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Abstract. 'In most real world optimization problems several optimiza-
tion goals have to be considered in parallel. For this reason, there has
been a growing interest in Multi-Objective Optimization (MOO) in the
past years. Several alternative approaches have been proposed to cope
with the occurring problems, e.g. how to compare and rank the different
elements. The available techniques produce very good results, but they
have mainly been studied for problems of “low dimension”, i.e. with less
than 10 optimization objectives.

In this paper we study MOO for high dimensional spaces. We first review
existing techniques and discuss them in our context. The pros and cons
are pointed out. A new relation called e-Preferred is presented that ex-
tends existing approaches and clearly outperforms these for high dimen-
sions. Experimental results are presented for a very complex industrial
scheduling problem, i.e. a utilization planning problem for a hospital.
This problem is also well known as nurse rostering, and in our application
has more than 20 optimization targets. It is solved using an evolutionary
approach. The new algorithms based on relation e-Preferred do not only
yield better results regarding quality, but also enhances the robustness
significantly.

1 Introduction

To solve complex optimization problems today, it is often not sufficient to only
consider a single optimization criteria. In contrast, many real world problems
have several — often contradicting — optimization goals. Thus, in the recent past
several techniques for Multi-Objective Optimization (MOQO) have been proposed.

One of the first approaches in this direction was the use of Pareto-optimal
elements. This has been discussed in the context of Fuvolutionary Algorithms
(EAs) in [1]. The goal is to determine elements from the Pareto set. To guide
this search, there exist several alternative methods (see e.g. [2, 3]) where the core
is a relation that allows to compare different elements. E.g. the relation Dominate
proposed in [1] can be applied. These methods are well known and have been
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studied intensively. But so far these studies mainly consider problems with a
small number of optimization criteria, e.g. in [2] comparisons for dimensions two
or three are given.

For higher dimensional spaces there only exist a few studies (see e.g. [4-7]).
As testcases scalable test functions proposed in [4] are considered. For example,
in [3] it is reported that the number of individuals in the Pareto set, i.e. the non-
dominated solutions, increase with the number of optimization objectives. Ex-
periments have shown that for 20 objectives the percentage of solutions that can-
not be distinguished using relation Dominates in random populations is nearly
100%. For this reason, new measures and relations have to be defined that help
to automate and guide the optimization process.

In general for higher dimensions weighted sums or aggregation have been
proposed, since they are easy to describe and, on a first sight, scale well. But
for high dimensions these techniques reach their limits, since it is hard (or even
impossible) to determine good weights or the fitness of the optimal solution is
not known in advance, respectively.

In [8,9] an alternative relation called Preferred (originally introduced as
Favour) has been proposed and applied for five dimensions. Experiments have
shown that Preferred clearly outperformed relation Dominates and an approach
based on weighted sums. But in all cases described above the dimensions con-
sidered are rather small, i.e. less than 10. However, for complex optimization
problems, where especially EAs are frequently used, often a higher number of
dimensions occur. Of course, the standard algorithms can also be applied in the
case of higher dimensions, but it will be shown in this paper by a detailed dis-
cussion and also by experimental studies for an industrial application that other
techniques should be applied.

In this paper we first discuss the existing techniques and point out their main
properties. Then, an experimental study shows the weaknesses of the above tech-
niques for higher dimensions. For the experiments an industrial application where
a very complex scheduling problem with many constraints occurs is considered.
Le. the nurse rostering problem [10], a well-known problem in mixed integer
optimization, where a highly constraint schedule for employees in a hospital
is generated. In this problem, 25 optimization goals are considered in parallel.
As an additional difficulty, there are different types of constraints. Some can
be seen as “hard constraints” that are enforced by state laws, while others are
“soft constraints” that should be fulfilled as good as possible. It is demonstrated
by experiments that for high dimensions the approach using relation Preferred
outperforms traditional methods based on non-dominated sorting (relation Dom-
inates). But relation Preferred is not robust for high dimensions and has to be
extended accordingly. Therefore, we propose an extension of Preferred that also
takes the relative difference over all dimensions into account. It considers envi-
ronments of radius €, where elements outside this region are “punished”. The
new relation is called e-Preferred. Experimental results show that the new ap-
proach results in higher quality and, additionally, gives very robust optimization
results.



