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Abstract. Mean-payoff games play a central role in quantitative synthesis and
verification. In a single-dimensional game a weight is assigned to every transi-
tion and the objective of the protagonist is to assure a non-negative limit-average
weight. In the multidimensional setting, a weight vector is assigned to every
transition and the objective of the protagonist is to satisfy a boolean condition
over the limit-average weight of each dimension, e.g., LimAvg(z1) < 0V
LimAvg(z2) > 0 A LimAvg(zs) > 0. We recently proved that when one of
the players is restricted to finite-memory strategies then the decidability of deter-
mining the winner is inter-reducible with Hilbert’s Tenth problem over rationals
(a fundamental long-standing open problem). In this work we consider arbitrary
(infinite-memory) strategies for both players and show that the problem is unde-
cidable.

1 Introduction

Two-player games on graphs provide the mathematical foundation for the study of reac-
tive systems. In these games, the set of vertices is partitioned into player-1 and player-2
vertices; initially, a pebble is placed on an initial vertex, and in every round, the player
who owns the vertex that the pebble resides in, advances the pebble to an adjacent
vertex. This process is repeated forever and give rise to a play that induces an infinite
sequence of edges. In the quantitative framework, an objective assigns a value to every
play, and the goal of player 1 is to assure a value of at least v to the objective. In order
to have robust quantitative specifications, it is necessary to investigate games on graphs
with multiple (and possibly conflicting) objectives. Typically, multiple objectives are
modeled by multidimensional weight functions (e.g., [4,5,7,1]), and the outcome of a
play is a vector of values (r1,7a,...,7). A robust specification is a boolean formula
over the atoms r; ~ v;, for ~€ {<, <, >,>},i € {1,...,k} and v; € Q. For example,
©=1((r1 2 9Vry <9)Ars < 0AT4 > 9). The most well studied quantitative metric is
the mean-payoff objective, which assigns the limit-average (long-run average) weight
to an infinite sequence of weights (and if the limit does not exist, then we consider the
limit infimum of the sequence). In this setting, r; is the limit-average of dimension @
of the weight function, and the goal of player 1 is to satisfy the boolean condition. In
this work we prove that determining whether player 1 can satisfy such a condition is
undecidable.

* The author was funded by the European Research Council under the European Unions Seventh
Framework Program (FP7/20072013) / ERC grant agreement no. [321174-VSSC].

(© Springer-Verlag Berlin Heidelberg 2015
A. Pitts (Ed.): FOSSACS 2015, LNCS 9034, pp. 312-327, 2015.
DOI: 10.1007/978-3-662-46678-0 20



Robust Multidimensional Mean-Payoff Games are Undecidable 313

Related Work. The model checking problem (one-player game) for such objectives
(with some extensions) was considered in [1,6,3,12,13] and decidability was estab-
lished. Two-player games for restricted subclasses that contain only conjunction of
atoms were studied in [15,7,2,9] and tight complexity bounds were obtained (and in
particular, the problem was proved to be decidable). In [16] a subclass that contains dis-
junction and conjunction of atoms of the form r; ~ v; for ~€ {>, >} was studied and
decidability was shown. In [14] we considered a similar objective but restricted player-
1 to play only with finite-memory strategies. We showed that the problem is provably
hard to solve and its decidability is inter-reducible with Hilbert’s tenth problem over
rationals — a fundamental long standing open problem. In this work we consider for
the first time games with robust quantitative class of specifications that is closed under
boolean union, intersection and complement with arbitrary (infinite-memory) strategies.

Undecidability for (single-dimensional) mean-payoff games was proved for par-
tial information mean-payoff games [10] and for mean-payoff games that are played
over infinite-state pushdown automata [8]. These works did not exploit the different
properties of the > and < operators (which correspond to the different properties of
limit-infimum-average and limit-supremum-average). To the best of our knowledge, the
undecidability proof in the paper is the first to exploit these properties. (As we men-
tioned before, when we consider only the > and > operators, the problem is decidable.)

Robust multidimensional mean-payoff games were independently suggested as a
subject to future research by Alur et al [1], by us [16], and by Doyen [11].

Structure of this Paper. In the next section we give the formal definitions for robust
multidimensional mean-payoff games. We prove undecidability by a reduction from
the halting problem of a two-counter machine. For this purpose we first present a re-
duction from the halting problem of a one-counter machine and then we extend it to
two-counter machine. In Section 3 we present the reduction and give an intuition about
its correctness. In Section 4 we give a formal proof for the correctness of the reduction
and extend the reduction to two-counter machine. Due to lack of space, some of the
proof are omitted. Full proofs are available in the technical report [17].

2 Robust Multidimensional Mean-Payoff Games

Game Graphs. A game graph G = ((V, E),(V1,V3)) consists of a finite directed
graph (V, E) with a set of vertices V" a set of edges F, and a partition (V1, V3) of V into
two sets. The vertices in V7 are player-1 vertices, where player 1 chooses the outgoing
edges, and the vertices in V5 are player 2 vertices, where player 2 (the adversary to
player 1) chooses the outgoing edges. We assume that every vertex has at least one
out-going edge.

Plays. A game is played by two players: player 1 and player 2, who form an infinite
path in the game graph by moving a token along edges. They start by placing the token
on an initial vertex, and then they take moves indefinitely in the following way. If the
token is on a vertex in V7, then player 1 moves the token along one of the edges going
out of the vertex. If the token is on a vertex in V5, then player 2 does likewise. The
result is an infinite path in the game graph, called plays. Formally, a play is an infinite
sequence of vertices such that (v, vg41) € E forall k& > 0.

