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Abstract— In this paper we present a method for automati-
cally planning robust optimal paths for a group of robots that
satisfy a common high level mission specification. Each robot’s
motion in the environment is modeled as a weighted transition
system, and the mission is given as a Linear Temporal Logic
(LTL) formula over a set of propositions satisfied by the regions
of the environment. In addition, an optimizing proposition must
repeatedly be satisfied. The goal is to minimize the maximum
time between satisfying instances of the optimizing proposition
while ensuring that the LTL formula is satisfied even with
uncertainty in the robots’ traveling times. We characterize a
class of LTL formulas that are robust to robot timing errors, for
which we generate optimal paths if no timing errors are present,
and we present bounds on the deviation from the optimal values
in the presence of errors. We implement and experimentally
evaluate our method considering a persistent monitoring task
in a road network environment.

I. INTRODUCTION

Temporal logics provide a powerful high-level language
for specifying complex missions for groups of robots [1],
[2], [3], [4], [5]. Their power lies in the wealth of tools
from model checking [6], [7], which can be leveraged to
generate robot paths satisfying desired mission specifications
or produce counter-examples which prove that the mission
is not possible. However, in robotics the goal is typically to
plan paths that complete a mission in an optimal manner. In
our earlier work [8] we considered Linear Temporal Logic
(LTL) specifications, and a particular form of cost function,
and provided a method for computing optimal robot paths for
a single robot. We then extended this approach to multi-robot
problems by utilizing timed automata [9].

The main difficulty in moving from a single robot to mul-
tiple robots is in allowing the robots to move asynchronously.
In [10], the authors propose a method for decentralized
motion of multiple robots by restricting the robots to take
transitions synchronously. Once every robot has completed a
transition, the robots synchronously make the next transition.
While such an approach is effective for satisfying the LTL
formula, it does not lend itself to optimizing the robot
motion, since synchronization takes extra time. In [9] we
approached this problem by modeling the group of robots
in the environment as a timed automaton. This method
allowed us to represent the relative position between robots
which is necessary for optimizing the robot motion. After
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providing a bisimulation [11] of the infinite-dimensional
timed automaton to a finite transition system we applied our
results from [8] to compute an optimal run.

However, asynchronous motion of robots introduces issues
in the robustness, and thus implementability of the multi-
robot paths. Timed-automata rely heavily on the assumption
that the clocks (or for robots, the speeds), are known exactly.
If the clocks drift by even an infinitesimally small amount,
then the reachability analysis developed for timed-automata
is no longer correct [12], [13]. The intuition behind this is
that if the robot speeds deviate from those used for planning,
then robots can complete tasks in a different order than was
specified in the plan. This switch in the order of events may
result in the violation of the global mission specification.

The contribution of this paper is to present a method for
generating paths for a group of robots satisfying general LTL
formulas, which are robust to uncertainties in the speeds of
robots, and which perform within a known bound of the
optimal value. We focus on minimizing a cost function that
captures the maximum time between satisfying instances of
an optimizing proposition. The cost is motivated by problems
in persistent monitoring and in pickup and delivery problems.
We characterize the class of LTL formulas for which a
robust solution exists. The characterization relies on using
the concept of trace-closedness, which was first applied in
multi-robot planning in [14]. For formulas in this class, we
utilize a similar method as in [9] to generate robot plans.
We then propose periodic synchronization of the robots to
optimize the cost function in the presence of timing errors.
We provide results from an implementation on a robotic test-
bed, which shows the utility of the approach in practice.
For simplicity of presentation, we assume that each robot
moves among the vertices of an environment modeled as
a graph. However, by using feedback controllers for facet
reachability in polytopes [15] our method can be extended to
robots with continuous dynamics traversing an environment
with polytopic partitions.

Due to page constraints we omit all proofs of all results.
An extended version of this paper can be found in [16].

II. PRELIMINARIES

For a set Σ, we use |Σ|, 2Σ, Σ
∗, and Σ

ω to denote its
cardinality, power set, set of finite words, and set of infinite
words, respectively. Moreover, we define Σ

∞ = Σ
∗ ∪ Σ

ω

and denote the empty string by ∅.

