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Abstract— In this paper, we concentrate on the robust
multi-objective optimization (MOO) for the tradeoff between
energy efficiency (EE) and spectral efficiency (SE) in device-
to-device (D2D) communications underlaying heterogeneous
networks (HetNets). Different from traditional resource optimiza-
tion, we focus on finding robust Pareto optimal solutions for
spectrum allocation and power coordination in D2D communica-
tions underlaying HetNets with the consideration of interference
channel uncertainties. The problem is formulated as an uncertain
MOO problem to maximize EE and SE of cellular users (CUs)
simultaneously while guaranteeing the minimum rate require-
ments of both CUs and D2D pairs. With the aid of ε-constraint
method and strict robustness, we propose a general framework
to transform the uncertain MOO problem into a deterministic
single-objective optimization problem. As exponential computa-
tional complexity is required to solve this highly non-convex
problem, the power coordination and the spectrum allocation
problems are solved separately, and an effective two-stage iter-
ative algorithm is developed. Finally, simulation results validate
that our proposed robust scheme converges fast and significantly
outperforms the non-robust scheme in terms of the effective
EE-SE tradeoff and the quality of service satisfying probability
of D2D pairs.

Index Terms— D2D communications, energy efficiency,
HetNets, power coordination, robust multi-objective optimization,
spectral efficiency, spectrum allocation.

I. INTRODUCTION

W
ITH the proliferation of smart mobile services and

the intrinsic spectrum scarceness, improving spec-

tral efficiency (SE) has been widely treated as an essential

target for the next decade [1]. At the same time, green

communications have caught considerable attention, because

of explosively rising energy consumption of mobile networks

and corresponding environmental concerns [2]. Therefore,

the enhancement of energy efficiency (EE) is another key

objective for the future fifth-generation (5G) networks [3].
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To tackle these difficulties, there is a general consensus that

dense network deployment will play an important role, such

as multi-tier heterogeneous networks (HetNets) and device-to-

device (D2D) communications, especially when employed in

combination [4].

D2D communications enable wireless point-to-point

services directly between two mobile devices as well as

offload the traffic of cellular base stations (BSs), which

contribute to the improvement of the network EE and SE due

to high spectral utilization and the physical proximity between

D2D pairs [5], [6]. On the other hand, the multi-tier HetNet

has been identified as a promising network architecture for

5G to drastically improve EE and SE [7]–[9], as multiple

small cells share the same spectrum with each macro cell

which promotes the dense spectrum reuse. Based on the

above observation, the study on the D2D communications

underlaying HetNets is indeed of vital importance because

of the expected heterogeneous nature of the future 5G

networks. For multi-tier HetNets operating with universal

frequency reuse, cross-tier and co-tier interference are the

main challenges [10], and extra interference is imposed

when underlaid D2D communications are admitted. As a

consequence, in D2D communications underlaying HetNets,

spectrum allocation and power coordination mechanisms are

more complicated in comparison with those in traditional

homogeneous cellular networks, and they are essential to

achieve the potential benefits from D2D communications and

multi-tier HetNets.

A. Related Work

There have been numerous studies about the energy effi-

cient resource allocation for D2D communications [11]–[20].

In [11], Xu et al. focus on optimizing the energy consump-

tion of the BS in D2D communications underlying cellular

networks by optimally coordinating users to redistribute the

traffic, while Fodor et al. [12] investigate the performance

of various power control strategies for D2D communica-

tions in LTE networks. Furthermore, considering the simple

system with one D2D link and one cellular user (CU),

the work in [13] proposes an extended binary power control

method to maximize the utility which balances SE and power.

Wu et al. [14] also consider the scenario with single D2D

link and single CU, where the D2D user’s EE is optimized
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under the minimum rate constraints of both CU and D2D

users. Similarly, in [15], the resource allocation problem for

underlay or overlay D2D communications and cognitive radio

systems is formulated as the maximization of the secondary

energy efficiency subject to a minimum rate requirement for

the primary user, where a sequential optimization method is

proposed. Recently, Penda et al. [16] investigate the problem

of minimizing the transmission energy consumption while

satisfying a traffic requirement for D2D communications in

a single-cell network. In [17], Jiang et al. consider the joint

resource allocation and power control problem which aims

at maximizing the EE of all D2D links. Instead, the work

in [18] focuses on maximizing the minimum weighted EE of

D2D pairs under the minimum rate requirements of cellular

users, while Wu et al. [19] formulate the energy-efficient

resource sharing problem in D2D communications underlaying

cellular networks as a nontransferable coalition formation

game. Besides, Yang et al. [20] investigate energy efficient

power control in D2D communications underlaying cellular

networks, where both the system EE and individual EE opti-

mization problems are considered.

Nevertheless, the above studies [11]–[20] consider D2D

communications underlaying or overlaying single-tier

networks, and the research on resource allocation in D2D

communications underlaying HetNets is still limited. In [21],

Asheralieva et al. consider the channel and power level

selection problem for D2D pairs in HetNets under two

scenarios where D2D pairs operate over the dedicated

frequency band and the shared cellular channels, which is

formulated as a non-cooperative game among D2D pairs.

Besides, the work in [22] investigates the resource allocation

problem to maximize the system secure capacity for D2D

communications underlaying HetNets where each subcarrier

can be allocated to at most one user of the same type.

On the contrary, Alqerm and Shihada [23] focus on the

power allocation problem in multi-tier HetNets by employing

a non-cooperative scheme to optimize the individual EE of

each small cell BS and each D2D pair.

However, either EE or SE is neglected in the aforementioned

work [11]–[23]. There have been studies about the joint opti-

mization of EE and SE for D2D communications in single-cell

networks [24], [25] and for HetNets [26]. As EE and SE

potentially conflict with each other such that available resource

cannot be optimized to improve both EE and SE simultane-

ously, it is indispensable to investigate the tradeoff between EE

and SE for D2D communications underlaying HetNets, which

can provide decision makers with the entire performance

envelop of EE and SE. More importantly, in all the previous

studies [11]–[26], it is assumed that perfect channel state

information (CSI) is available, while this assumption cannot

be achieved in practical scenarios. Due to the random nature of

wireless channels, limited capacity and transmission delay of

backhaul channels, and inaccurate channel estimation, the CSI

inevitably contains errors, which may substantially deteriorate

the system performance. Particularly, for D2D communica-

tions underlaying HetNets, the QoS requirements of cellular

users (CUs) and D2D pairs cannot be strictly satisfied when

channel uncertainties exist.

To address the uncertainties of CSI, robust optimization has

been studied in wireless communications [27]–[29]. In [27],

two robust resource allocation schemes for cognitive radio

networks are developed to maximize the system goodput while

satisfying the interference constraints of primary user for prob-

abilistic and bounded channel uncertainty model, respectively.

Memmi et al. [28] propose centralized and distributed power

control algorithms for D2D underlay cellular networks where

the CSI includes estimation errors. Similarly, considering

interference channel uncertainties, the work in [29] focuses

on the uplink resource allocation algorithm in relay-aided

D2D communications with the help of worst case optimization

method. However, all the studies in [27]–[29] focus on robust

single-objective optimization problem (RSOP), and the effect

of channel uncertainties on the multi-objective optimization

problem is still unknown.