Strategies. A strategy for a player is a rule that specifies how to extend plays. Formally,
a strategy T for player 1 is a function 7: V* - V7 — V that, given a finite sequence
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of vertices (representing the history of the play so far) which ends in a player 1 ver-
tex, chooses the next vertex. The strategy must choose only available successors. The
strategies for player 2 are defined analogously. A winning objective is a subset of V¢
and a strategy is a winning strategy if it assures that every formed play is in the winning
objective.

Multidimensional Mean-Payoff Objectives. For multidimensional mean-payoff ob-
jectives we will consider game graphs along with a weight function w : E — QF that
maps each edge to a vector of rational weights. For a finite path 7, we denote by w(7)

_ w(m)

the sum of the weight vectors of the edges in 7 and avg(7) = where || is the

|| >
length of 7, denote the average vector of the weights. We denote by avg, () the projec-
tion of avg () to the i-th dimension. For an infinite path 7, let 7r; denote the finite prefix
of length i of 7r; and we define LimInfAvg,(w) = liminf,_, » avg(p;) and analogously
LimSupAvg, () with lim inf replaced by lim sup. For an infinite path 7, we denote by
LimInfAvg(m) = (LimInfAvg,(w), ..., LimInfAvg,(m)) (resp. LimSupAvg(m) =
(LimSupAuvg, (), ..., LimSupAvg, (m))) the limit-inf (resp. limit-sup) vector of the
averages (long-run average or mean-payoff objectives). A multidimensional mean-
payoff condition is a boolean formula over the atoms LimInfAvg, ~ v; for ~& {>,
>, <,>}. For example, the formula LimInfAvg, > 8 V LimInfAvg, < —10 A
LimInfAvg < 9 is a possible condition and a path 7 satisfies the formula if
LimInfAvg,(m) > 8 V LimInfAvgy(m) < —10 A LimInfAvg(m) < 9. We note that
we may always assume that the boolean formula is positive (i.e., without negation), as,
for example, we can always replace —(r > v) with r < v.

For a given multidimensional weighted graph and a multidimensional mean-payoff
condition, we say that player 1 is the winner of the game if he has a winning strategy
that satisfy the condition against any player-2 strategy.

For an infinite sequence or reals x1, 2, 3, ... we have LimInfAvg(z1,x2,...) =
—LimSupAvg(—x1, —xa, .. .). Hence, an equivalent formulation for multidimensional
mean-payoff condition is a positive boolean formula over the atoms LimInfAvg, ~ v;
and LimSupAvg, ~ v; for ~€ {>,>}. For positive formulas in which only the
LimInfAvg,; ~ v; occur, determining the winner is decidable by [16]. In the sequel
we abbreviate LimInfAvg,; with ¢ and LimSupAvg,; with 4. In this work we prove un-
decidability for the general case and for this purpose it is enough to consider only the >
operator and thresholds 0. Hence, in the sequel, whenever it is clear that the threshold
is 0, we abbreviate the condition 7 > 0 with ¢ and ¢ > 0 with 4. For example, 7 V j A/
stands for LimInfAvg, > 0V LimSupAvg; > 0 A LimInfAvg, > 0. By further abuse
of notation we abbreviate the current total weight in dimension ¢ by ¢ (and make sure
that the meaning of 7 is always clear from the context) and the absolute value of the
total weight by ||.

3 Reduction from the Halting Problem and Informal Proof of
Correctness

In this chapter we prove the undecidability of determining the winner in games over
general multidimensional mean-payoff condition by a reduction from the halting prob-
lem of two-counter machine. For this purpose we will first show a reduction from the
halting problem of a one-counter machine to multidimensional mean-payoff games, and
the reduction from two-counter machines relies on similar techniques. We first give a
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formal definition for a one-counter machine, and in order to simplify the proofs we give
a non-standard definition that is tailored for our needs. A two-sided one-counter ma-
chine M consists of two finite set of control states, namely @ (left states) and P (right
states), an initial state ¢y € @, a final state g5 € @, a finite set of left to right instruc-
tions d;_,,- and a finite set of right to left instructions &, _,¢. An instruction determines
the next state and manipulates the value of the counter ¢ (and initially the value of c is
0). A left to right instruction is of the form of either:

- q:ifc=0gotopelsec:=c—1 gotop',forq e Qand p,p’ € P ; or

— q: goto p, for ¢ € @ and p € P (the value of ¢ does not change).
A right to left instruction is of the form of either

- p:c:=c+1gotog,forpe Pandq € Q ;or

— p: goto q, for astate p € P and a state ¢ € @ (the value of ¢ does not change).
We observe that in our model, decrement operations are allowed only in left to right in-
structions and increment operations are allowed only in right to left instructions. How-
ever, since the model allows state transitions that do not change the value of the counter
(nop transitions), it is trivial to simulate a standard one-counter machine by a two-sided
counter machine.

For the reduction we use the states of the game graph to simulate the states of the
counter machine and we use two dimensions to simulate the value of the one counter.
In the most high level view our reduction consists of three main gadgets, namely, reset,
sim and blame (see Figure 1), and a state gy that represents the final state of the counter
machine. Intuitively, in the sim gadget player 1 simulates the counter machine, and if
the final state gy is reached then player 1 loses. If player 2 detects that player 1 does
not simulate the machine correctly, then the play goes to the blame gadget. From the
blame gadget the play will eventually arrive to the reset gadget. This gadget assigns
proper values for all the dimensions of the game that are suited for an honest simulation
in the sim gadget. When a play leaves the reset gadget, it goes to the first state of the
simulation gadget which represent the first state of the counter machine.