Definition II.1 (Transition System). A (weighted) transition

system (TS) is a tuple T := (QT, q
0
T, δT,ΠT,LT, wT),

where (i) QT is a finite set of states; (ii) q0T ∈ QT is the

initial state; (iii) δT ⊆ QT ×QT is the transition relation;
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(iv) ΠT is a finite set of atomic propositions (observations);

(v) LT : QT → 2ΠT is a map giving the set of atomic

propositions satisfied in a state; (vi) wT : δT → R>0 is a

map that assigns a positive weight to each transition.

We define a run of T as an infinite sequence of states
rT = q0q1 . . . such that q0 = q0T , qk ∈ QT and (qk, qk+1) ∈
δT for all k ≥ 0. A run generates an infinite word ωT =
L(q0)L(q1) . . . where L(qk) is the set of atomic propositions
satisfied at state qk. To specify the mission of the group, we
use LTL formulas over Π. We use the standard syntax and
semantics defined in [17] and we follow the literal notation
for the temporal operators (G,F,X,U ). We say a run rT
satisfies φ if and only if the word generated by rT satisfies
φ.

Definition II.2 (Büchi Automaton). A Büchi automaton is

a tuple B := (SB,S
0
B,ΣB, δB,FB), consisting of (i) a finite

set of states SB; (ii) a set of initial states S0
B ⊆ SB; (iii)

an input alphabet ΣB; (iv) a non-deterministic transition

relation δB ⊆ SB × ΣB × SB; (v) a set of accepting (final)

states FB ⊆ SB.

A run of B over an input word ω = ω0ω1 . . . is a sequence
rB = s0s1 . . ., such that s0 ∈ S0

B, and (sk,ωk, sk+1) ∈ δB,
for all k ≥ 0. A Büchi automaton B accepts a word over ΣB

if and only if at least one of the corresponding runs intersects
with FB infinitely many times. For any LTL formula φ over
a set Π, one can construct a Büchi automaton with input
alphabet ΣB = 2Π accepting all and only words over 2Π

that satisfy φ.

Definition II.3 (Prefix-Suffix Structure). A prefix of a run

is a finite path from an initial state to a state q. A periodic

suffix is an infinite run originating at the state q reached

by the prefix, and periodically repeating a finite path, which

we call the suffix cycle, originating and ending at q, and

containing no other occurrence of q. A run is in prefix-suffix

form if it consists of a prefix followed by a periodic suffix.

Definition II.4 (Language). The set of all the words ac-

cepted by an automaton B is called the language recognized

by the automaton and is denoted by LB.

Definition II.5 (Distribution). Given a set Σ, the collection

of subsets Σi ⊆ Σ, ∀ i = 1, . . . ,m is called a distribution

of Σ if ∪m
i=1Σi = Σ.

Definition II.6 (Projection). For a word ω ∈ Σ
∞ and a

subset Σi ⊆ Σ, ω �Σi
denotes the projection of ω onto Σi,

which is obtained by removing all the symbols in ω that are

not in Σi. For a language L ⊆ Σ
∞ and a subset Σi ⊆ Σ,

L�Σi
denotes the projection of L onto Σi, which is the set of

projections of all words in L onto Σi, i.e., {ω �Σi
| ω ∈ L}.

Definition II.7 (Trace-Closed Language). Given the distri-

bution {Σ1, . . . ,Σm} of Σ and the words ω,ω� ∈ Σ
∞, ω� is

trace-equivalent to ω, denoted ω� ∼ ω, iff their projections

onto each one of the subsets in the given distribution are

equal, i.e., ω �Σi
= ω� �Σi

for each i = 1, . . . ,m. For

{Σ1, . . . ,Σm}, the trace-equivalence class of ω is given by

[ω] = {ω� ∈ Σ
∞ | ω� �Σi

= ω �Σi
∀i = 1, . . . ,m}. Finally, a

trace-closed language over {Σ1, . . . ,Σm} is a language L

such that [ω] ⊆ L, ∀ ω ∈ L.

