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1 Introduction

It is common to assert that poverty is a multi-dimensional phenomenon, yet most em-
pirical work on poverty uses a one-dimensional yardstick to judge a person’s well-being,
usually expenditures or incomeper capitaor per adult equivalent. When more than one
indicator of well-being is used, poverty comparisons are either made for each indicator
independently of the others, or are performed using an arbitrarily-defined aggregation of
the multiple indicators into a single index. In either case, aggregation across individuals
of individual poverty statuses requires a poverty index, and no single such index has been
devised that has received unanimous approval. Multidimensional poverty comparisons
also require estimation of multidimensional poverty lines, a procedure which is ethically
and empirically problematic even in a unidimensional setting.

Taking as a starting point our belief that multidimensional poverty comparisons are
theoretically attractive, our purpose in this paper is to address some of their methodologi-
cal, empirical, and statistical difficulties. In particular, we show how to determine whether
truly multidimensional poverty comparisons are robust to the aggregation of multiple indi-
cators, robust to the selection of multidimensional poverty lines and of multidimensional
poverty indices, and robust to the presence of sampling variability in the estimators used.

We start in section2 by considering poverty comparisons that involve two or more
measures of well-being, and by asking whether poverty is lower in population A than
in population B. One can think of poverty being defined on many dimensions, along the
lines of Sen’s ”capabilities” approach to poverty (see for instance Sen (1985)), and we test
jointly along all of them. Here, we make an important distinction betweenintersection
anduniondefinitions of poverty. In one of the few papers on multidimensional poverty
measurement, Bourguignon and Chakravarty (1998) argue that, if we measure well-being
in the dimensions of income and height, say, then a person should be considered poor
if her income falls below the income poverty lineor if her height falls below the height
poverty line. We may define this as auniondefinition of multidimensional poverty. An
intersectiondefinition, however, would consider a person to be poor only if she falls below
bothpoverty lines. The tests that we develop are applicable to both definitions.

Section3 presents a different approach to multidimensional poverty comparisons.
Rather than asking ”Is poverty lower for A than B over all reasonable poverty lines in
all dimensions?” we ask, ”What is the range of poverty lines in all dimensions over which
we can be sure that poverty is lower for A than for B?” This approach eliminates the need
to make an arbitrary choice of ”reasonable” limits for the range of poverty lines.

In section4, we show how our methodology specializes to cases in which one of
the measures of well-being is discrete. For example, we might consider literacy as one
indicator of well-being, and believe for instance that literate people are better off than
illiterate people of the same income level. In such cases, we can split the total population
into sub-groups using the value of the discrete variable of well-being, and compare the
levels of a continuous variable of well-being such as income within and across subgroups.
This turns out to be just a special case of the methods derived in section2. Exactly
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the same method applies to poverty comparisons in which a dimension (e.g., incomes)
contributes to well-being, but does so differently for those belonging to different sub-
groups of the population. Group membership defines the other dimension of well-being.
Again, the rationale for this is that each sub-group can reasonably be expected to have
a different level of total well-being for the same amount of income. Atkinson (1991)
and Jenkins and Lambert (1993) (and more recently in Chambaz and Maurin (1998) and
Duclos and Makdissi (2000) for instance) developed this type of analysis for poverty
comparisons in the presence of household heterogeneity in order to avoid relying on the
choice of one particular set of equivalence scales when making poverty comparisons.

Throughout, we follow the dominance approach to poverty comparisons, as initially
developed in Atkinson (1987) and Foster and Shorrocks (1988a,b,c)1. It is well-known
that one important advantage of this approach is that it is capable of generating poverty
orderings that are robust to the specification of poverty lines over broad ranges. Given the
sensitivity of most poverty measures to the poverty line, this is an important consideration.
As we show, this approach can also ensure robustness to the choice of a multidimensional
poverty index over broad classes of indices, as well as robustness over the manner in
which multidimensional indicators interact in generating overall individual well-being. A
further goal of the paper is to derive the sampling distribution of estimators of various
useful tools for multidimensional poverty analysis, in such a way that one may infer from
sample estimates the true population value of poverty measures.