—

sim

z -1

o )

Fig. 1. Overview

We now describe the construction with more details. We first present the winning ob-
jective and then we describe each of the three gadgets. For a two-sided counter machine
M we construct a game graph with 8 dimensions denoted by ¢, r, g5, c+, c—, g., x and
y and the objective [({ ATV gs) A (c+ Ace— V ge) ANz Ay.

The Sim Gadget. In the sim gadget player 1 suppose to simulate the run of M, and if
the simulation is not honest, then player 2 activates a blame gadget. The simulation of
the states is straight forward (since the game graph has states), and the difficulty is to
simulate the counter value, more specifically, to simulate the zero testing of the counter.
For this purpose we use the dimensions r, ¢, g5 and ¢4, c_, ge.
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We first describe the role of r, ¢ and g,. The reset gadget makes sure that in every
invocation of the sim gadget, we have avg(gs) = —1, avg(r) ~ 1and avg({) ~ 0.
(The reader should read a ~ b as the value of a is very close to the value of b”. Precise
definitions are given in Section 4.) Then, during the simulation the value of g, is always
negative, and the blame gadget makes sure that player 1 must play in such a way that
whenever the machine M is in a right state, r ~ |g,| and £ = 0, and whenever the
machine is in a left state, then r = 0 and ¢ = |g,|. Intuitively, the role of £ and r is to
make sure that every left to right or right to left transition is simulated by a significant
number of rounds in the sim gadget, and g, is a guard dimension that makes sure that
the above assumptions on  and / are satisfied.

We now describe the role of c;,c_ and g.. In the beginning of each simulation
(i.e., every time that the sim gadget is invoked), we have avg(cy) =~ avg(c_) =
1 and avg(g.) = —1. During the entire simulation we have avg(g.) =~ —1 and if ¢
is the value of the counter in the current simulation (i.e., since the sim gadget was in-
voked), then ¢4 = |gc| + |gs|c and c— = |g.| — |gs|c. Intuitively, whenever ¢ > 0, then
c_ < |ge|, and if ¢ < 0 (this can happen only if player 1 is dishonest), then ¢ < |g|
(the reader should read a < b as ”a is much smaller than b”).

We now describe the gadgets that simulate the operations of inc, dec and nop. The
gadgets are illustrated in Figures 2-5 and the following conventions are used: (i) Player 1
owns the O vertices, player 2 owns the O vertices, and the [ vertex stands for a gadget;
(i1) A transition is labeled either with a <— b symbol or with a text (e.g., blame). For a
transition e the label a < b stands for w, (e) = b. Whenever the weight of a dimension
is not explicitly presented, then the weight is 0. We use text labels only to give intuition
on the role of the transition. In such transitions the weights of all dimensions are 0.

In order to satisfy the invariants, in the first state of every inc, dec or nop gadget, in
a left to right transition, player 1 always moves to the state below (namely, to ¢ < 07?)
until £ ~ 0 and r ~ |g,|, and in a right to left transition he always moves to the state
below (namely, to » < 07?) loops until 7 = 0 and ¢ ~ |g,|. If in a left to right gadget
the loop is followed too many times, then ¢ is decremented too many times and player 2
has an incentive invokes the ¢ < 0 gadget. If the loop was not followed enough times,
then r was not incremented enough times and player 2 invokes the r < |gs| blame
gadget. Hence, the blame gadgets allows player 2 to blame player 1 for violating the
assumptions about the values of ¢, r and g;.

nop 0~ |gufo |- @ [P I —
-1, r 1,0 -1
, e blame ct e « 1 blame
_ ge  —1,

ro— 1,0 1 —
ey lico«1 —
ge — —1, )
r<0? blame ¢ < [gs| (<07 blame r < |gs|
Fig.2. nop r — /¢ gadget Fig. 3. nop ¢ — r gadget

A transition ¢ : if ¢ = 0 goto p else ¢ :== ¢ — 1 goto p’,forq € Q and p,p’ € P is
described in Figure 6.
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ok ok

dec T |gs|? = ]gs|? ——r

r o+ 1,0 +— -1 T -1, «— 1
ct — 0,c- «— 2 blame 4~ 2,c-+0 blame
ge + —1, o — —1

<07 blame 7 < [gs| blame ¢ < |gs|

Fig.4. dec ¢/ — r gadget Fig.5. inc r — ¢ gadget
blame
. ok ;
declare ¢ = 0 >0

blame

Fig.6. q : if c = 0 then goto p else ¢ := ¢ — 1 goto p’

The Blame Gadgets. The role of the blame gadgets is to make sure that the assump-
tions on ¢, r and g, are kept in the simulation and to make sure that the zero testing is
honestly simulated. There are six blame gadgets. Four for the honest simulation of r, ¢
and g5, and two for the zero testing (one for ¢ > 0 and one for ¢ < 0). The gadgets
are described in Figures 7-12. In the blame » < 0 and blame ¢ < 0 gadgets the play
immediately continues to the reset gadget. The concept of the other four gadgets is sim-
ilar and hence we describe only the blame r < |g,| gadget. We note that in an honest
simulation we have avg(r), avg(¢), avg(cy), avg(c—) Z 0 in every round. Hence, if
player 1 honestly simulates M and M does not halt, then the winning condition is satis-
fied. The r < |gs| blame gadget is described in Figure 12. If the gadget is invoked and
r < |gs|, then player 2 can loop on the first state until » < 0 and still have g, < 0. If
r & ¢s, then whenever we have r < 0 we will also have g, g 0, and thus the winning
objective is still satisfied. We note that player 2 should eventually exit the blame gadget,
since otherwise he will lose the game.