III. PROBLEM FORMULATION AND APPROACH

In this section we introduce the multi-robot path planning
problem with temporal constraints, and we motivate the need
for solutions that are robust to uncertain robot speeds.

A. Environment Model and Initial Formulation

Let E = (V,→E) be a graph, where V is the set of vertices
and →E⊆ V × V is the set of edges. In this paper, E is the
quotient graph of a partitioned environment, where V is a
set of labels for the regions in the partition and →E is the
corresponding adjacency relation (see Fig. 4).

Consider a team of m robots moving in an environment
modeled by E . Robot i ∈ {1, . . . ,m} is modeled by a TS
Ti = (Qi, q

0
i , δi,Πi,Li, wi), where Qi ⊆ V ; q0i is the initial

vertex of robot i; δi ⊆→E gives the motion capabilities of
robot i; Πi ⊆ Π is the subset of propositions that can be
satisfied by robot i such that {Π1, . . . ,Πm} is a distribution
of Π; Li is a mapping from Qi to 2Πi showing how the
propositions are satisfied at vertices; wi(q, q

�) captures the
time for robot i to go from vertex q to q�, which we assume
to be an integer. In this robotic model, robot i travels along
the edges of Ti, and spends zero time on the vertices. We
assume that the robots are equipped with motion primitives
which allow them to move from q to q� for each (q, q�) ∈ δi.

In our previous work [9], we considered multi-robot tasks
specified by LTL formulae of the form φ := ϕ ∧ GFπ
where ϕ can be any LTL formula over Π and π ∈ Π is the
atomic optimizing proposition. Our goal was to plan multi-
robot paths that satisfy φ and minimize the maximum time
between successive satisfying instances of π. For instance, in
a persistent data gathering task, π may be assigned to upload
regions, while ϕ can be used to specify rules (such as traffic
rules) that must be obeyed at all times during the task [8].

To state this problem formally, we assume that each run
ri = q0i q

1
i . . . of Ti (robot i) starts at t = 0 and generates a

word ωi = ω0
i ω

1
i . . . and a corresponding sequence of time

instances Ti := t0i t
1
i . . . such that the kth symbol ωk

i =
Li(q

k
i ) is satisfied at time tki . Note that, as robots spend

zero time on the vertices, each ωk
i has a unique tki which is

the instant when robot i visits the corresponding vertex. To
define the behavior of the team as a whole, we consider the
sequences Ti as sets and take the union

�m

i=1 Ti and order
this set in ascending order to obtain T := t0t1, . . .. Then, we
define ωteam = ω0

teamω1
team . . . to be the word generated by

the team of robots where the kth symbol ωk
team is the union

of all propositions satisfied at time tk. Finally, we define
the infinite sequence T

π = T
π(1),Tπ(2), . . . where T

π(k)
stands for the time instance when the optimizing proposition
π is satisfied for the kth time by the team. Thus, the problem
is that of synthesizing individual optimal runs for a team of
robots so that ωteam satisfies φ and T

π minimizes

J(Tπ) = lim sup
k→+∞

(Tπ(k + 1)− T
π(k)) . (1)

Since we consider LTL formulas containing GFπ, this
optimization problem is always well-posed.

B. Robustness and Optimality in the Field

In this paper, we are interested in the implementability
of our previous approach. Particularly, we consider the
case where the actual value of wi(q, q

�) during deployment,
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denoted by w̃i(q, q
�), is a non-deterministic quantity in [(1−

ρi)wi(q, q
�), (1+ρi)wi(q, q

�)] where ρi is the deviation value

of robot i which is assumed to be given. In the following,
we use the expression “in the field” to refer to the model
with uncertain traveling times, and use x and x̃ to denote
the planned and actual values of some variable x.

Given the word ωteam that characterizes the planned run
of the robotic team and the distribution {Π1, . . . ,Πm}, the
actual word ω̃team generated by the robotic team during
its infinite asynchronous run in the field will be one of the
trace equivalents of ωteam, i.e., ω̃team ∈ [ωteam] due to the
uncertainties in the traveling times of the robots. This leads
to the definition of critical words.

