tfs)χ(−∞,0](s)
}

ds,

where x̃p(1) := x̃p(1|σp, θ̃, α); ϕ̃p(·) := ϕ̃p(·|σp, θ̃, α); f̂ i,l(·|σp, θ̃, α) and f̄ i,l(·|σp, θ̃, α)
are as defined in (43) and (46), respectively; L1(·), L2(·), L3(·) and L4(·) are,
respectively, as defined in (A.1), (A.2), (A.3) and (A.4) in Appendix; and
µ(·) := µ(·|σp, θ̃, α) and λ(·) := λ(·|σp, θ̃, α) are the solutions of the following
costate system:

µ̇(s) = −

( N
∑

i=1

npi
∑

l=1

∂f̂ i,l(s|σp, θ̃, α)

∂x̃

)⊤

µ(s)χ
S

pi
l

(θ,tf ,0)
(s)

−

( N
∑

i=1

npi
∑

l=1

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃

)⊤

µ(s+ t−1
f α)χ

S
pi
l

(θ,tf ,α)
(s),

s ∈ [0, 1],

λ̇(s) = −
N
∑

i=1

npi
∑

l=1

(

(

∂f̂ i,l(s|σp, θ̃, α)

∂x̃

)⊤

λ(s) +

(

∂2f̂ i,l(s|σp, θ̃, α)

∂x̃2
ϕ̃p(s)

+
∂2f̂ i,l(s|σp, θ̃, α)

∂x̃∂x̂
ϕ̃p(s− t−1

f α)− t−1
f

∂

∂x̃

{

∂f̂ i,l(s|σp, θ̃, α)

∂x̂

× ζ̃p(s− t−1
f α|σp, θ̃, α)

})⊤

µ(s)

)

χ
S

pi
l

(θ,tf ,0)
(s)

−

N
∑

i=1

npi
∑

l=1

(

(

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃

)⊤

λ(s+ t−1
f α)

+

(

∂2f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃2
ϕ̃p(s) +

∂2f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃∂x̄
ϕ̃p(s+ t−1

f α)

− t−1
f

∂

∂x̃

{

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃
ζ̃p(s|σp, θ̃, α)

})⊤

µ(s+ t−1
f α)

)

× χ
S

pi
l

(θ,tf ,α)
(s), s ∈ [0, 1],
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with the terminal conditions

µ(1) = (0, 0, ∂J̃β,p
1 (σp, θ̃|α)/∂ϕ̃3, 0, 0, ∂J̃

β,p
1 (σp, θ̃|α)/∂ϕ̃6)

⊤, (47)

λ(1) = (0, 0, ∂J̃β,p
1 (σp, θ̃|α)/∂x̃3, 0, 0, ∂J̃

β,p
1 (σp, θ̃|α)/∂x̃6)

⊤, (48)

µ(s) = λ(s) = (0, 0, 0, 0, 0, 0)⊤, s > 1.

The next theorem gives the gradient formulas of J̃p
2 (σ

p, θ̃|α) with respect to
σp and θ̃.

Theorem 3. Let (σp, θ̃) ∈ Ξp ×Θ. Then, for a given nominal time-delay α,

∂J̃β,p
2 (σp, θ̃|α)

∂θ̃i
= µ̄⊤(θ̃i)f̄

i,npi (θ̃i|σ
p, θ̃, α)− µ̄⊤(θ̃i)f̄

i+1,1(θ̃i|σ
p, θ̃, α)

+ λ̄⊤(θ̃i)f̂
i,npi (θ̃i|σ

p, θ̃, α)− λ̄⊤(θ̃i)f̂
i+1,1(θ̃i|σ

p, θ̃, α),

i = 1, . . . , N − 1,

∂J̃β,p
2 (σp, θ̃|α)

∂σpi,l
=

∫ θ
pi
l

θ
pi
l−1

{

µ̄⊤(s)
∂f̄ i,l(s|σp, θ̃, α)

∂σpi,l
+ λ̄⊤(s)

∂f̂ i,l(s|σp, θ̃, α)

∂σpi,l

}

ds,

l = 1, . . . , npi
, i = 1, . . .N,

and

∂J̃β,p
2 (σp, θ̃|α)

∂tf
=

N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

θ
pi
l−1

{

µ̄⊤(s)L1(s) + λ̄⊤(s)L2(s)
}

ds

+

N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

−t
−1

f
α

θ
pi
l−1

−t
−1

f
α

{

{

µ̄⊤(s+ t−1
f α)L3(s)

