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Abstract

We propose an approach for multi-pose face track-

ing by association of face detection responses in two

stages using multiple cues. The low-level stage uses

a two-threshold strategy to merge detection responses

based on location, size and pose, resulting in short but

reliable tracklets. The high-level stage uses different

cues for computing a joint similarity measure between

tracklets. The facial cue compares facial features of the

most frontal face detections in pairs of tracklets. The

classifier cue learns a discriminative appearance model

for each tracklet, using detection pairs within reliable

tracklets and between overlapping tracklets as training

data. The constraint cue observes the compatibility of

motion of two tracklets. The association of tracklets is

globally optimized with the Hungarian algorithm. We

validate our approach on two challenging episodes of

two TV series and report a Multiple Object Tracking

Accuracy (MOTA) of 82% and 68.2%, respectively.

1 Introduction

Face tracking is important for many higher level

tasks such as face recognition, gaze estimation, emo-

tion recognition or interaction analysis. Despite recent

advances, challenges remain for example due to cam-

era ego-motion and when multiple persons are interact-

ing with each other, leading to occlusions and possible

track identity switches.

Well performing person detectors have led to

association-based person tracking approaches, which

associate corresponding detection responses or tracklets

into longer tracks (e.g., [7, 8, 9, 11]). Correspondence

between two tracklets is found via appearance, motion

and temporal affinities. A Hungarian algorithm is of-

ten used to find the global optimum (e.g., [8, 9]). These

approaches have been shown to perform very well on

person tracking, and in this work we adapt them to the

task of multi-pose face tracking.

Finding similarities between face detection re-

sponses needs additional features other than color his-

tograms as used primarily for person tracking. Using

additional information like face pose provides more ro-

bust affinities between tracklets. Our contributions are

the following: (i) We adapt association-based tracking

to multi-pose face tracking by associating multi-pose

face detection responses (Sec. 2). (ii) We introduce

face-specific affinities and similarity measures to asso-

ciate tracklets in two stages (Sec. 2.2 and 2.3). (iii) We

evaluate our approach on two episodes of two challeng-

ing TV series (∼60 minutes in total) and consistently

outperform other state-of-the-art methods in terms of

tracking accuracy (Sec. 3). Fig. 1 shows a challeng-

ing scene in which our approach is able to successfully

track three faces despite occlusions and missing detec-

tions.

1.1 Related work

Face tracking has a long history of research, but

we will focus here only on detector-based approaches.

Babenko et al. [1] proposed a general object tracking

approach with online multiple instance learning (MIL)

which they also apply to face tracking. While MIL

helps to avoid a degradation of the detector from im-

precise object localization, their approach still requires

manual initialization by a user or another general detec-

tor. Sivic et al. [10] associate frontal and profile face

detections over time if the number of tracked Kanade-

Lucas-Tomasi features between two detections exceeds

a threshold. In previous work [2], we used a particle

filter to temporally associate detection responses from

multi-pose face detectors. However, the particle filter

only takes into account the track state in the previous

frame in an online manner, which limits its capability to

resolve ambiguities. Also, no appearance models were



Figure 1. Face tracks as obtained by our approach in a challenging scene including camera

motion, occlusions, pose changes and detector failures.

used to detect and avoid track switches or track over

occlusions.

For person tracking, association-based tracking ap-

proaches have been shown to perform quite well (e.g.,

[7, 8, 9, 11]). Huang et al. [5] associate person de-

tections on three levels, with simple affinity measures

on the lowest level, more complex affinity measures

on the middle level, and estimating and taking into ac-

count scene structure and occluders on the highest level.

Kuo et al. [7] introduce online-learned appearance mod-

els as one of the higher affinity measures which are

learned on-the-fly during tracking.

2 Multi-stage tracklet association

Our proposed approach hierarchically associates ori-

ented face detections to tracklets in two stages.

(i) The low-level stage constructs short, reliable

tracklets from single detection responses in consecu-

tive frames. The association is performed by using a

two-threshold strategy based on size, location and pose

affinities.

(ii) The high-level stage associates reliable low-level

tracklets. Three different cues are used to compute a

joint similarity measure between tracklets: The face id

cue compares facial features of the most frontal face

views. The classifier cue learns a discriminative appear-

ance model per tracklet. The constraint cue encourages

natural associations in terms of motion and pose com-

patibility between tracklets. The globally optimal as-

signment is obtained using the Hungarian algorithm.