Definition III.1 (Critical Words). Given the language LB

of the Büchi automaton that corresponds to the LTL formula

φ over Π, and given a distribution of Π, we define the word

ω over Π to be a critical word if ∃ ω̃ ∈ [ω] such that ω̃ �∈ LB.

Thus, we see that if the planned word is critical, then
we may not satisfy the specification in the field. This can
be formalized by noting that the optimal runs that satisfy
φ are always in a prefix-suffix form [18], where the suffix
cycle is repeated infinitely often. Using this observation and
Def. III.1 we can formally define the words that can violate
the LTL formula during the deployment of the robotic team.

Proposition III.2. If the suffix cycle of the word ωteam is

a critical word, then the correctness of the motion of the

robotic team during its deployment cannot be guaranteed.

We can also consider the field performance of the team
in terms of the field value of the cost function (1). Using
the same arguments presented in Prop. III.2 we can show
that, the worst-case field value of (1) will be the minimum
of (J̃1, . . . , J̃m) where J̃i is the maximum duration between
successive satisfactions of π by robot i in the field. Thus,
there is no benefit in executing the task with multiple robots,
as the overall performance of the team will be limited by that
of a single member.

C. Robust Problem Formulation

To maintain and characterize the field performance of the
robotic team, we propose to use a synchronization protocol
where robots can synchronize only when they are at the
vertices of the environment. We assume that there is an
atomic synchronizing proposition Sync ∈ Π and we consider
multi-robot tasks specified using LTL formulas of the form

φsync := ϕ ∧GFπ ∧GFSync, (2)

where ϕ can be any LTL formula over Π, π is the opti-
mizing proposition and Sync is the special synchronizing
proposition that is satisfied only when all members of the
robotic team occupy vertices at the same time. We can now
formulate the problem.

Problem III.3. Given a team of m robots modeled as

transition systems Ti, i = 1, . . . ,m, and an LTL formula

φsync over Π in the form (2), synthesize individual runs ri for

each robot such that Tπ minimizes the cost function (1), and

ω̃team, i.e., the word observed in the field, satisfies φsync.

Note that the runs produced by a solution to Prob. III.3
are guaranteed not to violate φsync even if there is a

mismatch between the weights wi(q, q
�) used for the solution

of the problem and those observed in the field. Since ω̃team

observed in the field is likely to be sub-optimal, we will also
seek to bound the deviation from optimality in the field.

D. Solution Outline

In [9], we showed that the joint behavior of a robotic team
can be captured by a region automaton. A region automaton,
as defined next, is a finite transition system that captures the
relative positions of the members of the robotic team. This
information is then used for computing optimal trajectories.

Definition III.4 (Region Automaton). The region automa-

ton R is a TS (Def. II.1) R := (QR, q
0
R, δR,ΠR,LR, wR),

where (i) QR is the set of states of the form (q, r) such

that q is a tuple of state pairs (q1q
�
1, . . . , qmq�m) where the

ith element qiq
�
i is a source-target state pair from Qi of Ti

meaning robot i is currently on its way from qi to q�i, and r

is a tuple of clock values (x1, . . . , xm) where the ith element

denotes the time elapsed since robot i left state qi. (ii) q0R is

the initial state that has zero-weight transitions to all those

states in QR with r = (0, . . . , 0) and q = (q01q
�
1, . . . , q

0
mq�m)

such that q0i is the initial state of Ti and (q0i , q
�
i) ∈ δi.

(iii) δR is the transition relation such that a transition from

(q, r) to (q�, r�) exists if and only if (qi, q
�
i), (q

�
i, q

��
i ) ∈ δi

for all changed state pairs where the ith element qiq
�
i in q

changes to q�iq
��
i in q�, wi(qi, q

�
i) − xi of all changed state

pairs are equal to each other and are strictly smaller than

those of unchanged state pairs, and for all changed state

pairs corresponding x�
i in r� becomes x�

i = 0 and all other

clock values in r are incremented by wi(qi, q
�
i) − xi in r�.