+ λ̄⊤(s+ t−1
f α)L4(s)

}

sφ̇(tfs)χ(−∞,0](s)
}

ds,

where f̂ i,l(·|σp, θ̃, α) and f̄ i,l(·|σp, θ̃, α) are as defined in (43) and (46), respec-
tively; L1(·), L2(·), L3(·) and L4(·) are, respectively, as defined in (A.1), (A.2),
(A.3) and (A.4) in Appendix; and µ̄(·) := µ̄(·|σp, θ̃, α) and λ̄(·) := λ̄(·|σp, θ̃, α)
are the solutions of the following costate system:

˙̄µ(s) = −

( N
∑

i=1

npi
∑

l=1

∂f̂ i,l(s|σp, θ̃, α)

∂x̃

)⊤

µ̄(s)χ
S

pi
l

(θ,tf ,0)
(s)

−

( N
∑

i=1

npi
∑

l=1

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃

)⊤

µ̄(s+ t−1
f α)χ

S
pi
l

(θ,tf ,α)
(s),

s ∈ [0, 1],
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˙̄λ(s) = −

N
∑

i=1

npi
∑

l=1

(

(

∂f̂ i,l(s|σp, θ̃, α)

∂x̃

)⊤

λ̄(s) +

(

∂2f̂ i,l(s|σp, θ̃, α)

∂x̃2
ϕ̃p(s)

+
∂2f̂ i,l(s|σp, θ̃, α)

∂x̃∂x̂
ϕ̃p(s− t−1

f α)− t−1
f

∂

∂x̃

{

∂f̂ i,l(s|σp, θ̃, α)

∂x̂

× ζ̃p(s− t−1
f α|σp, θ̃, α)

})⊤

µ̄(s)

)

χ
S

pi
l

(θ,tf ,0)
(s)

−

N
∑

i=1

npi
∑

l=1

(

(

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃

)⊤

λ̄(s+ t−1
f α)

+

(

∂2f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃2
ϕ̃p(s) +

∂2f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃∂x̄

× ϕ̃p(s+ t−1
f α)− t−1

f

∂

∂x̃

{

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃
ζ̃p(s|σp, θ̃, α))

})⊤

× µ̄(s+ t−1
f α)

)

χ
S

pi
l

(θ,tf ,α)
(s), s ∈ [0, 1],

with the terminal conditions

µ̄(1) = (0, 0, ∂J̃β,p
2 (σp, θ̃|α)/∂ϕ̃3, 0, 0, ∂J̃

β,p
2 (σp, θ̃|α)/∂ϕ̃6)

⊤, (49)

λ̄(1) = (0, 0, ∂J̃β,p
2 (σp, θ̃|α)/∂x̃3, 0, 0, ∂J̃

β,p
2 (σp, θ̃|α)/∂x̃6)

⊤, (50)

µ̄(s) = λ̄(s) = (0, 0, 0, 0, 0, 0)⊤, s > 1.

Note that the explicit formulas ∂J̃β,p
1 /∂ϕ̃3, ∂J̃

β,p
1 /∂ϕ̃6, ∂J̃

β,p
1 /∂x̃3, ∂J̃

β,p
1 /∂x̃6,

∂J̃β,p
2 /∂ϕ̃3, ∂J̃

β,p
2 /∂ϕ̃6, ∂J̃

β,p
2 /∂x̃3 and ∂J̃β,p

2 /∂x̃6 in (47)-(50) are as given in
(A.5)-(A.12) in Appendix, respectively. The last theorem gives the gradient
formulas of the constraint function Hǫ,γ(σp, θ̃|α) with respect to σp and θ̃.