2.1 Face detection

We obtain face detection responses by using Modi-

fied Census Transform (MCT) face detectors [6] trained

for different pan/roll angle combinations. We train one

detector for each (pan, roll) combination with pan ∈
{0, 15, 30, 45, 60, 90}, roll ∈ {0, 22.5, 45} and their

respective mirrored versions. We also train one generic

MCT-based eye detector which is used to localize the

eyes within a detected face region.

An exhaustive search over all frames with all face

detectors is done to obtain face detection responses ri
in the form of

ri = (xi, yi, wi, hi, oi, eyesi, ti)

where (xi, yi, wi, hi) denotes the face detection bound-

ing box, oi the pose of the face with oi = (pani, rolli),
eyesi the coordinates of the left and right eye, and ti the

time stamp of ri.

Strongly overlapping raw face detections are clus-

tered into a single oriented face detection response by

using the confidence weighted mean.

2.2 Low-level association

Following [5], face detection responses of two con-

secutive frames ri, rj , tj = ti + 1 are linked by using

a two-threshold strategy. The link probability between

two detection responses Sij = Plink(ri, rj) is defined as

the product of their affinities A(ri, rj):

Sij := Alocation(ri, rj)Asize(ri, rj)Apose(ri, rj) . (1)

Detection responses ri and rj are associated, if their

link probability is above a threshold θ1 and exceeds

the link probability of any conflicting pair by θ2, i.e. if

Sij > θ1, and Sij > Sik + θ2 and Sij > Slj + θ2 for

all k 6= j and all l 6= i.

A set of associated detection responses forms a re-

liable tracklet. A tracklet Tk consists of its detection

responses, which are sorted in ascending order by their

timestamps:

Tk = {r
(k)
i | t

(k)
i < t

(k)
i+1} (2)

By construction, each detection response belongs to ex-

actly one tracklet. By setting θ1 and θ2 conservatively

(θ1 = 0.3 and θ2 = 0.03 in our experiments), all de-

tection responses within a reliable tracklet belong to the

same target face with high probability. The low-level

association stage results in a set of reliable tracklets TL,

which form the input for the high-level stage.



2.3 High-level association

The high-level association stage merges tracklet

pairs Ti, Tj ∈ TL according to their joint similar-

ity Σ(Ti, Tj). Association between Ti and Tj is only

considered if Tj follows Ti within a timeframe of ∆t

and they do not overlap, i.e. max({tk|rk ∈ Ti}) <

min({tk|rk ∈ Tj} < max({tk|rk ∈ Ti}) + ∆t.

The joint similarity Σ(Ti, Tj) combines similarities

from face id, classifier and constraint cues.

Face id cue. We compare the facial appearance of

two tracklets Ti and Tj based on local Discrete Co-

sine Transform (DCT) features which have been shown

to be robust against illumination changes and occlu-

sions [2, 4]. In order to reduce pose influence as much

as possible, the two most frontal face detection re-

sponses r0i ∈ Ti and r0j ∈ Tj are compared, and be-

fore feature extraction, the face is aligned to a canonical

frontal pose of size 48 × 64 pixels via affine warping

based on the detected eye locations eyes0i and eyes0j .

We divide the aligned face in 6 × 8 blocks, compute

the DCT on each of the blocks and concatenate the top

5 coefficients of each block (excluding the 0th mean

coefficient) as feature vector f . The face id similarity

σDCT (Ti, Tj) is then computed as

σDCT (Ti, Tj) = sig(ω1 + ω2||fi − fj ||2) (3)

where sig(z) = (1 + e−z)−1is the sigmoid function.

We set ω1 = 5 and ω2 = −0.2 in our experiments.

Classifier cue. The classifier cue builds on Online

Learned Discriminative Appearance Models [7] and

learns discriminative appearance models Mi to distin-

guish each tracklet Ti from co-occurring ones. Training

samples (pairs of detection responses) are collected on-

the-fly based on spatio-temporal constraints. Positive

training pairs are collected from within Ti, since it is a

reliable tracklet. Negative training pairs are collected as

pairs of detection responses between Ti and overlapping

tracklets Tj , observing that two tracklets which overlap

in time but are spatially separated belong to different

targets.