B. Contributions

As far as we know, there is no existing study about

the EE-SE tradeoff in D2D communications underlaying

HetNets with universal frequency reuse among macro BSs,

pico BSs and D2D pairs. Also, considering channel uncer-

tainties, the research on robust multi-objective optimization

problem (RMOP) is still missing. Inspired by these facts,

in this paper, we investigate the RMOP for D2D communica-

tions underlaying HetNets. To mitigate the negative effects of

underlaid D2D communications on the primary HetNets while

strictly ensuring the minimum rate requirements of D2D pairs,

the RMOP is formulated as maximizing the EE and SE of

CUs while strictly ensuring the minimum rate requirements

of both CUs and D2D pairs, where the spectrum allocation

and power coordination of CUs and D2D users are jointly

optimized. Specifically, the main contributions are given as

follows:

• This is the first work which models the robust multi-

objective optimization problem to investigate the tradeoff

between EE and SE in D2D communications underlaying

HetNets while considering interference channel uncer-

tainties. Specifically, the problem is formulated as an

uncertain MOO problem which maximizes the sum rate

of all CUs and minimizes the corresponding total power

consumption simultaneously while strictly ensuring the

minimum rate requirements of both CUs and D2D pairs.

• To find the optimal solutions of the formulated uncertain

MOO problem, we propose a general framework which

transforms the uncertain MOO problem into a determin-

istic SOO problem, with the help of ε-constraint method

and strict robustness. Crucially, it is demonstrated theoret-

ically that the unique optimal solution of the deterministic

SOO problem is robust Pareto optimal for the original

uncertain MOO problem. Consequently, the proposed

framework is guaranteed to find all robust Pareto optimal

solutions of the formulated uncertain MOO problem,

i.e., robust Pareto frontier is obtained.

• The spectrum allocation for D2D pairs and the power

coordination of CUs and D2D pairs are jointly optimized

in D2D communications underlaying HetNets, which is
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a mixed-integer and non-convex problem due to the

intrinsic integer property of resource block (RB) alloca-

tion and the existence of mutual interference among CUs

and D2D pairs sharing the same RB. Thus, we propose a

computationally-efficient iterative algorithm where primal

decomposition is employed to separate the original

problem into two subproblems. To be more specific,

the power coordination problem is solved via D. C.

(difference of convex functions) programming. On the

other hand, we model the spectrum allocation problem

as a many-to-one matching game, and propose initial

matching and swap matching algorithms.

• The optimality, convergence, and complexity of our

proposed methods are presented in detail. Via theo-

retical analysis, it is proved that our proposed power

coordination method and spectrum allocation algorithm

converge within a finite number of iterations. Further-

more, the convergence of the overall two-stage itera-

tive algorithm is verified by both theoretical analysis

and numerical results, and its whole computational

complexity is also given in detail. More importantly,

it is demonstrated via numerical results that our proposed

robust scheme significantly outperforms the non-robust

scheme in terms of the effective EE-SE tradeoff and the

quality of service (QoS) satisfying probability of D2D

pairs. Particularly, through numerical results, we find

that there exists an intrinsic tradeoff between the EE-SE

performance of CUs and the minimum rate requirements

of D2D pairs. Besides, it is suggested that the choice of

the maximum number of D2D pairs on each RB should

be appropriate for the compromise between complexity

and performance gain.

C. Paper Organization

The remainder of this paper is organized as below. The

system model and the nominal problem formulation are first

presented in Section II. Then, in Section III, the uncer-

tain MOO problem is formulated and transformed into a

deterministic SOO problem, and we propose effective algo-

rithms for the joint optimization of power coordination and

spectrum allocation in Section IV. Finally, numerical results

and conclusions are given in Section V and Section VI,

respectively.

II. SYSTEM MODEL AND DETERMINISTIC

PROBLEM FORMULATION

We consider a D2D communications underlaying HetNet,

which is shown in Fig. 1, composed of a macro base

station (MBS), I pico BSs (PBSs), N CUs, and K D2D

pairs. Let C = {1, 2, · · · , N} denote the set of CUs, and the

indexes of D2D pairs are given by k ∈ D = {1, 2, · · · , K}.

We use i ∈ {0, 1, 2, · · · , I} as the indexes of BSs, where

i = 0 corresponds to the MBS, and the others are PBSs.

Besides, we assume that the spectrum is shared by all BSs,

and orthogonal frequency-division multiple access (OFDMA)

is adopted for CUs associated with the same BS, which is

predetermined. Let M = {1, 2, · · · , M} denote the set of

Fig. 1. System model.

resource blocks (RBs) for uplink transmission, and MC
n is

used to indicate the set of RBs which are occupied by the

n-th CU. We assume that each RB can be reused by multiple

D2D pairs. Consequently, there exists not only inter-cell

interference among CUs associated with different BSs, but also

mutual interference among CUs and D2D pairs sharing the

same RB.

A. Transmission Data Rate

We first introduce pC
nm to represent the transmit power of

the n-th CU on the m-th RB, and pD
k denotes the transmit

power of the k-th D2D pair. Then, let ρkm describe the m-th

RB allocation for the k-th D2D pair, where ρkm = 1 if RB-m

is allocated to the k-th D2D pair, ρkm = 0, otherwise. Thus,

the transmission data rate of CU-n associated with the i-th BS

can be expressed as

RC
n =

∑

m∈MC
n

log2

(

1 +
pC

nmhm
ni

IC
nm + σ2

)

, (1)

where hm
ni is the channel power gain between the n-th CU and

the i-th BS on the m-th RB, and IC
nm =

∑

n′∈Cm,n′ �=n

pC
n′mgm

n′i+
∑

k∈D

ρkmpD
k gm

ki denotes the interference experienced by CU-n

on the m-th RB. gm
n′i and gm

ki represent the interference channel

power gains from other CUs and D2D pairs sharing the m-th

RB. Note that Cm represents the set of CUs who transmit data

on the m-th RB. Similarly, the transmission data rate of the

k-th D2D pair can be calculated by

RD
k =

∑

m∈M

ρkmlog2

(

1 +
pD

k hm
k

ID
km + σ2

)

, (2)

where hm
k denotes the channel power gain of the k-th D2D pair

on the m-th RB, and ID
km =

∑

n∈Cm

pC
nmgm

nk+
∑

j∈D,j �=k

ρjmpD
j gm

jk

is the interference received by the k-th D2D pair on RB-m.
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gm
nk and gm

jk represent the interference channel power gains

from the n-th CU and the j-th D2D pair, respectively.

B. SE and EE

In this paper, we define the system SE (bit/s/Hz) as the sum

transmission rate of all CUs per unit bandwidth, which can be

expressed as

ηSE = Rtot =
∑

n∈C

RC
n . (3)

Furthermore, the system EE (bit/Joule/Hz) is stated as the ratio

of the system SE to the corresponding power consumption,

which is presented as

ηEE =
ηSE

Ptot
=

∑

n∈C

RC
n

1
α

∑

n∈C

∑

m∈MC
n

pC
nm + Nps

. (4)

Here α denotes the transmit amplifier efficiency, and ps

represents the fixed circuit power consumption of each CU.

III. ROBUST MULTI-OBJECTIVE OPTIMIZATION

FOR EE-SE TRADEOFF

In this section, we first present the nominal MOO problem

for the EE-SE tradeoff in D2D communication underlaying

HetNets, where perfect CSI is assumed. Then, with the consid-

eration of channel uncertainty, robust MOO problem is further

formulated and transformed into a deterministic SOO problem

to facilitate problem solving.