The Reset Gadget. The role of the reset gadget is to assign the following values for
the dimensions: avg(¢) ~ 0,avg(r) =~ 1,avg(gs) = —1,avg(c-) =~ avg(cy) =
1, avg(g.) = —1. The gadget is described in Figure 13. We construct the gadget is such
way that each of the players can enforce the above values (player 2 by looping enough
times on the first state, player 1 by looping enough time on his two states). But the
construction only gives this option to the players and it does not punish a player if he
acts differently. However, the game graph is constructed in such way that if:

— M does not halt and in the reset gadget, at least one of the players, correctly resets

the values, then player 1 wins.
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co— —1,gc+ 1,9 «+ —1 cp +— —1,9. 1,95 + —1

Fig.7. blame ¢ > 0 gadget Fig. 8. blame ¢ < 0 gadget

] ]

Fig. 9. blame ¢ < 0 gadget Fig. 10. blame r < 0 gadget

. reset . reset

L —1,gs 1,6 —1 r —1,gs 1,9+ —1

Fig. 11. blame ¢ < |gs| gadget Fig. 12. blame r < |gs| gadget

— M halts and in the reset gadget (at least one of the players) correctly reset the
values, then player 2 wins.

Hence, if M does halts, then player 2 winning strategy will make sure that the reset
assigns correct values, and if M does not halt, then we can rely on player 1 to reset the
values. We note that player 2 will not stay forever in his state (otherwise he will lose).
In order to make sure that player 1 will not stay forever in one of his states we introduce
two liveness dimensions, namely x and y. In the simulation and blame gadgets they get
0 values. But if player 1 remains forever in one of his two states in the reset gadget,
then either « or y will have negative lim-sup value and player 1 will lose. Hence, in the
reset gadget, player 1 should not only reset the values, but also assign a positive value
for y and then a positive value for .

] . Q O

) r < 1,0 < 0 r « 1,4 < 0

r «— 1, « 0
cr— licm«+ 1 cr— lico+ 1

cy +— lico+ 1
- _1 -1 gs < —1,gc < —1 gs < =1, gc < —1
s » ge z +——-1ly « 1 z +— lyy < -1

Fig. 13. Reset gadget

Correctness of the Reduction. We claim that player 1 has a winning strategy if and
only if the machine M does not halt. We first summarize the (informal) invariants that
we described in the construction of the reduction. Then, we prove that if M halts, then
player 2 has a winning strategy, and then we prove the converse direction (the proofs
are informal, and formal proofs are given in Section 4).

Summary of Invariants. We first describe the reset invariants that hold each time the

play leaves the reset gadget (or equivalently, each time the sim gadgetis invoked). The re-
set invariants for the side dimensions are: avg(gs) ~ —1, avg(r) ~ 1, avg(f) ~ 0, and
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for the counter dimensions the invariants are: avg(c4) =~ 1, avg(c—) =~ 1, avg(g.) =
—1. We now describe the sim invariants that hold whenever the play is in the sim gad-
get (in all rounds that are played in the sim gadget and also before the first round that is
played in the sim gadget). The sim invariants for the side dimensions are: When the play
is in a right state (i.e., in a state of ()) then r & |g,| and £ &~ 0. When the play is in a left
state (i.e., in a state of P) then £ = |g,| and r = 0.

The next claim follows from the sim invariants: whenever the play is in a state from
Q or P (i.e., after the machine step was simulated), then ¢y ~ |g.| + |gs|c and c_ =~
|gc| — |gs|c, where ¢ is the current value of the counter according to the simulation steps
(i.e., c is the value of the number of times the increment gadget was invoked minus
the number of times that the decrement gadget was invoked from the beginning of the
current invocation of the sim gadget). Informally, the proof of the claim follows by
the fact that according to the sim invariants every step of the machine is simulated by
a sub-play of length |g;| and by the fact that in the increment gadget the dimension
c4 is incremented by 2 while |g.| is incremented by 1 (and similar arguments can be
applied for the decrement gadget and for dimension c_). We formally prove the claim
in Section 4.

Another simple consequence of the sim invariants is that r + ¢ ~ |g| in every round
in the sim gadget. Indeed, whenever in a right or left state the equality holds directly
from the invariants, and in every transition of the sim gadget the sum of weights of
dimension ¢ and r is zero.

If M Halts, Then Player 2 Wins. The winning strategy for player 2 is as follows: In
the reset gadget make sure that the reset invariants are satisfied. This is done by looping
the first state of the reset gadget for enough rounds. In the sim gadget, whenever the sim
invariants are not fulfilled or whenever player 1 cheats a zero-test, then player 2 invokes
a blame gadget. If the sim invariants are fulfilled and player 1 does not cheat a zero test,
then it must be the case that the game reaches state ¢, and in that case player 2 wins.
Otherwise, we claim the player 2 wins.

We first prove that if player 1 violates the sim invariants infinitely often, then the
winning condition is violated. W.l.o.g we assume that the first sim invariant is violated
infinitely often and the proof for the second invariant is similar. By the assumption
infinitely often the play is in a right state and either r > |g,| and ¢/ < O or r < |g| and
£>> 0.If r > |gs|, then £ < 0 and it follows that in the last round that the state ¢ < 0?
was visited, the value of ¢ was much smaller than 0. Hence, player 2 invoked the ¢ < 0
blame gadget and the play immediately continued to the reset gadget. If this happens
infinitely often then ¢ < 0 while g; < 0 (as g5 remains negative in the blame ¢ < 0
gadget and never increases in the sim and reset gadgets) and the winning condition is
violated. If » < |gs|, then player 2 invokes the blame gadget and loop the first state
until 7 < 0. As 7 < |gs| we still have g, < 0, and thus r < 0 while g5 < 0 and the
condition is violated.