(iv) ΠR = ∪m
i=1Πi is the set of propositions. (v) LR :

QR → 2ΠR is a map giving the set of atomic propositions

satisfied in a state. For a state with q = (q1q
�
1, . . . , qmq�m),

LR((q, r)) = ∪m
i=1Li(qi). (vi) wR : δR → R≥0 is a map that

assigns a non-negative weight to each transition such that

wR((q, r), (q
�, r�)) = wi(qi, q

�
i)− xi for each state pair that

has changed from qiq
�
i to q�iq

��
i with a corresponding clock

value of x�
i = 0 in r�.

Example III.5. Fig. 2 illustrates the region automaton R

that corresponds to the robots modeled with T1 and T2

given in Fig. 1. There is a transition from ((ba, bc), (0, 0))
to ((ba, cb), (1, 0)) with weight 1 in R because (b, c) ∈ δ2,

w2(b, c) = 1, and w1(b, a) �= 1.

Our solution to Problem III.3 can be outlined as follows:
(i) We check if the LTL formula φsync is trace-closed guaran-
teeing that it will not be violated in the field (See Sec. IV-A);
(ii) We prepare the serialized region automaton of the robotic
team with synchronization points by modifying the output
of our earlier algorithm OBTAIN-REGION-AUTOMATON [9]
(See Sec. IV-B); (iii) We find optimal runs on individual Tis

using the OPTIMAL-RUN algorithm we previously developed
in [18] and use a synchronization protocol to calculate an
upper bound on the cost function (1) for given deviation
values to obtain the solution to Prob. III.3 (See Sec. IV-C).

IV. PROBLEM SOLUTION

In this section, we explain each step of the solution to
Prob. III.3 in detail. In the following, we use a simple
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example to illustrate ideas as we develop the theory for the
general case. We present an experimental evaluation of our
approach considering a more realistic scenario in Sec. V.

A. Trace-Closedness of the Original Formula

In the following, we say an LTL formula φsync is trace-
closed if the language LB of the corresponding Büchi
automaton is trace-closed in the sense of Def. II.7.

Proposition IV.1. If the general specification φsync is a

trace-closed formula with respect to the distribution given

by the robots’ capabilities, then it will not be violated in the

field due to uncertainties in the speeds of the robots.

Thus, in order to guarantee correctness in the field, we first
check that φsync is trace-closed using an algorithm adapted
from [19]. However, as trace-closedness is not well-defined
for words over 2Π, we construct a Büchi automaton whose
language LB is over the set Π. Then, we proceed by ob-
taining the serialized region automaton with synchronization
points where the Sync proposition is satisfied.

Example IV.2. Fig. 1 illustrates a team of two robots that

must satisfy an LTL formula in the form of (2) where

ϕ = GFr1P ∧ GFr2P, Π1 = {r1P, π, Sync}, Π2 =
{r2P, π, Sync}, and Π = {r1P, r2P, π, Sync}.

a

b
T1 π

2 2

r1P

(a)

a

b
πT2

c

2

2

1 1

r2P

(b)

Fig. 1: TS’s T1 and T2 of two robots in an environment with three vertices.
Weights represent the traveling times between vertices. The propositions
r1P, r2P and π are shown next to the vertices where they can be satisfied.

B. Serialized Region Automaton with Synchronization Points

ab, ab

(0, 0)

ba, ba

(0, 0)

ba, bc

(0, 0)

ba, cb

(1, 0)

π

ab, bc

(0, 0)

ab, cb

(1, 0)

ab, ba

(0, 0)

ba, ab

(0, 0)
R

2 12 2

1

1

2221

1

1

q
0

R

0

r1P

r2P

π

r1P

r2P

π

r2P

π

r2P

π

r1P

Fig. 2: Region automaton obtained using OBTAIN-REGION-AUTOMATON

[9] that captures the joint behavior of the robotic team given in Fig. 1. Sync
states where all robots occupy vertices are highlighted in blue.