A. Problem Formulation: Nominal Multi-Objective

Optimization

It has been widely recognised that EE and SE conflict

with each other for a communication system with fixed radio

resources [30], [31]. Hence, the individual maximization of

EE or SE cannot always meet the system performance require-

ment, and it is significant to study the tradeoff between EE

and SE and present the whole performance envelop of EE and

SE. In fact, the EE-SE tradeoff problem is equivalent to a set

of problems of finding the maximum EE with different fixed

SE [25]. Furthermore, as EE is the ratio between SE and the

total power consumption as shown in (4), for the same SE,

the minimization of power is equivalent to the maximization

of EE. Therefore, the joint optimization of EE and SE can be

achieved by maximizing SE and minimizing the total power

consumption simultaneously. Besides, as illustrated in [32],

both the EE maximization and the SE maximization problems

can be captured by the multi-objective optimization problem of

maximizing SE and minimizing the total power consumption

simultaneously. Thus, the joint optimization of power coordi-

nation and spectrum allocation for the tradeoff between EE

and SE in D2D communications underlaying HetNets can be

formulated as a MOO problem, which can be expressed as

min
ρ,pC,pD

f1
(

ρ,pC,pD
)

= −
∑

n∈C

RC
n ,

min
ρ,pC,pD

f2
(

ρ,pC,pD
)

= α
∑

n∈C

∑

m∈MC
n

pC
nm + Nps,

s.t. C1 : ρkm ∈ {0, 1}, ∀k ∈ D, m ∈ M,

C2 :
∑

m∈M

ρkm = 1, ∀k ∈ D,

C3 :
∑

k∈D

ρkm ≤ Q, ∀m ∈ M,

C4 :
∑

m∈MC
n

pC
nm ≤ pC

max, ∀n ∈ C,

C5 : pD
k ≤ pD

max, ∀k ∈ D,

C6 : RC
n ≥ RC

n,min, ∀n ∈ C,

C7 : RD
k ≥ RD

k,min, ∀k ∈ D, (5)

where pC
max and pD

max denote the maximum transmit power of

CUs and D2D pairs, respectively. In (5), C1 and C2 denote

that each D2D pair can only use one RB for data transmission.

C3 indicates that at most Q D2D pairs share the same RB with

one CU. In other words, the quota of each RB is set to Q.

Then, C4 and C5 mean that the transmit power of CUs and

the transmitters of D2D pairs cannot exceed their maximum

limits. C6 and C7 ensure the minimum data rates of CUs and

D2D pairs, respectively.

Remark 1 (Virtual D2D Pairs for Extended Systems):

As shown in problem (5), each D2D pair can only use one RB

for data transmission. To generalize the proposed formulation

to fit the extended system where each D2D pair can utilize

multiple RBs and each RB can be occupied by multiple D2D

pairs, we introduce the idea of virtual D2D pairs. Specifically,

when the minimum rate requirement of the k-th D2D pair

RD
k,min is large for certain applications and multiple RBs are

required for data transmission, its rate requirement can be

splited into RD
k,min/vk by introducing vk − 1 virtual D2D

pairs. With the help of new introduced virtual D2D pairs

each of which occupies one RB, the original k-th D2D pair

can utilize multiple RBs simultaneously.1

In contrast to the SOO problem, the MOO problem (5)

considers two conflicting objectives simultaneously. In such

case, there is no single global optimal solution but it is

often necessary to determine a set of alternatives that all

fit a predetermined definition for an optimum, called Pareto

optimality [33].

Definition 1 (Pareto Optimality): For a multi-objective

optimization problem,

min
x

F (x) = [f1 (x) f2 (x) · · · fO (x)]
T
,

s.t. x ∈ X (6)

a point x∗ ∈ X is Pareto optimal if and only if (iff) there does

not exist another point x ∈ X such that fu (x) ≤ fu (x∗), ∀u ∈
{1, 2, · · · , O}, with at least one v ∈ {1, 2, · · · , O} satisfying

fv (x) < fv (x∗).

Furthermore, we define cones R
k
≥ =

{

y ∈ R
k,y ≥ 0

}

, and

F (x∗) − R
O
≥ =

{

y ∈ R
O,y ≤ F (x∗)

}

. Thus, we have that

x∗ is Pareto optimal iff F (x∗) − R
O
≥ does not contain any

F (x) with x ∈ X . Note that A ≤ B represents that A is

1Note that the specific operations about D2D rate requirement splitting and
virtual D2D pairs are not taken into consideration in the rest of this paper
and set aside for our future work.
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smaller or equal to B in every component, and smaller in at

least one component.

Remark 2: As mentioned before, optimizing problem (5)

and finding the corresponding SE-power Pareto frontier can

provide decision maker with the entire performance envelope

between EE and SE. Nevertheless, as it is non-trivial to

find the point corresponding to the maximum EE from the

entire Pareto frontier by choosing one appropriate weight,

the maximization of EE should be also conducted through

problem (5) like [32] to characterize the tradeoff between EE

and SE.

B. Problem Formulation: Robust Multi-Objective

Optimization

The formulated problem (5) requires perfect interference

channel state information (CSI), namely, exact values of

gC2B = [gm
n′i], gD2B = [gm

ki], gC2D = [gm
nk], and gD2D =

[

gm
jk

]

. However, these parameters are subjected to uncertainty,

considering the channel estimation errors and the limited

capacity of backhaul links. Hence, in this paper, it is assumed

that only partial CSI of interference links is available, while

perfect CSI of communication links is obtained. Considering

the bounded uncertainty [27], we assume that the uncertainty

of interference channel gains is bounded and no statistic

knowledge is available. Specifically, the interference channel

gain can be modelled as y = ŷ + ζ, where |ζ| ≤ ζmax denotes

the estimation error. Then, the corresponding power gain can

be given by

g = |y|
2

= yȳ = (ŷ + ζ)
(

¯̂y + ζ̄
)

= ĝ + δ, (7)

where ĝ = ŷ ¯̂y is the estimated channel power gain, and

δ = ζζ̄ + 2ℜ
(

ŷζ̄
)

is the estimation uncertainty. Here ℜ (x)
represents the real component of x. As y lies in a bounded

region, the power gain g is in a set of line segment. Here we

consider the worst case, and the uncertain region of g can be

expressed as

g ∈ R = {ĝ + δ : |δ| ≤ δmax}, (8)

where δmax = ζmaxζ̄max + 2ℜ
(

ŷζ̄max

)

.

Therefore, the uncertainty region for the inter-cell inter-

ference gain from the n′-th CU to the i-th BS on RB-m is

presented as

gm
n′i ∈ Gm

n′i =
{

ĝm
n′i+δm

n′i : |δm
n′i| ≤ δm

n′i,max, ∀i, m, n′
}

. (9)

Also, the interference gain between the k-th D2D pair and

BS-i on the m-th RB is given by

gm
ki ∈ Gm

ki =
{

ĝm
ki + δm

ki : |δm
ki| ≤ δm

ki,max, ∀k, i, m
}

. (10)

Similarly, the interference gains gm
nk and gm

jk can be

expressed as

gm
nk ∈ Gm

nk =
{

ĝm
nk + δm

nk : |δm
nk| ≤ δm

nk,max, ∀n, k, m
}

, (11)

gm
jk ∈ Gm

jk =
{

ĝm
jk + δm

jk :
∣

∣δm
jk

∣

∣ ≤ δm
jk,max, ∀k, j, m

}

. (12)

Taking into account the uncertainties of interference

channel gains, problem (5) turns into the uncertain

MOO problem:

min
ρ,pC,pD

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

min
ρ,pC,pD

f2
(

ρ,pC,pD
)

,

s.t. C1 − C7, (9), (10), (11), (12). (13)

Defining G = Gm
n′i × Gm

ki × Gm
nk × Gm

kk′ , we call
(

gC2B,gD2B,gC2D,gD2D
)

is a scenario and problem (13) is

an instance of the uncertain MOO problem P (G). In other

words, problem P (G) is in fact a family of optimization

problems with different scenarios
(

gC2B,gD2B,gC2D,gD2D
)

.