We now assume that the sim invariants are violated only finitely often (for simplicity
we assume that they are never violated) and we assume that infinitely often player 1
cheats the zero-test before the play reaches gy. W.1.0.g we assume that player 1 infinitely
often declares ¢ = 0 while the actual value of c is positive (and the proof for the second
cheat is similar). In this case, as c_ = |g.| — |gs|c, we have c_ < |g.|. Hence, in the
blame ¢ > 0 gadget player 2 loops the first state until c— < 0. As c— < |g.| it still
holds that g. < 0. Hence, c— < 0 while g. < 0 and the condition is violated.
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To conclude, if the invariants are not maintained or player 1 does not honestly simu-
late the zero-tests, then in each simulation, the guard dimensions have negative average
weights, while at least one of the dimensions ¢, r, c; or c_ has a negative average weight
in the blame gadget. Hence, we get that gs,g. < 0and £ < Qorr < Qorc_ < 0 or
¢4+ < 0. Hence, the winning condition is not satisfied and player 2 is the winner.

If M does not Halt, Then Player 1 Wins. The winning strategy is to honestly simu-
late M while maintaining the sim invariants and the reset invariants. If player 2 never
invokes the blame gadget, namely, the play stays forever in the sim gadget, then the
winning condition is satisfied. Indeed, in the sim gadget g5, c4,c_,z and y are never
decremented, thus their mean-payoff value is at least zero and the winning condition is
satisfied. Otherwise, after every invocation of the blame gadget, if a side blame gadget
was invoked, then either the average value of r and ¢ is non-negative or the value of the
guard dimension g5 is non-negative. Indeed, if the sim invariants are maintained, then
before a blame ¢ < |g,| gadget is invoked we have ¢ ~ |gs|. Hence, if in the gadget
we have ¢ < 0, then it must be the case that g; > 0. Thus, eventually, we get that
r,£ > 0or gs > 0. Similarly, when a ¢ > 0 gadget is invokes, we have ¢ = 0 and thus
c— =~ |g.|, and thus in the gadget either c_ is non-negative or g. is non-negative (and
similar arguments hold for the ¢ < 0 gadget and for c; ). Hence, we get thatc,c_ > 0
or g. > 0. Thus, the winning condition is satisfied, and player 1 is the winner.

4 Detailed Proof

In the previous section we accurately described the reduction, and only the proof of the
correctness was informal. In this section we give a precise proof for the correctness of
the reduction, namely, we formally describe player-2 winning strategy in the case that
M halts (Subsection 4.1), and player-1 winning strategy in the case that M does not halt
(Subsection 4.2). In Subsection 4.3 we extend the reduction to two-counter machine.

Terminology. In the next subsections we use the next terminology and definitions:

A round is a round in the game graph (i.e., either player-1 or player-2 move).

A simulation step denotes all the rounds that are played in a transition gadget (i.e.,
in a nop,inc or dec gadget). Formally, a simulation step is a sub-play that begins and
ends in a node from P U @ (i.e., a left or a right state) and visits exactly one time in a
left state and exactly one time in a right state.

A simulation session is a sub-play that begins in an invocation of the sim gadget and
ends before (or exactly when) the play leaves the sim gadget. The first i simulation steps
of a simulation session is a sub-play that begins in an invocation of the sim gadget and
ends after ¢ simulation steps were played.

A loop in a transition gadget is a two round sub-play in the gadget that consists of
the loop that is formed by the first state and the state beneath it.

The total number of rounds is the total number of rounds (moves) from the beginning
of the play. We say that the average weight of dimension d in round ¢ is a, and we denote
avg(d) = a, if the value of dimension d in round ¢ is a - i (i.e., the average weight of d
from the beginning of the play up to round < is a). Given a play prefix of length 7, we say
player-2 can achieve avg(d;) < aq while maintaining avg(ds) < a2, for dimensions
d1,dy and thresholds ay, as, if player 2 has a strategy to extend the play prefix in such
way that in some round j > ¢ it holds that avg(d;) < a1 and in every round & such that
1 < k < jitholds that avg(ds) < as.
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4.1 If M Halts, Then Player 2 is the Winner

In this subsection we assume that M halts. We denote by N the number of steps after
which M halts (for initial counter value 0) and we denote ¢ = ( Nil)Z. WLOG we
assume that N > 10. The strategy of player 2 in the reset gadget is to achieve the
following reset invariants (after the play leaves the gadget):

- avg(gs), avg(ge) < —)

- (1= Dlgs| <r < (1+ 9)lgs]

- —lgsl <0< §gsl

- (1 - Z)‘gc| <cq,c- < (1 + Z)‘gc‘

We note that player 2 can maintain the above by looping sufficiently long time in the
first state, and once the invariants are reached, player 1 cannot violate them in his states
in the reset gadget (since the average value of g, and g. can only get closer to —1, the
value of | gil only gets closer to 0 and \g:\ el and (;] only gets closer to 1).

The strategy of player 2 in the sim gadget is to maintain, in every step of the simula-
tion session, the next three invariants, which we denote by the left right invariants:

— (Left state invariant) If the machine is in a left state, then (1 — €)|gs| < ¢ < (1 +
€)|gs| and —e[gs| < r < €|gs].

- (Right state invariant) If the machine is in a right state, then (1 — €)|gs] < r <
(1+€)|gs| and —¢[gs| < € < +egs|.

— (Minimal value invariant) In every round of a simulation session 7, £ > —¢|gs]|.