As features we use 8-bin color histograms for each

HSV channel, which we compute on 3 × 3 subregions

for both the face detection bounding box and a clothing

bounding box beneath the face. Using positive and neg-

ative training sample pairs, we train a strong classifier

H(ri, rj) =
∑

f

ωfhf (ri, rj) (4)

as a linear combination of weak classifiers hf using

AdaBoost as proposed in [7]. The weak classifiers

stem from a feature pool F which consists of the Bhat-

tacharyya histogram distances over all subregions and

color channels. We apply the strong classifier to find the

similarities between Ti and every following tracklet Tj .

In contrast to [7], we use the maximum classifier output

of detection response pairs from the tail of Ti and the

head of Tj to obtain the classifier similarity σc(Ti, Tj):

σc(Ti, Tj) := max({H(ri, rj) | ri ∈ tail(Ti),
rj ∈ head(Tj)})

where head(·) and tail(·) denote the first and last N

detection responses of a tracklet, respectively (we set

N = 4 in our experiments).

Constraint cue. Both face id and classifier cue re-

sult in (possibly strong) similarities between tracklets

despite their compatibility in location, pose and mo-

tion. The constraint cue defines tracklet similarities to

model inertia in terms of location and pose changes and

thus rewards more natural associations. The similarities

used in the constraint cue also help for video sequences,

where no classifier can be learned, i.e. when there are no

overlapping tracklets.

The constraint distances d∗ that underlie the sim-

ilarities σ are computed between detection responses

rl = last(Ti) and rf = first(Tj) as follows:

• dpose(Ti, Tj) = ||ol − of ||2

• dmotion(Ti, Tj) = ||[xpred, ypred]− [xf , yf ]||2 ·w
−1
l ,

where [xpred, ypred] is the predicted Tj starting lo-

cation based on the mean velocity of tail(Ti) and

wl is used to normalize the distance by the size of

the faces.

• dtime(Ti, Tj) = tf − tl

Each distance d∗ is transformed into a similarity

σ∗ by means of a sigmoid function similar to Eq. 3.

Our implementation uses ω
pose
1 = 5, ω

pose
2 = −0.2,

ωmotion
1 = 3, ωmotion

2 = −1, ωtime
1 = 3, ωtime

2 = −0.7.

Assembling the similarities. The similarities ob-

tained from the three cues are incorporated into a joint

similarity Σ(Ti, Tj), if they are promising and other-

wise ignored. A similarity σ(Ti, Tj) is only considered

promising, if its input data is sufficient for a trustwor-

thy similarity. σDCT is defined promising, if the most

frontal face detections of Ti and Tj are frontal enough

(pan < 15◦). σpose is defined promising, if the time gap

is smaller than 0.3 seconds, since we assume that any

arbitrary face pose change can be made in a period of

time longer than that. σmotion is considered promising,

if there are at least four detections for estimating the

predicted point. σc is promising for a positive classifier

result. σtime is always considered promising.



Table 1. Evaluation results

Method
The Big Bang Theory (Ep. 01-01) Buffy the Vampire Slayer (Ep. 05-02)

MOTA MR FPR IDS MOTA MR FPR IDS

PF (Bäuml et al. [2]) 79.57% 12.08% 7.38% 103 (0.97%) 63.94% 21.37% 12.22% 211 (2.47%)

KLT (Sivic et al. [10]) - - - - 53.23% 41.97% 2.98% 157 (1.83%)

Ours (w/o high-level) 77.77% 16.04% 3.92% 238 (2.27%) 61.83% 29.22% 3.88% 422 (5.07%)

Ours (w/ high-level) 81.95% 12.71% 5.02% 33 (0.31%) 68.19% 24.54% 6.09% 102 (1.18%)

We define the joint similarity as

Σ(Ti, Tj) :=
∏

promising σ

σ(Ti, Tj) (5)

A global optimal association is obtained using the Hun-

garian algorithm on the joint similarities. If the Hungar-

ian algorithm associates entries i and j, tracklets Ti and

Tj are merged to form a longer tracklet. The high-level

association can be repeated multiple times by taking the

resulting set of tracklets TL of the previous stage as in-

put for the next round.

3 Experimental validation

We use the Multiple Object Tracker Accuracy

(MOTA) [3] in order to evaluate the ability to consis-

tently label faces over time. MOTA is defined as

MOTA = 1−

∑
t FPt + MISSt + IDSt∑

t GTt

(6)

where FPt, MISSt and IDSt are the false positives,

misses, and identity switches at time t, respectively. We

also report false positive rates (FPR), identity switches

(IDS) and miss rates (MR) individually.