In this paper, we concentrate on min-max robustness [34],

i.e., strict robustness, whose goal is to optimize the worst-

case scenario of P (G) over all feasible solutions. Different

from the existing literature [27]–[29] which study uncertain

SOO problems, the uncertain problem P (G) considered in this

paper is an uncertain MOO problem. Under this circumstance,

we cannot evaluate solutions by just taking the worst case over

all scenarios since there is a two-element vector of objective

values for each scenario. Recalling the definition of Pareto

optimality for a nominal MOO problem, we introduce the defi-

nition of robust Pareto optimality, i.e., robust efficiency [35]

for an uncertain MOO problem as follows.

Definition 2 (Robust Pareto Optimality): Given an uncer-

tain MOO problem with the uncertain parameter vector ξ,

min
x

F (x, ξ) = [f1 (x, ξ) f2 (x, ξ) · · · fO (x, ξ)]
T
,

s.t. x ∈ X , ξ ∈ U ,
(14)

x ∈ X is robust Pareto optimal for problem (14) iff there does

not exist x ∈ X −{x̄} such that FU (x) ⊆ FU (x)−R
O
≥ where

FU (x) = {F (x, ξ) , ξ ∈ U}.

C. Robust Pareto Frontier

It can be observed from problem (13) that the second

objective is deterministic, which implies that the uncertainty

of the first objective is independent with the second one.

Therefore, the existence of the worst case for the first objective

indicates that the worst-case scenario exists for the uncertain

MOO problem (13), which can be expressed as

max
gC2B,gD2B

[

f1
(

ρ,pC,pD,gC2B,gD2B
)

f2
(

ρ,pC,pD
)

]

=

[

max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

f2
(

ρ,pC,pD
)

]

(15)

Furthermore, according to the definition of max-min

robustness, the robust solutions of problem (13) should

always satisfy all constraints for the given uncertainty region.

Therefore, the robust counterpart of problem P (G) is readily

obtained as

min
ρ,pC,pD

max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

min
ρ,pC,pD

f2
(

ρ,pC,pD
)

,

s.t. C1 − C5,

C6′ : min
gC2B,gD2B

RC
n ≥ RC

n,min, ∀n ∈ C,

C7′ : min
gC2D,gD2D

RD
k ≥ RD

k,min, ∀k ∈ D, (16)
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and the following theorem further clarifies the relationship

between problem P (G) and its robust counterpart (16).

Theorem 1: If max
gC2B,gD2B

f1(ρ, pC, pD, gC2B, gD2B),

min
gC2B,gD2B

RC
n , and min

gC2D,gD2D
RD

k exist for all
(

ρ,pC,pD
)

,

we have that
(

ρ∗,pC∗
,pD∗

)

is Pareto optimal for problem

(16) iff
(

ρ∗,pC∗
,pD∗

)

is robust Pareto optimal for problem

P (G).
Proof : See Appendix A. �

According to Theorem 1, to find all the robust Pareto

optimal solutions of P (G), we can alternatively find all

Pareto optimal solutions of problem (16). Thus, in this paper,

ε-constraint method is employed to transform problem (16)

into a SOO problem, which is guaranteed to find all Pareto

optimal solutions even for non-convex problems [33]. By mini-

mizing one objective and converting the other objective into a

constraint with an adjustable upper bound, we can transform

problem (16) into

min
ρ,pC, pD

max
gC2B,gD2B

f1
(

ρ,pC,pD,gC2B,gD2B
)

,

s.t. C1 − C5, C6′, C7′,

C8 : f2
(

ρ,pC,pD
)

≤ ε, (17)

where ε can be adjusted to achieve different kinds of tradeoff

between EE and SE.

Theorem 2: If max
gC2B,gD2B

f1(ρ, pC, pD, gC2B, gD2B),

min
gC2B,gD2B

RC
n , and min

gC2D,gD2D
RD

k exist for all
(

ρ,pC,pD
)

,
(

ρ∗,pC∗
,pD∗

)

is robust Pareto optimal for problem P (G) iff

there exists ε such that
(

ρ∗,pC∗
,pD∗

)

is the unique optimal

solution to problem (17).

Proof : See Appendix B. �

Remark 3: From Theorem 2, it can be concluded that

the ε-constraint method is guaranteed to find all robust

Pareto optimal solutions of problem P (G). In other words,

the proposed framework for robust multi-objective optimiza-

tion can provide an entire robust Pareto frontier for the

uncertain MOO problem P (G), just like the complete Pareto

optimal set for a nominal MOO problem. Note that this

framework is general enough to be applied to other systems

with interference channel uncertainties.

D. Closed-Form Expression

To facilitate further processing, we need to derive the

closed-form expression of problem (17). First of all, to address

the uncertainty shown in the objective, the following results

can be found:

gm∗
n′i = arg max

gm
n′i

∈Gm
n′i

f1
(

ρ,pC,pD,gC2B,gD2B
)

= arg min
gm

n′i
∈Gm

n′i

∑

n∈C

RC
n

= arg min
gm

n′i
∈
�

ĝm

n′i
+δm

n′i
:|δm

n′i
|≤δm

n′i,max

� rC
n∗m

= ĝm
n′i + δm

n′i,max, (18)

where

rC
n∗m = log2

(

1 +
pC

n∗mhm
n∗i

IC
n∗m + σ2

)

, (19)

and n∗ denotes the index of the CU which is associated

with the i-BS and occupies the m-th RB. Similarly, it can

be obtained that

gm∗
ki =arg max

gm
ki

∈Gm
ki

f1
(

ρ,pC,pD,gC2B,gD2B
)

= ĝm
ki+δm

ki,max.

(20)

Then, the constraints C6′ and C7′ can be re-expressed as

C6′ :
∑

m∈MC
n

log2

(

1+
pC

nmhm
ni

IC∗
nm+σ2

)

≥ RC
n,min, ∀n ∈ C,

(21a)

C7′ :
∑

m∈M

ρkmlog2

(

1 +
pD

k hm
k

ID∗
km + σ2

)

≥ RD
k,min, ∀k ∈ D,

(21b)

where IC∗
nm =

∑

n′∈Cm,n′ �=n

pC
n′mgm∗

n′i +
∑

k∈D

ρkmpD
k gm∗

ki , ID∗
km =

∑

n∈Cm

pC
nmgm∗

nk +
∑

j �=k,j∈D

ρjmpD
j gm∗

jk , gm∗
nk = ĝm

nk + δm
nk,max,

and gm∗
jk = ĝm

jk + δm
jk,max. Thus, the closed-form expression

of problem (17) can be expressed as

min
ρ,pC,pD

f1
(

ρ,pC,pD,gC2B∗,gD2B∗
)

,

s.t. C1 − C5, C6′, C7′, C8. (22)

IV. JOINT SPECTRUM ALLOCATION AND

POWER COORDINATION

The transformed problem (22) factors the tradeoff between

the system EE and SE for CUs as well as strict QoS require-

ments of all D2D pairs and CUs. However, this problem

is highly non-convex because of the integer variable ρkm

and mutual interference not only among CUs and D2D pairs

but also among D2D pairs sharing the same RB, which is

NP-hard to find the global optimal RB allocation and power

coordination solution. Therefore, in this section, we aim at

finding a practical algorithm for the joint optimization of

spectrum allocation and power coordination. With the employ-

ment of primal decomposition [36], the original problem can

be divided into two subproblems, and a two-stage iterative

algorithm is developed which optimizes the RB allocation

and power coordination in turn. With the given RB allocation

variable ρ = ρ′ in problem (22), the joint power coordination

of CUs and D2D pairs problem can be obtained as

max
pC,pD

Rtot

(

pC,pD
)

=
∑

n∈C

RC
n

(

ρ′,pC,pD,gC2B∗,gD2B∗
)

,

s.t. C4, C5, C6′, C7′, C8. (23)

Contrarily, by fixing pC = pC′
and pD = pD′

in problem

(22), the RB allocation problem can be presented as

min
ρ

Rtot (ρ) =
∑

n∈C

RC
n

(

ρ,pC′
,pD′

,gC2B∗,gD2B∗
)

,

s.t. C1 − C3, C6′, C7′. (24)



4942 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 10, OCTOBER 2018

Note that we have removed constant items in (23) and (24)

for the purpose of simplicity.