We denote § = +2N1(1 t20)" We first prove that under these invariants avg(gs) < —9
2 €
in every round of the play. Then we use this fact to show that if player 1 violates these

invariants, then player 2 can violate (¢ A r V g,), and therefore he wins.

Lemma 1. Assume that for a given simulation session: (i) in the beginning of the ses-
sion avg(gs) < — é (ii) no more that N steps are played in the simulation session; and
(iii) the left-right invariants are maintained in the session. Then for every round in the
session avg(gs) < —0.

Proof. We denote by R the number of rounds that were played before the current invo-
cation of the simulation gadget. We claim that after simulating ¢ steps of the machine
(in the current invocation of the sim gadget), the total number of rounds in the play
(i.e., number of rounds from the beginning of the play, not from the beginning of the
current invocation) is at most R + 2i - |g5|(1 + 2¢). The proof is by a simple induction,
and for the base case ¢ = 0 the proof is trivial. For ¢ > 0, we assume WLOG that the
i-th transition is a left-to-right transition. Hence, before the last simulation step we had
r > —el|gs| and after the i-th step was completed we had » < (1 + €)|gs|. Since in
every odd round of a step gadget the value of 7 is incremented by 1, we get that at most
2(1 + 2¢)|gs| rounds were played and the proof of the claim follows (and the proof for
a right-to-left transition is symmetric).

Hence, after N simulation steps we have avg(gs) < Since in the

9gs
R+2N|gs|(142€)

g;'. Hence, and since

beginning of the sim gadget we had avg(gs) < —3, then R < !
1
d.

< 9s — _ = _
gs < 0 we get avg(gs) < 1951 12N g, |(1+2¢) 3+2N(1+2¢)
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We note that in every transition of a simulation session the value of g5 is not changed.
Hence, avg(gs) gets the maximal value after the N-th step and the proof is
complete. O

e

9 1+ 1 _
the first N steps of a session, then player 2 can achieve in the blame gadget either
avg(r) < —v or avg(£) < —v (or both) while maintaining avg(gs), avg(g.) < —n.

Lemma 2. Let v = min(§ . ). If player 1 violates the left-right invariants in
4

Proof. We first prove the assertion over the value of g.. It is an easy observation that if
at the invocation of the sim gadget avg(g.) < — % then it remains at most f% as it gets
a value of —1 in every round in a blame gadget and —1 in every odd round in a step
gadget.

Next, we prove the assertion for the left-state and minimal value invariants and the
proof for the right-state invariant is symmetric. Recall that the invariant consistences of
four assumptions, namely, (i) (1 —¢€)|gs| < £ after a right to left transition; (ii) £ < (1+
€)|gs| after a right to left transition; (iii) —€|gs| < 7 in every round; and (iv) r < €|gs|
after a right to left transition. We first prove the assertion when the first condition is
violated, i.e., we assume that £ < (1 — €)|gs|. If this is the case after a right-to-left
transition, then player 2 will invoke the blame ¢ < |gs| gadget after the transition
ends. In the blame gadget he will traverse the self-loop for X - (1 — §) times, where
X is the value of |g,| before the invocation of the blame gadget, and then he will go
to the reset gadget. As a result (since in every loop ¢ is decremented by 1 and g is
incremented by 1) we get that the value of £ and g, is at most —X - 5. Before the last
simulation step the left-right invariants were maintained. Hence, before the last step
we had ¢ > —e|gs| (by the left-right invariants) and thus the last step had at most
|gs| rounds (as we assume that after the last step £ < (1 — €)|gs|). In addition, as
the invariants were maintained, by Lemma 1 we get that before the last step we had
avg(gs) < —0 and thus after the last step we have avg(gs) < —g (as the value of
gs 1s not changed in simulation steps). Hence if R is the number of rounds before the
invocation of the blame gadget then R < 5. Hence, after the blame gadget ends, we

: Xt
< R+x (1 2) ST x4x (172) 1, 1 _ . - In addition, the

value of g, is incremented in every round of the blame gadget. Thus 1f after the gadget
ends we have avg(gs) < —7, then in every round in the blame gadget we also have
avg(gs) < —7.

If the second condition is violated, namely, if £ > (1 + €)|gs|, then we claim that
6|Qs

have avg({), avg(gs) <

it must be the case that 7 < — 1%/, Indeed, when the sim gadget is invoked we have
r < |gs|(1 4 ) and £ < |gg|§. In the sim gadget the value of the sum 7 + £ is not
changed (since 7 is incremented only when ¢ is decremented and vice versa). Hence,
the sum never exceeds |gs|(1 + 5). Thus, if £ > (1 + €)|gs/,

thatr < — 6'3‘“‘ . Hence, in the first round that avg(r) < —5|g,| player 2 can invoke the
blame r < 0 gadget which leads the play to the reset gadget after exactly one move.
We note that in this scenario the left-right invariants are satisfied and thus, after leaving

the blame gadget by Lemma 1 we have avg(gs) < —d and as r < — E‘gsl we get that
avg(r) < — .

If the third condition is violated, namely, if r < —¢|gs|, then it must be the case that
the condition is first violated in a left to right transition (since in a right to left transition
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r is incremented) and the proof follows by the same arguments as in the proof of the
second case.

Finally, if the fourth condition is violated, namely, if r > €|g;|, then by analyzing the
sum 7 + £ we get that £ < (1 — §)|gs|. We repeat the same analysis as in the case where
the first invariant is violated (i.e., when ¢ < (1 — €)|gs|) and get that avg(gs), avg(r) <

—14 + .. The proofis complete. O
25 4

By Lemma 2, if player 2 maintains the reset invariant in the reset gadget, then other than
finitely many simulation sessions, in every simulation session player 1 must satisfy the
left-right invariants. Otherwise, we get that infinitely often the average value of either r
or ¢ is at most —v while the average value of g, is always at most —v. Hence gs; < 0
and either » < 0 or £ < 0 and thus the condition (¢ A 7 V g5) is violated and therefore
player 1 is losing.