We evaluate our approach on two episodes of the TV

series The Big Bang Theory (Ep. 01-01) and Buffy the

Vampire Slayer (Ep. 05-02). The two episodes present

different challenges to the face tracker. We manually

annotated the test data with face bounding boxes and

identities1. Annotations are given for every 5th frame

of The Big Bang Theory and every 10th frame of Buffy

The Vampire Slayer. All evaluations are perfomed using

these annotations. Some statistics on the two datasets

can be found in Table 2.

We compare our results to the particle filter approach

from [2] using the same MCT-based face detectors. On

the Buffy dataset we compare also to [10] for which we

downloaded the tracking results from their website2.

An overview over the results can be found in Table 1.

1The groundtruth can be downloaded from http://cvhci.

anthropomatik.kit.edu/projects/facetracking
2http://www.robots.ox.ac.uk/˜vgg/data/nface/

Table 2. Dataset statistics

BBT 01-01 Buffy 05-02

frames 32,990 62,157

raw detections 3,685,587 5,518,699

clustered detections 63,713 135,087

face tracks low-level 906 1,337

face tracks high-level 589 803

The Big Bang Theory Ep. 01-01 The Big Bang The-

ory (BBT) is a sitcom with only few fast face move-

ments, and most shots are well-lit. However, faces are

rather small on average due to many full scene shots.

We achieve a MOTA of 77.8% with the low-level stage

of our approach, and 82.0% after the high-level stage.

For comparison, the particle filter approach from [2]

achieves a MOTA of 79.6%, and shows a larger false-

positive rate and number of identity switches than our

proposed approach. Our high-level stage is able to re-

duce both MR and IDS compared to the low-level stage,

by connecting tracklets over missing detections. This

however comes at the expense of a slight increase in

FPR, which can be explained by connections (and in-

terpolation) between tracklets over full occlusions of a

face, for which we would expect the tracker to result in

two tracks (as we defined in our ground truth). How-

ever, the reductions in MR and IDS outweigh the in-

crease in FPR.

Buffy Ep. 05-02 This episode contains several dark

and action scenes with fast face movements. Despite

these additional challenges, our approach achieves a

MOTA of 68.2%. The PF-based approach [2] and the

KLT-based approach from [10] achieve a MOTA of

63.9% and 53.2%, respectively. In comparision, our

approach achieves a relative improvement of 6.6% and

28.1%. Similar to the BBT dataset, MR and IDS are re-

duced with the high-level stage while FPR is increased.

The worse performance on the Buffy dataset com-

pared to the BBT dataset can to some extend be at-

tributed the challenging conditions in the Buffy dataset

with which our detectors have some difficulties. Fig. 2

illustrates some false positives and misses on the Buffy

dataset, which are both directly dependent on the detec-

tor performance. Consistent false positives over mul-



Figure 2. Excerpt of false positives (two top rows) and misses (two bottom rows) of our ap-

proach on the Buffy dataset.

tiple frames tend to be hard to prune in the tracking

stage. Misses are either dark, blurry, highly non-frontal

or tilted faces. The latter can be overcome by using ad-

ditional face detectors trained for tilted angles.

4 Runtime notes

We implemented our approach in C++ and measure

the runtime on an AMD PhenomTMII X4 970 quad core

processor. The different combinations of pan and roll

and their respective mirrored versions result in 47 de-

tectors. We measure an average detection time of 1.84 s

per frame (1024 × 576 px), of which clustering and eye

detection take 0.12 ms and 93 ms, respectively.

Low-level association and high-level association

combined take on average 25.2ms of CPU time per

frame, of which low-level association runtime is neg-

ligible (3.7µs). Thus, the detection task takes as much

as 98.6% of the total computation time.

5 Conclusion

We present an approach for obtaining face tracks

from face detection responses. Tracklets are associated

in two stages. In both the low-level and the high-level

stage, we use face-specific features such as the face pose

and facial features as affinities between tracklets. An

online learned appearance model based on color his-

tograms from the clothing of a person complements the

facial features. We are able to report consistent re-

ductions in false-positive rate and number of identity

switches over the state-of-the-art, which will directly

benefit higher level applications such as face recogni-

tion.
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