A. Joint Power Coordination of CUs and D2D Pairs

As mentioned above, the power coordination problem

is non-convex because of existing mutual interference.

To address this problem, we first re-express the rate function

of CU-n as

RC
n

(

pC,pD
)

= Xn

(

pC,pD
)

− Yn

(

pC,pD
)

(25)

where both functions Xn

(

pC,pD
)

and Yn

(

pC,pD
)

are

concave and defined as

Xn

(

pC,pD
)

=
∑

m∈MC
n

log2

(

pC
nmhm

ni + IC∗
nm + σ2

)

, (26a)

Yn

(

pC,pD
)

=
∑

m∈MC
n

log2

(

IC∗
nm + σ2

)

. (26b)

Thus, the objective of problem (23) is actually the difference

of two concave functions:

Rtot

(

pC,pD
)

=
∑

n∈C

Xn

(

pC,pD
)

−
∑

n∈C

Yn

(

pC,pD
)

. (27)

To find the power coordination solution within afford-

able computational complexity, sequential optimization [37] is

adopt in this paper, which can generate a series of improved

feasible solutions [15], [25]. Specifically, for a given initial

point
(

pC,(0),pD,(0)
)

, at the t-th iteration, the objective of

problem (23) can be approximated as

R̃
(t)
tot

(

pC,pD
)

=
∑

n∈C

Xn

(

pC,pD
)

−
∑

n∈C

Ỹ (t)
n

(

pC,pD
)

,

(28)

where Yn

(

pC,pD
)

is approximated as

Yn

(

pC,pD
)

≤ Ỹ (t)
n

(

pC,pD
)

= Yn

(

pC,(t−1),pD,(t−1)
)

+
∑

n∈C

∑

m∈MC
n

(

pC
nm − pC,(t−1)

nm

) ∂Yn

(

pC,pD
)

∂pC
nm

∣

∣

∣

∣

∣

pC=p
C,(t−1),

pD=p
D,(t−1)

+
∑

k∈D

(

pD
k − p

D,(t−1)
k

) ∂Yn

(

pC,pD
)

∂pD
k

∣

∣

∣

∣

∣

pC=p
C,(t−1),

pD=p
D,(t−1)

(29)

Note that the equality of (29) holds when
(

pC,pD
)

=
(

pC,(t−1),pD,(t−1)
)

. In the same way, the constraint C6′ is

near

C6′′ : Xn

(

pC,pD
)

− Ỹ (t)
n

(

pC,pD
)

≥ RC
n,min, ∀n. (30)

In addition, the constraint C7′ is actually a linear constraint,

which can be equivalently transformed into

C7′′ : pD
k h

m̂(k)
k −

(

2RD
k,min−1

)(

ID∗
km̂(k)+σ2

)

≥ 0, ∀k,

(31)

where m̂ (k) denotes the index of RB allocated to the k-th

D2D pair, i.e., ρ′
km̂(k) = 1. Consequently, at the t-th iteration,

(

pC,(t),pD,(t)
)

can be obtained by finding the optimum of the

convex problem

max
pC,pD

R̃
(t)
tot

(

pC,pD
)

,

s.t. C4, C5, C6′′, C7′′, C8, (32)

which is readily solved via standard algorithms with polyno-

mial complexity [38].

To tighten the approximation in (29) and generate the

near-optimal solution of (23), it is essential to iteratively set

new power coordination solution
(

pC,(t),pD,(t)
)

and solve

problem (32) until convergence. The above steps are summa-

rized in Algorithm 1, and its effectiveness and convergence

are proved as follows.

Algorithm 1 D. C. Programming Algorithm for Joint Power

Coordination
1. Initialize t = 0, flagpc = 1, φ = 0.01, and find an initial

feasible solution
(

pC,(0),pD,(0)
)

.

2. while flagpc > φ, do

3. t = t + 1;

4. Calculate Ỹ
(t)
n

(

pC,pD
)

with
(

pC,(t−1),pD,(t−1)
)

;

5. Solve problem (32) and obtain
(

pC(t),pD,(t)
)

;

6. Calculate ∆p
C,(t)
nm =

∣

∣

∣

pC,(t)
nm −pC,(t−1)

nm

p
C,(t−1)
nm

∣

∣

∣
,∀n, m;

7. Calculate ∆p
D,(t)
k =

∣

∣

∣

∣

p
D,(t)
k

−p
D,(t−1)
k

p
D,(t−1)
k

∣

∣

∣

∣

,∀k;

8. Calculate flagpc = max
n,m,k

{

∆p
C,(t)
nm , ∆p

D,(t)
k

}

.

9. end while

Theorem 3: Algorithm 1 monotonically increases the value

of Rtot

(

pC,pD
)

with the number of iterations and finally

converges to the point satisfying the KKT conditions of

problem (23).

Proof : See Appendix C. �

Note that for the given threshold φ > 0, the iterative process

of Algorithm 1 terminates after finite iterations at either

flagpc < φ or

∣

∣

∣

∣

Rtot(pC,(t),pD,(t))−Rtot(pC,(t−1),pD,(t−1))
Rtot(pC,(t−1),pD,(t−1))

∣

∣

∣

∣

< φ.

B. Resource Block Allocation

To solve problem (24), we introduce a two-sided matching

game defined as below, where RBs and D2D pairs are two

opposite sets of agents which aim at maximizing their own

utilities.

Definition 3: The matching game between RBs and D2D

pairs is expressed as a function M which maps the set of

M ∪ D to the set of M ∪ D such that for the m-th RB

RBm ∈ M and the k-th D2D pair DPk ∈ D:

(a) M (RBm) ⊆ D;

(b) M (DPk) ∈ M;

(c) |M (RBm)| ≤ Q;

(d) |M (DPk)| ≤ 1;

(e) DPk ∈ M (RBm) ⇔ RBm = M (DPk).
Condition (a) and (c) indicate that each RB is matched

with at most Q D2D pairs, while condition (b) and (d)

represent that each D2D pair can only match with one RB.
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Condition (e) implies that CUs and D2D pairs are matched

mutually. Besides, M (RBm) or M (DPk) can be the empty

set if no D2D pairs or RBs can be matched with the m-th

RB or the k-th D2D pair.

Then, to measure the motivation of each agent, we first

define the utility of the m-th RB as the transmission data

rate of all CUs on it, i.e.,

URBm
(M) =

∑

n∈Cm

RC
nm (M), ∀m ∈ M, (33)

and similarly, the utility of the k-th D2D pair can be

expressed as

UDPk
(M) = RD

k (M) , ∀k ∈ D. (34)

With the above definitions, all CUs and D2D pairs can

construct their preference lists with the descending order of

utilities.

Remark 4: Different from the conventional model of the

two-sided matching where preference lists are fixed during the

matching process, the matching described above is a matching

with externalities, where preference lists will change as the

matching game proceeds due to the mutual interference among

CUs and D2D pairs sharing the same RB. For instance, if the

k-th D2D pair is matched with RB-m, the interference on the

m-th RB will increase, and thus other D2D pairs may change

their preferences since the utility functions vary with interfer-

ence. In this case, the preference list of each D2D pair depends

on the choices of other agents. Consequently, the matching

game considered in this paper is more complicated compared

to the traditional case.