Theorem 4. Let (σp, θ̃) ∈ Ξp × Θ. Then, for a given nominal time-delay α
and each ǫ > 0 and γ > 0,

∂Hǫ,γ(σp, θ̃|α)

∂θ̃i
= λ̃⊤(θ̃i)f̂

i,npi (θ̃i|σ
p, θ̃, α)− λ̃⊤(θ̃i)f̂

i+1,1(θ̃i|σ
p, θ̃, α),

i = 1, . . . , N − 1,

∂Hǫ,γ(σp, θ̃|α)

∂σpi,l
=

∫ θ
pi
l

θ
pi
l−1

λ̃⊤(s)
∂f̂ i,l(s|σp, θ̃, α)

∂σpi,l
ds, l = 1, . . . , npi

, i = 1, . . . , N,
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and

∂Hǫ,γ(σp, θ̃|α)

∂tf
=

N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

θ
pi
l−1

t−1
f λ̃⊤(s)f̂ i,l(s|σp, θ̃, α)ds

+

N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

θ
pi
l−1

t−2
f αλ̃⊤(s)

∂f̂ i,k(s|σp, θ̃, α)

∂x̂
ζ̃p(s− t−1

f α|σp, θ̃, α)ds

+

N
∑

i=1

npi
∑

l=1

∫ θ
pi
l

−t
−1

f
α

θ
pi
l−1

−t
−1

f
α

{

sλ̃⊤(s+ t−1
f α)

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃

× φ̇(tfs)χ(−∞,0](s)

}

ds,

where λ̃(·) := λ̃(·|σp, θ̃, α) is the solution of the following costate system:

˙̃λ(s) = −
12
∑

ı=1

∂πǫ(hı(x̃
p(s|σp, θ̃, α)))

∂x̃
−

( N
∑

i=1

npi
∑

l=1

∂f̂ i,l(s|σp, θ̃, α)

∂x̃

)⊤

× λ̃(s)χ
S

pi
l

(θ,tf ,0)
(s)−

( N
∑

i=1

npi
∑

l=1

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃

)⊤

× λ̃(s+ t−1
f α)χ

S
pi
l

(θ,tf ,α)
(s), s ∈ [0, 1],

with the terminal condition

λ̃(s) = (0, 0, 0, 0, 0, 0)⊤, s ≥ 1.

Based on Theorems 2-4, the gradients of constraints (39) and (42) with
respect to σp and θ̃ can be obtained. Moreover, the gradients of the objec-
tive (38) and the constraint (39) with respect to ν can be easily computed. Note
that these gradients can be integrated with a standard nonlinear optimization
method— e.g., SQP—to solve each of the nonlinear programming problems ob-
tained through the application of the control parameterization in conjunction
with the constraint transcription technique.

6. Numerical results

In the numerical simulation, we consider a 1,3-PD fed-batch production pro-
cess by K. pneumoniae reported in [52]. The maximal duration of this process
is partitioned into the first batch phase (Ph. I) and phases II-X (Phs. II-X) ac-
cording to the number of switchings. The same time durations and feeding rates
of glycerol for feeding processes are adopted in each one of Phs. II-X. Moreover,
within each one of Phs. II-X, all batch processes have 100s minus the duration
of the feeding process. The characteristic of each phase are given in Table 2.
As a result, the terminal time, the end moment of Ph. I, the feeding rate of
glycerol and the end moments of the first feeding process in Phs. II-X should
be optimized.
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Table 2: Phase characteristics in fed-batch process [52]. Each phase consists of a series of
identical 100s feeding batch combinations. Within each phase, all feeding modes have the
same duration and all batch modes have the same duration.

Phase Start time (h) End time (h)
Number of modes Mode duration (s)
Feeding Batch Feeding Batch

I 0 5.3300 0 1 0 19188
II 5.3300 6.1078 28 28 5 95
III 6.1078 7.1356 37 37 7 93
IV 7.1356 8.8300 61 61 8 92
V 8.8300 12.1356 119 119 7 93
VI 12.1356 15.8300 133 133 6 94
VII 15.8300 18.0800 81 81 4 96
VIII 18.0800 19.8300 63 63 3 97
IX 19.8300 23.8300 144 144 2 98
X 23.8300 24.1633 12 12 1 99

To numerically solve the required SOC problems, we wrote a Fortran sub-
routine, in which the control parameterization, the constraint transcription and
the gradients in the previous Section 5.2 are combined with the optimization
software NLPQLP—a Fortran implementation of SQP [53]. This subroutine us-
es the differential equation software DLSODA [54] to solve the state and costate
systems. Lagrange interpolation [55] is used whenever the DLSODA requires
the value of the state or costate at an intermediate time between two adjacent
knot points. The nominal time-delay, the history function, and the number of
partitions are α = 0.4652h, φ(t) = (0.1115gL−1, 495mmolL−1, 0, 0, 0, 5L)⊤, and
npi