If φsync is a trace-closed formula, we obtain the region
automaton that captures the joint behavior of the robotic
team using OBTAIN-REGION-AUTOMATON [9]. Next, using
Alg. 1, we first add the special Sync proposition to the
states where all robots occupy some vertex in their TS’s
simultaneously, i.e., states with r = (0, . . . , 0). Note that,
these are the states that will be used to calculate a bound on
optimality when the robots are deployed in the field. We then
expand the states where multiple propositions are satisfied

simultaneously to obtain Rser where at most one proposition
is satisfied at each state. This ensures that languages of both
Rser and φsync’s Büchi automaton are over Π.

Example IV.2 Revisited. Fig. 2 illustrates the region au-

tomaton R that captures the joint behavior of the team given

in Fig. 1. The serialized region automaton with synchroniza-

tion points Rser that corresponds to R is given in Fig. 3.

ab, ab

(0, 0)

ba, ba

(0, 0)
ba, bc

(0, 0)π

ab, bc

(0, 0)

ab, cb

(1, 0)

ab, ba

(0, 0)

ba, ab

(0, 0)

Rser

2 1
2

2

1

1

222

1

11

q
0

R

0

r1P r2P

π

r1P r2P

π
r2P πr2P

π r1P

ba, ba

(0, 0)

ba, ba

(0, 0)

ba, bc

(0, 0)

ba, bc

(0, 0)

ab, ba

(0, 0)

ba, ab

(0, 0)

ba, ab

(0, 0)

Sync

ab, ba

(0, 0)

Sync

ba, ba

(0, 0)

Sync

ba, bc

(0, 0)

Sync

Sync

ab, bc

(0, 0)
ab, bc

(0, 0)

Sync

ba, cb

(1, 0)

Fig. 3: Serialized region automaton with Sync states obtained by applying
Alg. 1 to R in Fig. 2. New states introduced after serialization are
highlighted in blue. Red arrows stand for zero-weight transitions.

Algorithm 1: SERIALIZE-REGION-AUTOMATON

Input: A region automaton R obtained using
OBTAIN-REGION-AUTOMATON .

Output: Rser, the serialized region automaton with
synchronization states, such that at most one
proposition is satisfied at each state.

1 foreach State {q, r} in R do

2 if r = (0, . . . , 0) then

3 Add Sync to propositions satisfied in {q, r}.

4 k ←− Number of propositions satisfied in {q, r}.
5 if k > 1 then

6 propsTuple ← The tuple (p1, . . . , pk) of
propositions satisfied in {q, r}.

7 Copy {q, r} k times to obtain {q, r}�1, . . . , {q, r}
�
k.

8 foreach i = 1, . . . , k do

9 L({q, r}�i) ← propsTuple[i].
10 if i < k then

11 Add {q, r}�i → {q, r}�i+1 to δR with zero
weight.

12 Re-direct all incoming transitions of {q, r} to
{q, r}�1.

13 Originate all outgoing transitions of {q, r} from
{q, r}�k.

14 Remove {q, r} from QR.

Remark IV.3. Since φsync is trace-closed, the serialization

can be done in any order. Since all possible orderings belong

to the same trace-equivalent class, they do not affect the

satisfaction of the formula.

C. The Robust Optimal Run and the Optimality Bound

After obtaining the serialized region automaton Rser,
we find an optimal run r�R on Rser that minimizes the
cost function (1) using our earlier OPTIMAL-RUN algorithm
[18]. The optimal run r�R is always in a prefix-suffix form
(Def. II.3). Furthermore, as r�R satisfies φsync, it has at
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least one synchronization point in its suffix cycle, which we
assume to start with a synchronization point.

Definition IV.4 (Projection of a run on Rser to Tis).

Given the run rR =
�

(q01q
1
1 , . . . , q

0
mq1m), (x0

1, . . . , x
0
m)

�

�

(q11q
2
1 , . . . , q

1
mq2m), (x1

1, . . . , x
1
m)

�

. . . on Rser and the cor-

responding T, we define its projection on Ti as run ri =
q0i q

1
i . . . for all i = 1, . . . ,m, where qki only appears in ri if

xk
i = 0 and T(k) �= T(k + 1).