To better illustrate the interdependency of agents’ preference

lists, we introduce the definitions of swap matching and swap-

blocking pair in the following.

Definition 4: For a given matching M where M (DPk) =
RBm, and M(DPj) = RBl, the swap matching is

defined as Mkm
jl = M\ {(DPk, RBm) , (DPj , RBl)} ∪

{(DPk, RBl) , (DPj , RBm)}, which denotes that the two

specific D2D pairs exchange their matched RBs while the

other D2D pairs remain unchanged. Besides, the swap

matching Mkm
jl will be approved only if

1) ∀a ∈ {DPk, DPj , RBm, RBl}, Ua

(

Mkm
jl

)

≥ Ua (M);

2) ∃a ∈ {DPk, DPj , RBm, RBl}, Ua

(

Mkm
jl

)

> Ua (M),

and (DPk, DPj) is called a swap-blocking pair in M.

Note that the above definition indicates that only if the utilities

of all involved players are not reduced and at least one player’s

utility increases, a swap matching will be approved.

Now, we first propose a low-complexity algorithm as an

initial base line, which is summarized in Algorithm 2. First of

all, each D2D pair proposes to its most preferred RB, which is

ranked first in its preference list. After receiving the proposal,

each RB will reject its least-preferred D2D pair in its waiting

list repeatedly until the minimum rate requirements of all CUs

are satisfied and at most Q D2D pairs are accepted. The above

steps will be carried out until all D2D pairs have been matched.

Furthermore, from Definition 4, it can be observed that

swap operations can help to improve the utilities of agents

Algorithm 2 Initial Matching Algorithm for Spectrum

Allocation
1. for each D2D pair DPk ∈ D
2. Calculate RD

k

∣

∣

M(DPk)=RBm
, ∀RBm ∈ M;

3. Establish the preference list PD
k by sorting RBm

in descending order of RD
k

∣

∣

M(DPk)=RBm
;

4. end for

5. Initialize the set of the unmatched D2D pairs Du = D;

6. while Du �= φ
7. for each D2D pair DPk ∈ Du

8. DPk sends a request to its most-preferred RB in

PD
k , e.g., RBm, by setting ρI

km = 1;

9. end For

10. for each RB RBm ∈ M
11. Establish waiting list WRB

m =
{

DPk

∣

∣ρI
km = 1

}

;

12. Remove WRB
m from Du;

13. while the minimum rate requirements of CUs are

not satisfied or
∣

∣WRB
m

∣

∣ > Q
14. Find the least-preferred D2D pair in WRB

m ,

denoted as DPk′ ;

15. Reject DPk′ by setting ρI
k′m = 0;

16. Add DPk′ into Du;

17. Remove RBm from PD
k′ ;

18. end while

19. end for

20. end while

21. Output the initial RB allocation solution ρI.

Algorithm 3 Further Swap Matching Algorithm for Spectrum

Allocation

1. Initialize the spectrum allocation solution ρI.

2. for each D2D pair DPk ∈ D
3. DPk searches DPj or vacancies Ol on RB-l;

4. Check if (DPk, DPj) or (DPk, Ol) is a swap-

blocking pair;

5. If approved, DPk exchanges its RB with DPj or

moves to the l-th RB;

6. Update the matching state;

7. Repeat 3-6 until all swap matchings checked.

8. end for

9. Output the convergent matching state ρ∗.

and therefore the performance of the spectrum allocation algo-

rithm. Inspired by this observation, the further swap matching

algorithm is developed and summarized in Algorithm 3.

At the beginning, each D2D pair will search another D2D

pair or available vacancies in other RBs to check if they can

form a swap-blocking pair. If the swap matching is approved,

the matching will update to the swap matching. The above

process will continue until there does not exist any swap-

blocking pairs.

For the aforementioned matching game with externalities,

the traditional definition for the stability of a matching game

is not guaranteed. Instead, we concentrate on finding the

two-sided exchange-stable matching [39] in this paper, which

is defined as below.
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Definition 5: A matching M is called a two-sided exchange-

stable matching if no swap-blocking pair exists.

Then, we have the following theorem for Algorithm 3.

Theorem 4: Algorithm 3 is guaranteed to converge to a

two-sided exchange-stable matching within a limited number

of iterations.

Proof : See Appendix D. �

C. Two-Stage Iterative Algorithm and Performance Analysis

Up to now, the solutions of subproblems (23) and (24)

have been obtained via Algorithm 1, and Algorithm 2-3,

respectively. Thus, the original SOO problem (22) can be

readily solved by developing the two-stage iterative algorithm

as organized in Algorithm 4, and the following theorem

illustrates its effectiveness and convergence.

Algorithm 4 Two-Stage Iterative Algorithm for Joint

Spectrum Allocation and Power Coordination

1. For any given tradeoff parameter ε,

2. Initialize τ = 0, flag = 1, Φ = 0.01;

3. Initialize pC
nm = ε−Nps

αN |MC
n | , pD

k = pD
max;

4. Initialize ρ0 via Algorithm 2;

5. while flag > Φ, do

6. τ = τ + 1;

7. Calculate ρτ via Algorithm 3;

8. Calculate
(

pC,(τ),pD,(τ)
)

via Algorithm 1 with ρτ ;

9. Calculate flag = max
k,m

∣

∣

∣
ρ
(τ)
km − ρ

(τ−1)
km

∣

∣

∣
.

10. end while

Theorem 5: Algorithm 4 monotonically decreases the

objective of problem (22) at each iteration, and finally

converges in a finite amount of iterations for a given

threshold Φ.

Proof : See Appendix E. �

For the spectrum allocation problem, its computational

complexity is mainly up to the swap matching algorithm,

i.e., Algorithm 3. Since there are at most 1
2K (M − 1) Q

potential swap-blocking pairs, the computation complexity of

Algorithm 3 approaches to O (K (M − 1)Q). In addition,

the power coordination problem is highly non-convex because

of mutual interference among D2D pairs and CUs. It is

rather difficult to find its global optimal solution, and thus

Algorithm 1 is proposed to solve problem (23), which is

guaranteed to find the local optimum. Specifically, as a stan-

dard convex problem is solved at each iteration, only polyno-

mial computational complexity O ((N + K)
µ
(NM + K)

v
) is

required via the interior point method [18], [20], where µ and

v are positive constant. Besides, Algorithm 4 converges fast

as verified by simulation results (see Fig. 3). In conclusion,

the total computational complexity of Algorithm 4 for the joint

optimization of spectrum allocation and power coordination

is O (KQ (M − 1) (N + K)
µ
(NM + K)

ν
). In other words,

the proposed algorithm only requires polynomial complexity

to solve problem (22).

TABLE I

SIMULATION PARAMETERS SETTING

Fig. 2. Energy and spectral efficiency tradeoff for the proposed algorithm
and the exhaustive search.

V. SIMULATION RESULTS

In this section, numerical results are presented to demon-

strate the performance of our proposed algorithm. It is

assumed that there are one macro BS in the cell center, three

pico BSs located at the circle with the radius of 200m, and

randomly distributed D2D pairs as well as CUs. The large-

scale channel gain between two nodes is composed of path

loss and shadow fading, where the path loss is modelled

as 128.1 + 37.6log10d (km), and the standard derivation of

shadow fading is 8 dB. Besides, it is assumed that all channels

undergo Rayleigh fading, and the other related simulation

parameters and their default values are shown in Table I. For

notational brevity, we use δmax to represent the normalized

error bound for all interference channel uncertainty regions,

which is normalized by the corresponding estimate. Please

note that if there are not particular statements, the parameter

values mentioned in Table I are default values used to generate

all the following results.

1) Optimality and Convergence of the Proposed Algorithm:

We first compare the proposed two-stage iterative algorithm

with the exhaustive search method to verify its optimality.