= 4, respectively [19]. Note that there are 10 phases and 1355 switchings
between batch and feeding modes in the maximal duration of the fed-batch pro-
cess [52]. For this situation, we denote the end moment of the first batch mode
by τ1, and the end moment of the first feeding mode in each phase of Phs. II-X by
τi, i = 2, . . . , 10. The initial values of switching instants and terminal time [56]
are listed in Table 3. It should be noted that these initial values of switching
instants are obtained from Table 2. In addition, since the given initial value of
the terminal time, 14.16h, is greater than the start time of Ph. VI and is less
than the end time of Ph. VI (see Table 2), only six switching instants, τ1, . . . , τ6,
are to be optimized in the first iteration of SOC problems. Therefore, we just
listed these six values and the other values of switching instants are missing en-
tries (denoted by hyphens). The lower and upper bound vectors in (7) are
given as ρ = (5.3, 0.0006, 0.6767, 0.9261, 1.5928, 3.2039, 3.5919, 2.1483, 1.6483,
3.8983, 11)⊤ and δ = (5.4, 0.0022, 0.88, 1.129, 1.7961, 3.4072, 3.7953, 2.3517, 1.8517,
4.1006, 24.1633)⊤, respectively [56]. From vectors ρ and δ, we obtained the low-
er and upper bounds of switching instants and terminal time, which are also
listed in Table 3. Similarly, the missing entries in the column of the lower bound
in Table 3 denote that switchings occur after the terminal time. Besides, the
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Table 3: Initial values, optimal values, and lower and upper bounds for the switching instants
and terminal time [56]. Note that the missing entries in the table denote that the switchings
occur after the terminal time.

Initial Lower Upper Weight ω = (0, 1)⊤ Weight ω = (1, 0)⊤

value bound bound β = 0 β = 1.0 β = 0 β = 1.0
τ1 5.3300 5.3000 5.4000 5.3000 5.3000 5.3000 5.3000
τ2 5.3314 5.3006 5.4022 5.3015 5.3010 5.3005 5.3006
τ3 6.1097 6.0789 6.1806 6.0805 6.0796 6.0788 6.07956
τ4 7.1378 7.1067 7.2083 7.1075 7.1079 7.1082 7.1083
τ5 8.8319 8.8011 8.9028 8.8011 8.8015 8.8027 8.8013
τ6 12.1372 - 12.2083 12.1067 12.1066 12.1083 12.1067
τ7 - - 15.9027 15.9019 15.8003 - -
τ8 - - 18.1519 18.1519 18.0503 - -
τ9 - - 19.9019 - - - -
τ10 - - 23.9008 - - - -
tf 14.1600 11.0000 24.1633 18.1611 19.3228 14.0867 15.4944

Table 4: Initial values and bounds of glycerol feeding rates in phases II-X [13].

Phases II-III IV V-VI VII VIII IX-X
Initial value (mLs−1) 0.2103 0.1992 0.2103 0.2214 0.2437 0.2548
Lower bound (mLs−1) 0.1682 0.1594 0.1682 0.1771 0.1949 0.2038
Upper bound (mLs−1) 0.2524 0.2390 0.2524 0.2657 0.2924 0.3058

initial values and bounds of glycerol feeding rates in Phs. II-X [13] are listed in
Table 4. Furthermore, in the constrain transcription, we take ǫ = 1.0 × 10−2

and γ = 2.5×10−3 as the initial values for the adjustable parameters, adjusting
them at each step according to ǫ−γ process [37]. This process involves reducing
γ by a factor of 2 if the optimal solution satisfies (36), or reducing both ǫ and
γ by a factor of 10 if the solution does not satisfy (36). We terminated the ǫ–γ
process when ǫ ≤ 1.0× 10−8 and γ ≤ 1.0× 10−7.

To solve (RMOPβ) for a given weight β by using the modified NBI method,
we wrote a Fortran program. This program combines the modified NBI with the
single-objective optimal control solver described above using evenly distributed
weights, in which the uniform spacing between two consecutive ω1 is 1/10 and
ω2 = 1 − ω1 (resulting in 11 SOC problems). By respectively running this
program for β = 0, β = 0.5, and β = 1.0, we obtain points in the Pareto sets
as depicted in Figure 1. Moreover, we solve (RMOPβ) for β = 1.0 by using the
original NBI method and the CWS method, in which two components of Jβ

are assigned weights and then added together to form a single objective, with
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Figure 1: (a). Pareto sets generated by the original NBI and the CWS for β = 1.0; and (b)
Pareto sets generated by the modified NBI methods for β = 0, 0.5, 1.0.