In the next three lemmas we prove that player 1 must honestly simulates the zero-
testing. The first lemma is a simple corollary of the left-right invariants.

Lemma 3. Under the left-right invariants, in the dec,inc and nop gadgets, player 1
Jollows the loop of the first state at most |gs|(1 + 2¢) times and at least |gs|(1 — 2€)
times.

The next lemma shows the correlation between g. and ¢4 and c_.

Lemma 4. Let #inc (resp., #dec) be the number of times that the inc (dec) gadget was
visited (in the current simulation session), and we denote ¢ = #inc — F#dec (namely,
c is the actual value of the counter in the counter machine M ). Then under the left-
right invariants, in the first N steps of the simulation session we always have cy <

96| (14 €) + ¢lgs] + %V and e < |ge|(1 +€) — ¢lgs| + %

Proof. We prove the claim of the lemma for c; and the proof for c_ is symmetric. Let
X be the value of |g.| when the sim gadget is invoked. By the reset invariants we get
that c; < X(1+ 7). By Lemma 3 we get that every visit in the inc gadget contributes
at most |gs|(1 4 2¢) more to ¢y than its contribution to |g.| and every visit in the dec
contributes at least |gs| (1 — 2¢) more to |g.| than its contribution to c4.. Hence,

cr S X1+ 9) + (Igel = X) + #inc - |gs|(1 + 2¢) — #dec - |gs[(1 — 2¢) =
lge| + €X + (#inc — #dec)|gs|(1 + 2€) + 4e|gs| - #dec

We recall that ¢ = (#inc — #dec), and observe that X < |g.|, and that #dec < N
and thus € - #dec < . Hence, we get that c;. < |gc|(1 + €) + c|gs| + ‘925‘. O

The next lemma suggests that player 1 must honestly simulate the zero-tests.

Lemma 5. If the reset and left-right invariants hold, then for v = min(zolN, g) the
following hold: (i) if the blame ¢ < 0 gadget is invoked and ¢ < 0 then player 2
can achieve avg(cy) < —v while maintaining avg(gs), avg(g.) < —=, and (ii) if the
blame ¢ > 0 gadget is invoked and ¢ > 0 then player 2 can achieve avg(c_) < —v

while maintaining avg(gs), avg(ge) < —7.

Proof. We prove the first item of the lemma and the proof for the second item is sym-
metric. Suppose that ¢ < 0 (i.e., ¢ < —1) when blame ¢ < 0 gadget is invoked. Let X
and Y be the values of |g.| and |g| before the invocation of the blame gadget. Then by
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Lemma 4, before the invocation we have ¢y < X(1 4 €) — }2/ Hence, by traversing
the loop of the first state of the blame ¢ < 0 gadget for X (1 + ¢) — Z times we get

ct < 71/ and g, < eX — Z. Let R be the number of rounds that were played from
the beginning of the play (and not just from the beginning of the current invocation
of the sim gadget). Since g. is decremented by at most 1 in every round we get that
X(1+¢) — 1/ < 2X < 2R.By lemma 1 we have 2 < —4. Hence, avg(cy) < ;E <

—83;% < fg. Similarly, since )1; is bounded by 1, we have avg(g.) < ;)é - g <5- g.

_ 1 2e4+4Ne+8c2—1 . _ 1
Recall that § = LaN (1420 Hence, avg(g.) < S(LN(1420)) and since € = (N+1)2
1

and N > 10 we get that avg(g.) < —,,, . Note that g. is only incremented in the
blame gadget. Thus, as avg(g.) < —~ after the last round of the blame gadget we get
that avg(g.) < —+ in all the rounds that are played in the blame gadget. The value of
gs was at most —6 R before the blame gadget, and in the blame gadget g, is decreased
by 1 in every round. Hence avg(gs) < —¢ in every round of the blame gadget and the

proof follows by taking v = min( ', 3)- O

We are now ready to prove one side of the reduction.

Proposition 1. If the counter machine M halts, then player 2 has a winning strategy
Sorviolating (( ArV gs) A (cy ANe— NV g.) ANz Ay. Moreover, if M halts then there exists
a constant ( > 0 that depends only on M such that player 2 has a winning strategy for
violating (0 > —CA1r > —(Vgs > =) AN(ey > —CNee > —(Vge> = A >
—CAy = —C

Proof. Suppose that M halts and let N be the number of steps that M runs before
it halts (for an initial counter value 0). Player-2 strategy is to (i) maintain the reset-
invariants; (ii) whenever the left-right invariants are violated, he invokes a side blame
gadget; (iii) whenever the zero-testing is dishonest, he activates the corresponding blame
gadget (either ¢ > 0 or ¢ < 0); and (iv) if gy is reached, he stays there forever. The cor-
rectness of the construction is immediate by the lemmas above. We first observe that
it is possible for player 2 to satisfy the reset-invariants and that if player 1 stays in the
reset gadget forever, then he loses.

Whenever the left-right invariant is violated, then the average weight of r and/or ¢
is negative, while the average weight of g, and g. remains negative. Hence, if in every
simulation session player 1 violates the left-right invariants in the first [V steps we get
that the condition is violated since gs < —+ and either r < —v or ¢ < —~. Hence, we
may assume that these invariants are kept in every simulation session.