The paper is structured as follows: In Section 2 previous work is reviewed
and properties of the different relations are discussed. An experimental study
for a complex scheduling problem is presented in Section 3. This study clearly
shows the weaknesses of the existing techniques. Our new approach including
experimental evaluations is introduced in Section 4. Finally, in Section 5 the
results are summarized and directions for future research are pointed out.

2 Preliminaries

To make the paper self-contained, a brief review of proposed relations for com-
paring MO solutions is given. In the second part the MOO methods used for the
experiments are described.

2.1 Relations

A multi-objective optimization problem is defined as follows: Given a search
space {2, an evaluation function F' : {2 — R™ is defined to calculate the fitness
vector of size m: F(A) : YA € (2. Then the optimization goal is to minimize
(or maximize) the elements of F(A). In the following we assume, without loss
of generality, that F' has to be minimized for all objectives. According to [1] it
holds:

Definition 1. Let A, B € 2. A <jominates B i<

Based on this, we can describe a Pareto set (non-dominated set) as x: Vp € x :
ﬂ(] € X : ¢ =dominates P-

As can be seen from the definition above, if two elements A, B € (2 are
compared with relation Dominates, then A dominates B only if it is less or
equal to B in all objectives and if it is better in at least one objective. Using
relation Dominates, a set of elements can be classified into several levels of
non-dominated solutions. Thus, first the non-dominated set is computed. Then,
disregarding the non-dominated set, the next level of non-dominated elements is
found. This is repeated, until all elements have been considered. The resulting
procedure is called non-dominated sorting [3].

In comparison relation Preferred [8] respects the number of objectives in
which A differs from B:

Definition 2. Let A,B € 2. A <preferred B &

A is then said to be preferred to B if A is better than B in a larger number
of objectives. The Relation Preferred is not transitive. This means it is possible
to have cycles in the relation graph of the elements of 2.

Analogously to non-dominated sorting a set of elements, e.g. a population,
can be grouped into several levels by using relation Preferred [8].



2.2 Methods

For our analysis three different methods are used. Based on relation Dominates
are the methods Dominates [11] and NSGA II [12]. Based on relation Preferred
the proposed strongly-connected components building algorithm Preferred is
used [8].

The method Dominates is a part of the Evolving Object Library [11] used
as backbone for our study. This method counts for each individual the number of
individuals which are dominated. Thus, if the number is zero, then this individual
is in the Pareto-front. The best rating is given to the individuals without any
dominators. Then the elements with one dominator follow and so on. Thus,
in contrast to non-dominated sorting [1], only the first Pareto-front is built and
considered using the method of [11]. Note, that the “distribution” of the elements
in the solution space is not taken into account. By this, it might happen that
all elements from the same region are favoured, while other regions are not
considered.

To avoid this concentration on a small part of the search space, the NSGA II
algorithm has been proposed [12]. The idea of NSGA II is as follows: The in-
dividuals in a population are classified by non-dominated sorting [1]. Then the
algorithm for computing the crowding distance is used to ensure that the Pareto-
front is widely spread. This also helps to preserve a diversity in the set of possible
solutions, e.g. in the population in the case of an EA.

The algorithm Preferred from [8] builds all strongly-connected components
in the relation graph that result from the pairwise comparison of all individuals
of the population. All individuals in the same component get the same fitness
(ranking value). Then all components are hierarchically ordered, followed by an
assignment of ranking values. For more details see [8].

3 Application of Models

While previous methods and algorithms have been successfully applied in many
fields ranging from graph problems to circuit design, all the studies have in com-
mon that MOO problems of low dimension have been considered, i.e. typically
only three or four. The situation changes, if higher dimensions are the main
focus. In this section we first introduce a very complex industrial scheduling
problem, i.e. a utilization planning problem for a hospital. The problem is taken
from a real-world environment of a hospital in Austria. An experimental study
follows, using the techniques introduced in Section 2.2.

3.1 Utilization Planing Problem

The problem of utilization planing, i.e. the nurse rostering problem [10], is very
complex and cannot be described here in all details. We briefly highlight the
main aspects to give an idea of the underlying optimization problem.

The problem is to determine a schedule for the employees at a hospital. In
the experiments schedules for ten persons for a planning period of 30 days have
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Fig. 1. Example nurse rostering schedule

to be computed. The computation of the fitness can be roughly categorized in
three main areas:

1. Rules resulting from ergonomics, e.g. having regular shifts

2. Restrictions by law, e.g. maximal hours of work per day or maximal working
days per month

3. Rules of the nurse station, e.g. sufficient nurses per shift

Some of these constraints are “hard” in the sense that they have to be fulfilled,
while others are “soft”, i.e. they improve the fitness, but a violation does not
invalidate the schedule. Altogether 25 optimization objectives are influencing the
fitness function. Each one might have a different influence, e.g. some are linear
while others are exponential regarding the influence.