the same weight ω. The obtained points in the Pareto sets are also plotted in
Figure 1. As expected, minimizing the negative value of 1,3-PD productivity
and minimizing the negative value of 1,3-PD yield are conflicting because an
increase of one results in lowering the other. Although all the MOC approaches
capture this feature, large differences in the accuracy of the resulting Pareto
sets are visible. For example, for β = 1.0, although a uniform grid is used
to vary the weights in all three MOC approaches, the results for the modified
NBI clearly exhibit more evenly distributed points along the Pareto set than
the ones for the original NBI and the CWS. Both the original NBI and the
CWS generate non-global Pareto points, which have been eliminated by the
filter designed in Subsection 5.1, and hence, the modified NBI provides a more
accurate representation of the Pareto set.

For the Pareto points obtained by using modified NBI method (see Fig-
ure 1(b)), the corresponding optimal switching instants and terminal times are
also listed in Table 3. Note that the missing entries in the columns of the opti-
mal switching instants and terminal times in Table 3 also denote that switchings
occur after the terminal times. Figure 2 illustrates the corresponding optimal
feeding rates of glycerol and the corresponding optimal feeding durations. It
should be noted that Ph. I is a batch process and no glycerol is fed in this
phase. Ph. VII and Ph. VIII only include the feeding rates of glycerol and
the feeding durations for points with weight ω = (0, 1)⊤ and have much shorter
feeding durations than Phs. II-VI. As can be seen from Table 3 and Figure 2,
the optimal terminal times for points with weight ω = (0, 1)⊤ are greater than
the optimal terminal times for points with weight ω = (1, 0)⊤. This observation
is explained by the fact: for points with weight ω = (0, 1)⊤, only the negative
value of 1,3-PD yield is minimized, which allows longer process times. In con-
trast, for points with weight ω = (1, 0)⊤, the negative value of 1,3-productivity
is minimized, in which shorter process times are needed. Under these optimal
switching control strategies, the changes of 1,3-PD and the volume of culture
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Figure 2: The feeding rates of glycerol and the feeding durations in the fermentation process.
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Figure 3: The changes of 1,3-PD concentration and volume of culture fluid with respect to
fermentation time.

fluid with respect to the fermentation time are plotted in Figure 3. As can
be seen from Figure 3, less 1,3-PD concentrations are attained for points with
weight ω = (1, 0)⊤ than the ones for points with weight ω = (0, 1)⊤. In particu-
lar, for β = 0, 1.0, the attained 1,3-PD concentrations are (594.8071, 636.2763)⊤

for points with weight ω = (1, 0)⊤ compared with (723.7839, 756.6823)⊤ for
points with weight ω = (0, 1)⊤. However, more substrates are fed within short-
er process times for points with weight ω = (1, 0)⊤ than the ones for points
with weight ω = (0, 1)⊤. Specifically, for β = 0, 1.0, the final volumes of cul-
ture fluid are (5.6137, 5.6958)⊤ for points with weight ω = (1, 0)⊤ compared
with (5.4, 5.434)⊤ for points with weight ω = (0, 1)⊤. Again, these attained
1,3-PD concentrations and final volumes of culture fluid confirm the confliction
of 1,3-PD productivity and 1,3-PD yield.

From Figure 1(b), we can also see that when the value of β increases, i.e,
the robustness of 1,3-PD productivity and 1,3-PD yield with respect to the
uncertain time-delay is emphasized on, 1,3-PD productivity and 1,3-PD yield
are correspondingly degraded. For example, for the points with weight ω =
(1, 0)⊤ in the Pareto sets, 1,3-PD productivity and 1,3-PD yield decrease from
(237.0349, 0.5056)⊤ for β = 0 to (233.8959, 0.484)⊤ for β = 1.0. Similarly, for
points with weight ω = (0, 1)⊤ in the Pareto sets, 1,3-PD productivity and
1,3-PD yield decrease from (215.2076, 0.908)⊤ for β = 0 to (212.7946, 0.8804)⊤

for β = 1.0. This implies that the optimal switching control of (RMOPβ) for
β = 0 is more favorable than the one for β = 1.0 when the time-delay α can
be exactly obtained. On the other hand, when there is uncertainty in the time-
delay, we investigated the disturbance of the nominal time-delay α for points
with weights ω = (1, 0)⊤ and ω = (0, 1)⊤ in the Pareto sets. We randomly
generated 50 perturbations of the nominal time-delay α. For each i = 1, . . . , 50,
the perturbed time-delay belong to the set of all ᾱ such that

0.01(i− 1)α ≤ |ᾱ− α| ≤ 0.01iα.