Whenever the zero-testing is dishonest (while the left-right invariants are satisfied),
then by Lemma 5, player 2 can invoke a counter blame gadget and achieve negative
average for either ¢4 or c_ while maintaining g. and g, negative. If in every simulation
session player 1 is dishonest in zero-testing, then we get that either c_ < —v or ¢4 <
—~ while g. < —~ and the condition is violated. Hence, we may assume that player 1
honestly simulates the zero-tests. Finally, if the transitions of M are properly simulated,
then it must be the case the state gy is reached and when looping this state forever
player 1 loses (since x < —1 < 0). O

4.2 If M does not Halt, Then Player 1 is the Winner

Suppose that M does not halt. A winning strategy of player 1 in the reset gadget is
as following: Let ¢ be the number of times that the reset gadget was visited, and we
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denote ¢; = , +110. Similarly to player-2 strategy in Subsection 4.1, player-1 strategy in
the reset gadget is to achieve the following invariants (after the play leaves the gadget):
(i) avg(gs), avg(ge) < =33 (D) (1 = §)lgs| < v < (14 §)lgsls (i) =11 < £ <
”Lf"““ and (iv) (1 — §)lge| < cy,eo < (1 + §)lge|. To satisfy these invariants, he
follows the self-loop of his first state until avg(y) > 0 and then follows the self-loop
of the second state until the invariants are fulfilled and avg(x) > 0. In the sim gadget,
player-1 strategy is to simulate every nop,inc and dec step by following the self-loop
in the corresponding gadget for |gs| rounds, and to honestly simulate the zero-tests..

We denote the above player-1 strategy by 7. The next two lemmas show the basic
properties of a play according to 7, and that player 2 loses if he invokes the blame
gadgets infinitely often.

Lemma 6. In any play according to T, after the reset gadget was visited for i times, in
the sim gadget we always have: (i) in a right state: r > —¢;|gs|, ¢ > (1 — ¢;)|gs| and in
a left state £ > —¢€;|gs|,v > (1 — €;)|gs|; (ii) in every round of the simulation session
r > —€;|gs|; and (iii) ¢ > (1 — €;)|ge| + c|gs| and c— > (1 — €;)|gc| — ¢|gs|, where
c = #inc — #dec in the current invocation of the sim gadget.

Lemma 7. In a play prefix consistent with T, in every round that is played in a blame
gadget: (1) In the blame { < 0 and blame r < 0 gadgets: avg({), avg(r) > —e¢;.
(2) In blame { < ||gs| gadget: if avg(€) < —e;, then avg(gs) > —e€;. (3) In blame
r < |gs| gadget: if avg(r) < —e¢;, then avg(gs) > —¢;. (4) In the blame ¢ < 0
gadget: if avg(cy) < —e;, then avg(g.) > —e;. (5) In the blame ¢ > 0 gadget: if
avg(c—) < —e;, then avg(g.) > —e;. Where i is the number of times that the reset
gadget was visited.

We are now ready to prove the 7 is a winning strategy.

Proposition 2. If M does not halt, then T is a winning strategy.

Proof. In order to prove that 7 satisfies the condition ({A7Vgg ) A(c4 Ac—Vge)Ax Ay itis
enough to prove that when playing according to 7, for any constant § > 0 the condition
(l>—=0Ar>—=0Vgs>—0)A(cy > —=0ANce > =06V g > —d) Az Ay is satisfied.

Let 6 > 0 be an arbitrary constant and in order to prove the claim we consider two
distinct cases: In the first case, player 2 strategy will invoke the blame gadgets only
finitely many times. Hence, there is an infinite suffix that is played only in either a
blame gadget, the reset gadget or the sim gadget and in such suffix player 2 loses.

In the second case we consider, player 2 always eventually invokes a blame gadget.
Since a blame gadget is invoked infinitely many times we get that the reset gadget
is invoked infinitely often, and thus x,y > 0. In addition, the sim gadget is invoked
infinitely often. Let 7 be the minimal index for which ¢; < §. By Lemmas 6 and 7 we
get that after the i-th invocation of the sim gadget, in every round (i) either avg(¢) >
—€; N\ avg(r) > —¢; or avg(gs) > —e;; and (ii) either avg(cy) > —e; A avg(c—) >
—¢; or avg(g.) > —¢;. (A detailed proof is given in the technical report.) Thus, as
of certain round, either avg(¢) and avg(r) are always at least —e;, or infinitely often
avg(gs) > —e;. Hence, (£ > —e; AT > —€; V g5 > —¢;) is satisfied and similarly
(cy > —€iNe— > —€; V g. > —¢;) is satisfied. The proof is complete. |
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4.3 Extending the Reduction to Two-counter Machine

When M is a two-counter machine, we use 4 dimensions for the counters, namely
c}r, cl, 03_, ¢ and one guard dimension g.. The winning condition is (£ A 7V g5) A
(c}F e /\c%r AV ge) Az Ay.Inanop gadget all four dimensions c}r, cl, c%r, c? geta
value of 1 in the self-loop. When a counter ¢; (for ¢ = 1, 2) is incremented (resp., decre-
mented), then counter ci and ¢ are assigned with weights according to the weights of
c+ and c_ in the inc (dec) gadget that we described in the reduction for a one counter
machine, and ci__i, 37" are assigned with weights according to a nop gadget.

The proofs of Proposition 1 and Proposition 2 easily scale to a two-counter machine.
Hence, the undecidability result is obtained.

Theorem 1. The problem of deciding who is the winner in a multidimensional mean-
payoff game with ten dimensions is undecidable.

The winning condition that we use in the reduction can be encoded also by mean-payoff
expressions [6]. Hence, games over mean-payoff expressions are also undecidable.
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