In [9] we show that the individual runs ri obtained by the
projection in Def. IV.4 are equivalent to the region automaton
run rR in the sense that they produce the same word ωteam.
Using Def. IV.4, we project the optimal run r�R to individual
Tis to obtain the set of optimal individual runs {r�1 , . . . , r

�
m}.

As the robots execute their infinite runs in the field, they
synchronize with each other at the synchronization point
following the protocol given in Alg. 2 ensuring that they
start each new suffix cycle in a synchronized way. Using
this protocol, we can define a bound on optimality, i.e., the
value of the cost function (1) observed in the field, as given
in the following proposition.

Algorithm 2: SYNC-RUN

Input: A run rk of robot k in the prefix-suffix form
with at least one synchronization point in its
suffix cycle.

1 begin

2 syncPoint ← First synchronization point in the
suffix.

3 teamFlags ← (0, . . . , 0).
4 while True do

5 if syncMessage received from robot i then

6 teamFlags[i] ← 1.

7 if currentState = syncPoint then

8 Stop
9 Broadcast syncMessage.

10 teamFlags[k] ← 1.

11 if teamFlags = (1, . . . , 1) then

12 teamFlags ← (0, . . . , 0).
13 Continue executing rk.

Proposition IV.5. Suppose that each robot’s deviation value

is bounded by ρ > 0 (i.e., ρi ≤ ρ for all robots i), and let

J(Tπ) be the cost of the planned robot paths. Then, if the

robots follow the protocol given in Alg. 2 the field value of

the cost satisfies J(Tπ) ≤ J(Tπ) + ρ(J(Tπ) + 2ds), where

ds is the planned duration of the suffix cycle.

Example IV.2 Revisited. Applying Alg. OPTIMAL-RUN [18]

to Rser given in Fig. 2 and the formula φsync := GFr1P∧
GFr2P ∧GFπ ∧GFSync results in the optimal run with

the prefix

T 0 2 2 2 2 3

r�R
ab,ab ba,bc ba,bc ba,bc ba,bc ba,cb

(0,0) (0,0) (0,0) (0,0) (0,0) (1,0)

LR(·) Sync r1P Sync r2P π

and the suffix cycle

T 4 4 4 6 6 6

r�R
ab,ba ab,ba ab,ba ba,ab ba,ab ba,ab

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

LR(·) r2P Sync π r1P Sync π

which will be repeated an infinite number of times. In the ta-

ble above, the rows correspond to the times when transitions

occur, the run r�R, and the satisfying atomic propositions,

respectively. For this example, T
π = 2, 4, 6, 8, 10, . . . and

the cost as defined in (1) is J(Tπ) = 2. Furthermore, when

the robotic team is deployed in the field, this cost is bounded

from above by 2.5 for ρ1 = ρ2 = 0.05 as given by Prop. IV.5.

Applying Def. IV.4 to r�R we have the individual runs as:

T 0 2 3 4 6 8 10 . . .

r�1 a b a b a b . . .

r�2 a b c b a b a . . .

Note that, at time t = 3, the second robot has arrived at c

while the first robot is still traveling from b to a, therefore the

clock of the first robot is not zero at this time, i.e., x1 �= 0,

and b does not appear in r�1 at time t = 3.

We finally summarize our approach in Alg. 3, show that
this algorithm indeed gives a solution to Prob. III.3 and
analyze the overall complexity of our approach.

Algorithm 3: ROBUST-MULTI-ROBOT-OPTIMAL-RUN

Input: m Ti’s and a global LTL specification φsync of
form (2).

Output: A set of robust optimal runs {r�1 , . . . , r
�
m} that

satisfies φsync, minimizes (1), and the bound
on the performance of the team in the field.

1 begin

2 φsync := ϕ ∧GFπ ∧GFSync.
3 if φsync is trace-closed then

4 Obtain the region automaton R using
OBTAIN-REGION-AUTOMATON [9].

5 Obtain Rser using
SERIALIZE-REGION-AUTOMATON .

6 Find the optimal run r�R applying OPTIMAL-RUN

[18] to Rser and φsync.
7 Obtain individual runs from r�R using Def. IV.4.
8 Find the bound on optimality as given in

Prop. IV.5.