Ezample 1. To give a better understanding of the algorithm a sketch of a sched-
ule is given in Figure 1. Depending on the grade of training the optimization
algorithm assigns exactly one shift to a person per day. In this example all given
shifts are marked with a letter. These letters have the following meaning: Day
shift (D), Night shift (N), Late shift (L), Vacation (V), Free shift (F), Stand-by
shift (S), No shift (-).

For more details see [10].

3.2 Implementation

The core of the optimization is directly based on a schedule similar to Figure 1.
In the optimization algorithm one mutation and two recombination operators are
used. They are applied with a probability of 50% for the mutation operator and
25% for each recombination operator. The mutation operator sets a legal shift
for a randomly chosen person and day. Both recombination operators exchange
a block of shifts, specified by a random choice of employees and days. Since the
focus of this paper is not on the optimization technique, i.e. the EA approach,



Table 1. Fitness for generation 3000

Algorithm AVprﬁgooo AVGq/’;gooo in percent|c3000|00..3000
Dominates| 429805 100% 11% 7%
NSGA II 421840 98% 13% 7%
Preferred 196842 46% 67%| 88%

the details are left out. In contrast, it is emphasized that the approach presented
in this paper is applicable for other MOO techniques as well.

As metric to compare the results of the 25 dimensional optimization, a
weighted sum approach, which reduces the fitness vector to one dimension, is
used. The weighted sum metric is in general defined as follows: ¥ : R™ — R with
U(A)=3", w; - F;(A). The justification of the weights results from the expe-
rience of an expert, several months of development in the area of nurse rostering
and the given constraints. Note, that a lot of time and experience was necessary
to adapt these weights.

To measure the influence of random seeds on the results, the random number
generator has been initialized with 10 different values. But they were chosen
as constants in each run. The results presented in Section 3.3 and 4.3 give the
average value AV Gy for these 10 runs. With the best weighted sum of generation
g for random seed ¢ denoted as ¥; 4, the average value AVGy 4 : R — R of the
ten runs ¥; 4 : 1 < 4 < 10 is calculated as follows:

10
10y,
AVGW,g _ EzEl() g

Additionally to the average value, the standard deviation o, has been calcu-
lated in percent from AV Gy 4 as follows:

10
7=\ 7T e
g 10 -1 AVGy g

i=1

3.3 Experimental Evaluation

The experiments are based on the standard setting of the EA as applied in the
industrial setting (see Section 3.2) . No fine-tuning has been done for any of the
algorithms.

The results of all experiments are given for a population size of 10 and a run of
3000 generations. The final average fitness values are shown in Table 1 in column
AV Gy 3000 for the methods Dominates, NSGA II and Preferred, respectively.
For comparison, in the next column AV Gy 3000 is given as percentage normal-
ized for Dominates. As can be seen, Dominates and NSGA II perform almost
identical, while Preferred gives a reduction of more than 50%.
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Fig. 2. Fitness for Dominate, NSGA II and Preferred

The next column gives the standard deviation. Here Dominates and NSGA II
have values from 10-15%, while Preferred has an “unstable” value of over 60%.
The result gets even worse if the average value of the standard deviation from
the first to the last generation is considered (see last column). The results of the
complete run are shown in Figure 2.

In summary the experimental study showed:

— The performance of Preferred was significantly better than that of Dominate
and NSGA ITI for high dimensional MOO.

— Measuring the standard deviation showed that Preferred is not very robust,
i.e. the algorithms should generate good solutions for each random seed.

3.4 Discussion

In this section the experiments are discussed to explain the observed behavior.

A more detailed analysis of the method Preferred showed the reason for
the behavior: Relation Preferred favours a solution A, if it is better in more
dimensions than a solution B. But a “problem” of relation Preferred is that the
other dimensions, i.e. those where B is better than A, are not considered at all. It



might happen that the negative effect of these dimensions is very strong and, as
a result “jumps” occur in the weighted sum metric. This effect can, for example,
be observed in Figure 2 between generation 450 and 500 or 1600 and 2600.