As the exhaustive search method is achieved with exponential

computational complexity, the small-scale case of N = 2,

K = 3, M = 4 is presented as an instance in Fig. 2.
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Fig. 3. The convergence procedure of Algorithm 4.

Fig. 4. The energy efficiency comparison under different ε and δmax.

As shown in Fig. 2, our proposed algorithm approaches the

exhaustive search algorithm in terms of the tradeoff between

EE and SE. Then, we investigate the convergence of the

proposed two-stage iterative algorithm, and Fig. 3 plots the

sum data rate of all CUs Rtot

(

ρ,pC,pD
)

versus the number

of iterations, where N = 12, M = 36. From Fig. 3,

we can observe that Rtot

(

ρ,pC,pD
)

increases uniformly

and converges to the peak value after about 6 iterations.

Besides, it can be found that the tradeoff parameter ε and

the number of D2D pairs have insignificant influence on the

speed of convergence. The observed results also coincide with

Theorem 5 given in Section IV.

2) Performance Comparisons: Furthermore, numerical

results are presented in Figs. 4-6 to evaluate the performance

of our proposed robust scheme in terms of EE, SE and

D2D pairs QoS satisfying probability compared to the non-

robust scheme. Note that the non-robust scheme indicates

that channel uncertainties are not taken into consideration and

all the channel estimates are adopted directly as they were

accurate. However, the interference channel uncertainties still

exist in the non-robust scheme. Particularly, the effective EE

and SE are considered in Figs. 4-5, which is set as 0 when

the minimum rate requirements of CUs or D2D pairs are not

satisfied.

Fig. 5. The spectral efficiency comparison under different ε and δmax.

Fig. 6. The D2D pairs QoS satisfying probability under different ε and
δmax.

Specifically, the performances of EE and SE are presented

with the variation of the tradeoff parameter ε and the normal-

ized error bound δmax in Fig. 4 and Fig. 5, respectively. It can

be observed in Fig. 4 that for a given ε, the EE under the

non-robust scheme decreases rapidly with the increase of δmax

while the EE under the robust scheme declines slightly with

δmax. This is because when δmax increases, the minimum rate

requirements of CUs and D2D pairs for the non-robust scheme

are more likely to be violated, and the effective EE for non-

robust case is treated as 0 to present the infeasibility of the

constraint C6. In contrast, as the proposed robust scheme is

guaranteed to satisfy the rate requirements of CUs invariably,

the EE under our robust scheme is strictly greater than 0 all

the time. Similarly, we can also observe from Fig. 5 that for

a given ε, a larger δmax leads to a worse SE, and the robust

scheme achieves higher effective SE in comparison with the

non-robust scheme for the same ε and δmax.

On the other hand, by adjusting the tradeoff parameter

ε from 6 to 7.5, Fig. 4 and Fig. 5 also show the tradeoff

performance between EE and SE under robust and non-

robust schemes. When δmax is fixed, the effective SE always

increases with ε under both schemes as shown in Fig. 5.
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Fig. 7. D2D pairs QoS satisfying probability vs. RD

min
for robust and

non-robust schemes.

This is because larger ε indicates more transmit power is

available to improve the transmission rate of CUs. On the

contrary, in Fig. 4, the effective EE first increases and then

declines with the growing of ε for both schemes. When ε is

small, the power consumption for data transmission plays a

small part in the total power consumption compared to the

fixed circuit power consumption. Under this circumstance, SE

goes up at a higher speed than the whole power consumption,

and thus EE also increases with ε until reaching the peak

point. After that, the growing of transmit power consumption

cannot be neglected, and the increase of SE is slower owing to

the reducing gradient of the logarithmic rate-power function.

Consequently, EE turns to decrease with ε.

In addition, the QoS satisfying probability of D2D pairs

is plotted against ε and δmax in Fig. 6. It can be easily

found that our proposed robust scheme can always satisfy the

minimum rate requirements of all D2D pairs with the variation

of ε and δmax, and therefore its QoS satisfying probability is

always 1. In contrast, for the non-robust scheme, the QoS

satisfying probability of D2D pairs decreases with both ε and

δmax. Specifically, when ε increases, CUs will transmit data

with higher transmit power to improve the system SE, which

produces more serious interference to D2D pairs sharing the

same RB. Besides, with the increase of δmax, the deviation

range of the interference to D2D pairs extends gradually,

which also increases the violation probability of the minimum

rate constraint C7.

3) Impact of D2D Minimum Rate Requirement: Fig. 7 and

Fig. 8 show the impact of the minimum rate requirements of

D2D pairs RD
min on the D2D pairs QoS satisfying probability

and the EE-SE tradeoff. It is readily observed in Fig. 7 that

our proposed robust scheme can always satisfy the minimum

rate requirements of D2D pairs, while the D2D pairs QoS

satisfying probability for the non-robust scheme declines with

the increase of RD
min. Besides, for the non-robust scheme,

the increase of ε also contributes to the deterioration of

QoS satisfying probability for D2D pairs, since higher level

of interference from CUs will be imposed on D2D pairs

sharing the same RBs. Then, in Fig. 8, as ε increases from

6 to 7.5, higher rate requirement of D2D pairs means worse

Fig. 8. Energy efficiency vs. spectral efficiency with different RD

min
for the

proposed robust scheme.

Fig. 9. Energy efficiency vs. spectral efficiency with different Q for the
proposed robust scheme.

performance in terms of the EE-SE tradeoff. Specifically, for

the same EE, the SE is reduced with higher minimum rate

requirement of D2D pairs. Since D2D pairs need to transmit

with larger power to achieve higher rate, heavier interference

will be introduced to the CUs which share the same RBs.

Therefore, from Fig. 8, we can conclude that there exists a

tradeoff between the rate requirement of D2D pairs and the

EE-SE performance of CUs.

4) Effect of RB Quota: To investigate the impact of the

maximum number of D2D pairs at each RB, the curves for

the tradeoff between EE and SE with different Q are plotted

in Fig. 9. With the increasing of ε from 6 to 7.5, all the five

curves show the same trend that EE first goes up and then

declines with the growing of SE. As shown at the second half

of curves where EE declines with the increase of SE, higher

SE can be obtained with larger value of Q for the same EE.

With the increase of Q, more D2D pairs are permitted to share

the same RB, which provides more degrees of freedom in

spectrum allocation and thus contributes to the improvement

of SE. Besides, when Q increases from 2 to 6, the maximum

EE and its corresponding SE first increases and then remains

stable, which indicates that allowing five or more D2D pairs

to share the same RB cannot obtain extra performance gain.
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This is mainly due to the fact that more D2D pairs sharing

one RB will also introduce heavier mutual interference, which

reduces the performance advantage of spectrum sharing to

some extent. Therefore, the maximum EE and corresponding

SE cannot be enhanced by increasing the maximum number of

D2D pairs at each RB. Also, as the computational complexity

of Algorithm 3 rises up with Q, the choice of Q should be

appropriate, which is suggested to be 5 for the given simulation

settings.

VI. CONCLUSION

In this paper, the robust multi-objective optimization in D2D

communications underlaying HetNets has been investigated,

and the uncertain MOO problem was formulated to optimize

the system EE and SE at the same time under the minimum

rate requirements of all CUs and D2D pairs, where the uncer-

tainties of all interference channels were taken into consid-

eration. Then, we proposed an effective two-stage iterative

algorithm for the joint optimization of the spectrum allocation

and power coordination with polynomial complexity, whose

convergence and optimality were demonstrated through theo-

retical derivation. Besides, our proposed algorithm converged

fast as shown in numerical results. Compared to the non-robust

scheme, the proposed robust scheme achieved much higher

effective EE and SE, and always satisfied the minimum rate

requirements of D2D pairs. By investigating the impact of

the D2D pairs’ minimum rate requirements, we found there

existed an intrinsic tradeoff between the EE-SE performance of

CUs and the minimum rate requirements of D2D pairs. Finally,

the effect of the RB quota was studied, which suggested that

the choice of quota should be appropriate for the compromise

between complexity and performance gain.