The coefficient of α in the upper bound of this range is called the disturbance
percentage of the perturbed time-delay. With the optimal switching controls,
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Figure 4: 1,3-PD productivity and 1,3-PD yield variation curves under time-delay disturbance.

the variations of 1,3-PD productivity and 1,3-PD yield under the 50 randomly-
selected perturbed time-delays are shown in Figure 4. Note that the variation
curves for β = 1.0 predominantly lie above the variation curves for β = 0. This
indicates that the optimal switching control obtained by solving (RMOPβ) for
β = 1.0 is more robust than the one for β = 0, especially for large values of
the disturbance percentage. Thus, the optimal switch control of (RMOPβ) for
β = 1.0 is more preferable than the one for β = 0 when there is uncertainty in
the time-delay.

7. Conclusion

This paper has considered a robust multi-objective optimal control of nonlin-
ear switched time-delay system arising in 1,3-PD fed-batch production process.
The aim of the problem is to design an optimal switching control strategy such
that 1,3-PD productivity and 1,3-PD yield are maximized and their sensitivities
with respect to uncertain time-delay are minimized, simultaneously. The robust
multi-objective optimal control problem is transformed into an equivalent one
in standard form. A numerical solution method combining with a modified nor-
mal boundary intersection method and a single-objective solver is developed to
solve the equivalent problem. Numerical results verified the effectiveness of the
proposed solution method. In closing, we note that there may be other uncer-
tainties in the fed-batch process, for example, uncertainties in kinetic parameter
and initial state values. Thus, designing optimal switching control scheme in
the presence of these uncertainties is an interesting area to pursue for future
research.
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Appendix

The definitions of L1, L2, L3 and L4 in Theorems 2 and 3 are given below.

L1(s) := t−1
f

∂f̂ i,l(s|σp, θ̃, α)

∂x̃
ϕ̃p(s) + t−1

f

∂f̂ i,l(s|σp, θ̃, α)

∂x̂
ϕ̃p(s− t−1

f α)

+ t−2
f α

∂2f̂ i,l(s|σp, θ̃, α)

∂x̂∂x̃
ζ̃p(s− t−1

f α|σp, θ̃, α)ϕ̃p(s)

+ t−2
f α

∂f̂ i,l(s|σp, θ̃, α)

∂x̂
ψ(s− t−1

f α|σp, θ̃, α)

+ t−2
f α

∂2f̂ i,l(s|σp, θ̃, α)

∂x̂∂x̃
ζ̃p(s− t−1

f α|σp, θ̃, α)ϕ̃p(s− t−1
f α)

− t−3
f α

∂2f̂ i,l(s|σp, θ̃, α)

∂x̂2
ζ̃p(s− t−1

f α|σp, θ̃, α)2

− t−3
f α

∂f̂ i,l(s|σp, θ̃, α)

∂x̂
̟(s− t−1

f α|σp, θ̃, α), (A.1)

L2(s) := t−1
f f̂ i,l(s|σp, θ̃, α) + t−2

f α
∂f̂ i,l(s|σp, θ̃, α)

∂x̂
ζ̃p(s− t−1

f α|σp, θ̃, α), (A.2)

L3(s) :=
∂2f̂ i,l(s+ t−1

f α|σp, θ̃, α)

∂x̃∂x̄(s)
ϕ̃p(s+ t−1

f α)

+
∂2f̂ i,l(s+ t−1

f α|σp, θ̃, α)

∂x̃2
ϕ̃p(s)

− t−1
f

∂

∂x̃

{

∂f̂ i,l(s+ t−1
f α|σp, θ̃, α)

∂x̃
ζ̃p(s|σp, θ̃, α)

}

, (A.3)

and

L4(s) :=
∂f̂ i,l(s+ t−1

f α|σp, θ̃, α)

∂x̃
, (A.4)

where ϕ̃p(·) := ϕ̃p(·|σp, θ̃, α); and ζ̃p(·|σp, θ̃, α), f̂ i,l(·|σp, θ̃, α), ψ(·|σp, θ̃, α) and
̟(·|σp, θ̃, α) are as defined in (35), (43), (44) and (45), respectively.