The main reasons for the weak performance regarding the fitness of relation
Dominates can be explained as follows: Due to the high number of dimensions
it rarely happens that an element is better in all dimensions. In fact, in the EA
run 93% of the solutions were not comparable to each other using Dominates.
Only solutions which are better or equal in all dimensions were distinguishable
from other solutions. This also applies to NSGA II and is a reason, why the
relation Dominates based methods Dominates and NSGA II could not guide to
good solutions.

In [3] this problem has been described for up to 20 objectives. There it has
been suggested to use a larger population size or to use modified fitness assigning
techniques. Both approaches will not work in our application. Increasing the
population size means higher run times. Furthermore, this might reduce the
number of non-comparable elements. To modify the fitness assignment might
help to preserve a good Pareto-front, but not to improve the path to an optimum.

So approaches based on Preferred should be used for guiding the search in
high dimensional spaces, because it is possible to compare solutions, which are
not comparable with relation Dominates. Preferred uses the number of better
objectives as a criterion for the comparison. But as a result the technique suffers
from unstable behavior as explained above.

4 Robust MOO

To improve the robustness of the approach based on Preferred, an extension
called e-Preferred is introduced in the following. Before we give a formal defini-
tion, the main idea is briefly sketched.

4.1 Overall Idea

One principle in multi-objective optimization is to model the criteria of human
decision making. In our application it has been observed that a human plan-
ner rejects solutions, if specific limits of the objectives quality are not satisfied.
Hence, the idea is to define fitness limits for each dimension. The resulting re-
lation is called e-Preferred, where an e-value is defined for each optimization
objective. A solution is rejected if it exceeds one or more e-limits.

For a motivation of our idea look at the following example:

Ezxample 2. Consider solutions A and B and a fitness function F for a mini-
mization problem. Let F(A4) = (1,1,100) and F(B) = (5,5,5). Then relation
Preferred would hold: A <preferrea B

But, dependent on the application considered, solution A is not a satisfying
solution, because the third component does not fulfill the planners expectations.



Table 2. Fitness for generation 3000

Algorithm AVG!I/’?,OOO AVG\I/,3000 in percent|o3000|00..3000
Dominates| 429805 100% 11% 7%
Preferred 196842 46% 67%| 88%
e-Preferred| 116594 27% 10%| 6,6%

To overcome this problem, a maximum environment ¢; is set for each opti-
mization objective 1 < i < m.

As can be seen in Example 2, if we set €3 = 50, solution A becomes worse
than B, because the third component of solution A does not satisfy the given
quality limits.

4.2 Relation e-Preferred

In this section an extension of Preferred, denoted as e-Preferred, is formally
introduced.

Definition 3. Let A, B€ 2 ande¢;, 1 <i<m

A <e—exceed B &
> [{j: Fj(A) > Fj(B) N Fj(A) = Fi(B)| > €}

The relation e-exceed counts how often a solution exceeds the given limits ;.
Then solution A is better than solution B with respect to the limits ¢;, if A has
less exceedings than B.

Using e-exceed the extension e-Preferred is defined as follows:

Definition 4. Given two solutions A, B € {2,
A ‘<efpreferred Bs A —e—ezceed Bv (B %Efezceed ANA '<preferred B)

First it is counted how often a solution exceeds the e-limits and the better
solution is determined. If both solutions are in the given range, Preferred is used
for comparison.

By building the relation graph with the newly proposed relation e-Preferred,
it is possible to create cycles, as relation Preferred does, too. For this reason we
use the same strongly-connected components building algorithm as suggested in
8]

4.3 Experimental Evaluation

The experimental setting is the same as described in Section 3.3, i.e. we studied
the run for 3000 generations. The underlying EA was identical for all approaches
and only the MOO relation was changed.
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Fig. 3. Fitness comparison for Preferred and e-Preferred

In the experiments for all dimensions the parameter € is set to 10000. This
choice is very conservative and only a weak restriction for the algorithm. But, it
can be avoided that the algorithm explores regions of the search space that are
not of the planners interest.

The same information as above is now given for e-Preferred in Table 2 and
Figure 3. Since Dominates and NSGA II behave almost the same, only Dominates
is shown in the table. Compared to Preferred, the results are further improved
by over 30% by using relation e-Preferred. But the even more remarkable obser-
vation is the robustness of the technique. While it is significantly better than
Preferred, it is even better than Dominates. This can be seen very well in Fig-
ure 3, where the fitness over 3000 generations is shown. There are no “jumps”
any more.