APPENDIX A

PROOF OF THEOREM 1

We first prove the sufficiency, and define that

F
(

x,gC2B,gD2B
)

=
[

f1
(

x,gC2B,gD2B
)

f2 (x)
]T

, (35)

where x =
(

ρ,pC,pD
)

. Assume that x∗ is robust Pareto

optimal for P (G), and thus there does not exist x satisfying

C1 − C7 and FG (x) − R
2
≥ ⊆ FG (x∗) − R

2
≥ simultaneously.

Suppose that x∗ is not Pareto optimal for problem (16),

which indicates that there exists another feasible solution x′

of problem (16) satisfying

F
(

x′,gC2B
max (x′) ,gD2B

max (x′)
)

∈ F
(

x∗,gC2B
max (x∗) ,gD2B

max (x∗)
)

− R
2
≥, (36)

where
(

gC2B
max (x) ,gD2B

max (x)
)

= arg max
gC2B,gD2B

f1
(

x,gC2B,gD2B
)

.

(37)

Since

F
(

x′,gC2B,gD2B
)

≤ F
(

x′,gC2B
max (x′) ,gD2B

max (x′)
)

, (38)

∀gC2B ∈ GC2B,gD2B ∈ GD2B, always holds, we have

FG (x′) ⊆ F
(

x∗,gC2B
max (x∗) ,gD2B

max (x∗)
)

− R
2
≥

⊆ FG (x∗) − R
2
≥, (39)

which contradicts with the assumption that x∗ is robust

Pareto optimal for P (G). Therefore,
(

ρ∗,pC∗
,pD∗

)

is Pareto

optimal for problem (16) if it is robust Pareto optimal for

P (G). Conversely, we can prove the necessity in a similar

way, which completes the proof.

APPENDIX B

PROOF OF THEOREM 2

We first prove the sufficiency. Define that

g1 (x) = max
gC2B,gD2B

f1
(

x,gC2B,gD2B
)

, (40a)

g2 (x) = f2 (x) , (40b)

where x =
(

ρ,pC,pD
)

. For given ε, assume x∗ is the unique

optimal solution of problem (17), and we have g1 (x∗) ≤
g1 (x), for all x satisfying C1-C5, C6′, C7′ and C8.

Now we suppose that x∗ is not Pareto optimal for the MOO

problem (16). Thus, there must exist another solution x′ of

problem (17) that satisfies

gi (x′) ≤ gi (x∗) , ∀i = 1, 2, (41)

and there is at least one j ∈ {1, 2} such that gi (x′) < gi (x∗).
Apparently, this contradicts with the uniqueness assumption.

Therefore, we can conclude that x∗ is Pareto optimal for the

MOO problem (16). Furthermore, from Theorem 1, it can be

readily obtained that x∗ is also robust Pareto optimal for the

original uncertain MOO problem P (G).

On the other hand, it is assumed that x∗ is a robust Pareto

optimal solution for problem P (G) and thus Pareto optimal

for problem (16). Then, let ε = g2 (x∗), and suppose that

x∗ is not the optimal solution of problem (17). Thus, there

must exist another x′ with g1 (x′)<g1 (x∗) and g2 (x′) ≤
ε = g2 (x∗), which contradicts with the assumption that x∗ is

Pareto optimal for problem (16). The necessity is also proved.

APPENDIX C

PROOF OF THEOREM 3

Assuming that
(

pC,(t),pD,(t)
)

is the obtained optimal solu-

tion at the t-th iteration, we can obtain that

Rtot

(

pC,(t−1),pD,(t−1)
)

a
= R̃

(t)
tot

(

pC,(t−1),pD,(t−1)
)

b
≤ R̃

(t)
tot

(

pC,(t),pD,(t)
)

c
≤Rtot

(

pC,(t),pD,(t)
)

, (42)

where the equality (a) is because Yn

(

pC,(t−1),pD,(t−1)
)

=

Ỹ
(t)
n

(

pC,(t−1),pD,(t−1)
)

; the inequality (b) is valid due the

fact that problem (32) is convex and
(

pC,(t),pD,(t)
)

is

its global optimal solution; the inequality (c) holds since

R̃
(t)
tot

(

pC,pD
)

is the lower bound of Rtot

(

pC,pD
)

according

to (29). Therefore, Rtot

(

pC,pD
)

is improved at each

iteration.

Besides, as the constraint set is compact and there exists an

upper bound of Rtot

(

pC,pD
)

for the given transmit power

budget, Algorithm 1 must converge. Assume
(

pC∗,pD∗
)

is
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the convergent solution. As the objectives and constraints in

problem (23) and problem (32) have the same values and

derivative values at
(

pC∗,pD∗
)

,
(

pC∗,pD∗
)

must satisfy the

KKT conditions of problem (23).

APPENDIX D

PROOF OF THEOREM 4

Assume that the τs-th swap operations is forced by the swap-

blocking pair (DPk, DPj), i.e., M(τs) = M(τs−1)km

jl . From the

definition of swap-blocking pairs, it can be obtained that

Rtot

(

M(τs)
)

− Rtot

(

M(τs−1)
)

=
∑

n∈C

(

RC
n

(

M(τs)
)

− RC
n

(

M(τs−1)
))

=
∑

m′∈M

(

URBm′

(

M(τs)
)

− URBm′

(

M(τs−1)
))

= URBm

(

M(τs)
)

+ URBl

(

M(τs)
)

−URBm

(

M(τs−1)
)

− URBl

(

M(τs−1)
)

≥ 0, (43)

which indicates that the objective function of problem (24)

will not decrease with the progress of Algorithm 3. Since the

numbers of D2D pairs and RBs are both finite, the number of

potential swap operations is also finite. Hence, the conver-

gence of Algorithm 3 must occur in a finite amount of

iterations.

As depicted in Algorithm 3, when it converges, no D2D pair

can find another D2D pair to constitute a swap-blocking pair.

In other words, the matching at convergence is a two-sided

exchange-stable matching, which completes the proof.

APPENDIX E

PROOF OF THEOREM 5

Considering the τ -th iteration of Algorithm 4, we can obtain

the following inequality

Rtot

(

ρ(τ−1),pC,(τ−1),pD,(τ−1)
)

α

≤Rtot

(

ρ(τ),pC,(τ−1),pD,(τ−1)
)

β

≤Rtot

(

ρ(τ),pC,(τ),pD,(τ)
)

. (44)

Specifically, the first inequality α has been verified in

Theorem 4 where the sum rate of CUs will not decrease

after Algorithm 3 conducted. Also, Theorem 3 has illustrated

that Rtot

(

pC,pD
)

increases with the number of iterations,

which proves the second inequality β. Hence, Algorithm 4

monotonically decreases the objective of problem (22) at

each iteration. Furthermore, with the given spectrum and

power budget, the sum rate of CUs Rtot

(

ρ,pC,pD
)

is

upper bounded. Therefore, Algorithm 4 is guaranteed to

converge after finite iterations at either flag < Φ or
∣

∣

∣

∣

Rtot(ρ
(τ),pC,(τ),pD,(τ))−Rtot(ρ

(τ−1),pC,(τ−1),pD,(τ−1))
Rtot(ρ(τ−1),pC,(τ−1),pD,(τ−1))

∣

∣

∣

∣

<Φ.
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