The explicit formulas for ∂J̃β,p
1 /∂ϕ̃3, ∂J̃

β,p
1 /∂ϕ̃6, ∂J̃

β,p
1 /∂x̃3 and ∂J̃β,p

1 /∂x̃6
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in Theorem 2 are given below.

∂J̃β,p
1 (σp, θ̃|α)

∂ϕ̃3
= 2βt−2

f x̃p6(1)
[

ϕ̃p
3(1)x̃

p
6(1) + ϕ̃p

6(1)x̃
p
3(1)

]

, (A.5)

∂J̃β,p
1 (σp, θ̃|α)

∂ϕ̃6
= 2βt−2

f x̃p3(1)
[

ϕ̃p
3(1)x̃

p
6(1) + ϕ̃p

6(1)x̃
p
3(1)

]

, (A.6)

∂J̃β,p
1 (σp, θ̃|α)

∂x̃3
= 2βt−2

f ϕ̃p
6(1)

[

ϕ̃p
3(1)x̃

p
6(1) + ϕ̃p

6(1)x̃
p
3(1)

]

− t−1
f x̃p6(1), (A.7)

∂J̃β,p
1 (σp, θ̃|α)

∂x̃6
= 2βt−2

f ϕ̃p
3(1)

[

ϕ̃p
3(1)x̃

p
6(1) + ϕ̃p

6(1)x̃
p
3(1)

]

− t−1
f x̃p3(1), (A.8)

where x̃p(1) := x̃p(1|σp, θ̃, α); and ϕ̃p(1) := ϕ̃p(1|σp, θ̃, α).

The explicit formulas for ∂J̃β,p
2 /∂ϕ̃3, ∂J̃

β,p
2 /∂ϕ̃6, ∂J̃

β,p
2 /∂x̃3 and ∂J̃β,p

2 /∂x̃6
in Theorem 3 are given below.

∂J̃β,p
2 (σp, θ̃|α)

∂ϕ̃3
= 2βc−2

s0 x̃
p
6(1)

[

ϕ̃p
3(1)x̃

p
6(1)

2 − φ̃6(0)ϕ̃
p
3(1)x̃

p
6(1)

− φ̃6(0)ϕ̃
p
6(1)x̃

p
3(1)

][

x̃p6(1)− φ̃6(0)
]−3

, (A.9)

∂J̃β,p
2 (σp, θ̃|α)

∂ϕ̃6
= −2βc−2

s0 φ̃6(0)x̃
p
3(1)

[

ϕ̃p
3(1)x̃

p
6(1)

2 − φ̃6(0)ϕ̃
p
3(1)x̃

p
6(1)

− φ̃6(0)ϕ̃
p
6(1)x̃

p
3(1)

][

x̃p6(1)− φ̃6(0)
]−4

, (A.10)

∂J̃β,p
2 (σp, θ̃|α)

∂x̃3
= −c−1

s0 x̃
p
6(1)

[

x̃p6(1)− φ̃6(0)
]−1

− 2βc−2
s0 φ̃6(0)ϕ̃

p
6(1)

×
[

ϕ̃p
3(1)x̃

p
6(1)

2 − φ̃6(0)ϕ̃
p
3(1)x̃

p
6(1)− φ̃6(0)ϕ̃

p
6(1)x̃

p
3(1)

]

×
[

x̃p6(1)− φ̃6(0)
]−4

, (A.11)

and

∂J̃β,p
2 (σp, θ̃|α)

∂x̃6
= c−1

s0 φ̃6(0)x̃
p
3(1)

[

x̃p6(1)− φ̃6(0)
]−2

− 2βc−2
s0 φ̃6(0)

[

φ̃6(0)ϕ̃
p
6(1)x̃

p
3(1)

− ϕ̃p
3(1)x̃

p
6(1)

2 + φ̃6(0)ϕ̃
p
3(1)x̃

p
6(1)

][

2ϕ̃p
6(1)x̃

p
3(1)− ϕ̃p

3(1)x̃
p
6(1)

+ φ̃6(0)ϕ̃
p
3(1)

][

x̃p6(1)− φ̃6(0)
]−5

, (A.12)

where x̃p(1) := x̃p(1|σp, θ̃, α); and ϕ̃p(1) := ϕ̃p(1|σp, θ̃, α).
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