9 else

10 Abort.

Proposition IV.6. Alg. 3 solves Prob. III.3.

Proposition IV.7. For the case where m identical robots

are expected to satisfy an LTL specification φ in a common

environment with ∆ edges and a largest edge weight of W ,

the worst-case complexity of Alg. 3 is O((∆·W )3m ·2O(|φ|)).

V. IMPLEMENTATION AND CASE STUDIES

We implemented Alg. 3 in objective-C as the software
package LTL ROBUST OPTIMAL MULTI-ROBOT PLAN-
NER (LROMP) (available at http://hyness.bu.edu/
Software.html). Following the steps detailed in Sec. IV,
LROMP computes robust and optimal trajectories for robots
performing persistent data gathering missions in a road
network environment to obtain the solution to Prob. III.3.

@ECD
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Fig. 4: (a) Road network used in the experiments (b) The model of the road
network with weights shown in blue. 1 time unit in this model corresponds
to 3 seconds. The red and blue regions are data gathering locations of robots
1 and 2, respectively and the green region is the common upload location.
CW and CCW stand for clockwise and counter-clockwise, respectively.

Fig. 5: Team trajectory used in the experiments. The red and blue regions
are data gathering locations of robots 1 and 2, respectively and the green
region is the common upload location. The circles on the left show the sync
point, i.e., the beginning of the suffix cycle, on the trajectories of the robots.

Fig. 4 illustrates our experimental platform, which is a
road network consisting of roads, intersections, and task
locations. The figure also shows the transition system that
models the motion of the robots on this road network. In the
following, the transition systems Ti are identical except for
their initial states and propositions defined at states.

In our experiments, we consider a persistent monitoring
task where two robots with deviation values of ρ1 = 0.09,
ρ2 = 0.04 repeatedly gather and upload data and the
maximum time in between any two data uploads must
be minimized. We require robots 1 and 2 to gather data
at 7 and 8 in Fig. 4, respectively and upload the data
at 9. We define Π = {R1Gather, R1Upload, R2Gather,
R2Upload, Upload, Sync} and assign the atomic propo-
sitions as L1(7) = {R1Gather}, L1(9) = {R1Upload,
Upload}, L2(8) = {R2Gather}, L2(9) = {R2Upload,
Upload} where Upload is set as the optimizing proposition
π in (2). We forbid data uploads unless there is new data
using ϕ = G(R1Upload ⇒ X(¬R1Upload U R1Gather))∧
G(R2Upload ⇒ X(¬R2Upload U R2Gather)). Our overall
LTL formula is φsync = ϕ ∧GF Upload ∧GF Sync.

Running our algorithms on an iMac i5 quad-core com-
puter, we obtain the robust optimal trajectory as illustrated
in Fig. 5. The algorithm ran for 35 minutes, and Rser

had 5224 states. The value of the cost function was 57
seconds with an upper-bound of 82.65 seconds. This result
was experimentally verified in our test-bed and the maximum
time in between data uploads was measured to be 64 seconds
during a run of 13 minutes. In order to demonstrate the ef-
fectiveness of our approach, we executed the same trajectory
without synchronization. After approximately 6.5 minutes,
the maximum time in between data uploads was measured
to be 92 seconds, much worse than what is provided by

our approach. Our video submission accompanying the paper
displays the robot trajectories for both cases. It is interesting
to note that, in the optimal solution the second robot spins
between states 4CW and 4CCW (Figs. 4b, 5). This behavior is
actually optimal as it decreases the maximum time between
successive data uploads.

VI. CONCLUSIONS

In this paper we presented a method for planning robust
optimal trajectories for a team of robots subject to temporal
logic constraints. We considered trace-closed linear tempo-
ral logic specifications with optimizing and synchronizing
propositions that must be repeatedly satisfied. Our method
is robust to uncertainties in the traveling times of each
robot, and thus has practical value in applications where
multiple robots must perform a series of tasks collectively in
a common environment.
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