Influence of Epsilon Values For our experiments above large epsilon values
have been used. Only in cases where a solution was “very bad” in one or more
dimension it was rejected. In this section we briefly discuss the influence of alter-
native choices. The experiments are summarized in Table 3. By this, directions
for future work are pointed out (see also next section).
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Table 3. Fitness cut-out of the 18 most important dimensions

Algorithm AV Gw,3000| AV Gw,3000 in percent|osooo|0o..3000
e-Preferred 45188 100% 16%| 11%
e-Preferred-2500| 38998 86% 15%| 13%
e-Preferred-1000| 33018 73% 8% 10%

In a first run, denoted as e-Preferred-2500, the epsilon values of 18 out of the
25 optimization objectives were reduced from 10000 to 2500. The 18 dimensions
were the ones that the human expert considered “most important”. In a second
run (e-Preferred-1000) we additionally reduced two out of the 18 dimensions to
the value 1000 to consider those as “very important” criterias. As can be seen
even by these first experiments, the quality could be further improved, while
obtaining the same robustness.

If the value of € was too low (e.g. close to zero) for one dimension, then each
solution with small deterioration in this direction was immediately rejected with-
out respecting possible improvements in other dimensions. The same problem
occurred in the case of relation Dominates.

In summary, based on relation e-Preferred the quality measured by the fitness
value could be significantly improved, while robustness was obtained at the same
time.

5 Conclusions and Future Work

With more complex applications, MOO is becoming a more important topic.
To compare two solutions relations have to be defined. These have mainly been
evaluated on problems of low dimension, i.e. with up to 10 optimization goals.

In this paper a complex industrial scheduling problem has been investigated.
The problem has more than 20 optimization goals with different “levels” of
importance. Previously proposed relations have been evaluated and discussed in
the context of high dimensional MOO. It turned out that the methods either
suffer from low quality or low robustness.

A new relation called e-Preferred has been suggested and experimentally
studied. It was shown that very high quality results could be obtained, i.e. an
improvement of more than 30% so far, and in addition the robustness could be
improved.

It is focus of current work to develop automatic techniques for determining
the epsilon values automatically. In this context also the dynamic reduction
during the optimization run will be investigated. First experiments showed that
there is still significant potential for improvement.



12

Acknowledgment

The authors like to thank Peter Baume from S2-Engineering, Bremen, for sup-
port and many helpful discussions.

References

1.

2.

10.

11.

12.

D.E. Goldberg. Genetic Algorithms in Search, Optimization € Machine Learning.
Addision-Wesley Publisher Company, Inc., 1989.

E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach. IEEE Trans. on Evolutionary Comp.,
3(4):257-271, 1999.

K. Deb. Multi-objective Optimization using Evolutionary Algorithms. John Wiley
and Sons, New York, 2001.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for evolu-
tionary multi-objective optimization. Technical Report 112, Computer Engineer-
ing and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, 2001.

V. R. Khare, X. Yao, and K. Deb. Performance scaling of multi-objective evo-
lutionary algorithms. In EMO 2003, volume 2632 of Lecture Notes in Computer
Science, pages 376-390, 2003.

K. Deb and S. Sundar. Reference point based multi-objective optimization using
evolutionary algorithms. In GECCO ’06: Proceedings of the 8th Annual Conference
on Genetic and Evolutionary Computation, pages 635—642, 2006.

K. Deb, S. Chaudhuri, and K. Miettinen. Towards estimating nadir objective vector
using evolutionary approaches. In GECCO ’06: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation, pages 643—650, 2006.

N. Drechsler, R. Drechsler, and B. Becker. Multi-objective optimisation based on
relation favour. In Int’l Conference on Evolutionary Multi-Criterion Optimization,
pages 154-166, 2001.

F. Schmiedle, N. Drechsler, D. Grofle, and R. Drechsler. Priorities in multi-
objective optimization for genetic programming. In GECCO ’01: Proceedings of the
6th Annual Conference on Genetic and Evolutionary Computation, pages 129136,
2001.

E.K. Burke, P. De Causmaecker, G.V. Berghe, and H.V. Landeghem. The state of
the art of nurse rostering. Journal of Scheduling, 7:441-499, 2004.

M. Keijzer, J.J. Merelo, G. Romero, and M. Schoenhauer. Evolving objects: a
general purpose evolutionary computation library. Artificial Evolution, pages 321—
244, 2001.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Comp., 6:182-197,
2000.