2 Multiple indicators of well-being

2.1 Poverty lines and poverty indices in two dimensions

Let x andy be two indicators of individual well-being2. These could be, for instance,
income, expenditures, caloric consumption, life expectancy, height, body mass, the extent
of personal safety and freedom,etc. Denote the set of poverty lines for the indicators of
well-beingx andy aszx(y) andzy(x), respectively. The formulationzx(y) allows for
the poverty line in the dimension ofx to depend on well-being in the dimension ofy,
and conversely forzy(x). This allows different dimensions of well-being to be at least
partial substitutes in the attainment of an overall level of individual well-being, and thus
in determining whether someone is poor or not. In such cases, we will expect that the
poverty line in thex dimension should not increase asy increases, andvice-versa, that is,
z
(1)
x (y) ≤ 0 andz

(1)
y (x) ≤ 0, where a superscript(1) indicates the first-order derivative

of the function with respect to its argument3. We thus make this assumption from now

1Atkinson and Bourguignon (1982,1987) first used this approach in the context of multidimensional social
welfare.

2For expositional simplicity, we focus on the case of two dimensions of individual well-being. We will
illustrate later in section2.6the extension to more than two dimensions.

3Note here that we implicitly assume thatz
(1)
x (y) z

(1)
y (x) exist everywhere. This assumption, which is made
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onwards.
We can think of(y, zx(y)) and(zy(x), x) aspoverty frontiersalong which the overall

well-being of an individual is precisely equal to the poverty level of well-being, and below
which individuals are in poverty. In other words, the frontier defined by(y, zx(y)) and
(zy(x), x) can be interpreted as an indifference curve along which well-being precisely
equals the poverty level of ”utility”. Within that perspective, the inverse ofzx(y) is simply
zy(x): x ≡ zx(zy(x)). Thus, if we knowzx(y), we also knowzy(x) by inversion, and
conversely.

Assume for expositional simplicity that the joint distribution function overx andy
is differentiable with respect to each variable, and denote the joint density function by
f(x, y). For analytical simplicity, we focus in this paper on classes of additive multidi-
mensional poverty indices. An additive poverty index that combines the two dimensions
of well-being can be defined generally asP (zx(y), zy):

P (zx(y), zy) =
∫ zy

0

∫ zx(y)

0
π(x, y; zx(y), zy(x)) f(x, y) dx dy (1)

wherezy is an upper limit of poverty lines in they dimension (which can tend to infinity)
and whereπ(x, y; zx(y), zy(x)) is the contribution to poverty of an individual with well-
being indicatorsx andy, such that:

π(x, y; zx(y), zy(x))

{
≥ 0 if x ≤ zx(y) andy ≤ zy(x),
= 0 otherwise.

(2)

For expositional convenience, we will sometimes refer toπ(x, y; zx(y), zy(x)) simply as
π(x, y).

Depending on the shape of the functionzx(y), the above formulation allows for a
mixture of both anintersectionand aunion approach to measuring multidimensional
poverty. To see why and how, consider Figure1. If zy = cy andzx(y) = cx, where
cy andcx are constants, then (1) is an intersection poverty index: it considers someone to
be in poverty only if she is poor inbothof the two dimensions ofx andy, and therefore
if she lies within the dashed rectangle of Figure1. If, however,zx(y) ≡ z∗x(y) in Figure1
(the L-shaped, dotted line), withzy → ∞, then (1) is a union poverty index: it considers
someone to be in poverty if she is poor ineither of the two dimensions,i.e., if x ≤ cx

or if y ≤ cy, and therefore if she lies below or to the right of the dotted line of Figure1.
Finally, the bi-dimensional set of poverty linesz∗∗x (y) in Figure1 provides an intermediate
approach, for which the poverty line in thex dimension is a decreasing function ofy.
Someone can be poor even ify > cy, if, in the other dimension, her well-being indicator
is such thatx ≤ z∗∗x (y).

for expositional simplicity, is not strictly necessary, so long aszx(y) is non-increasing overy. This includes the
possibility thatzx(y) not be continuous and not be differentiable everywhere iny.
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2.2 Poverty dominance in two dimensions

Before making comparisons that are robust across a broad class of poverty indices, it
is helpful to introduce one particular example of the multidimensional poverty indices
in equation (1), a bi-dimensional extension of the FGT (Foster, Greer, and Thorbecke
(1984)) index:

P (zx(y), zy; αx, αy) =
∫ zy

0

∫ zx(y)

0
(zx(y)− x)αx(zy(x)− y)αyf(x, y) dx dy (3)

for αx ≥ 0 andαy ≥ 0. This index plays an important role in the robust comparisons
that we introduce below. The parametersαx andαy capture the aversion to inequality
in poverty in thex and in they dimensions, respectively.P (zx(y), zy; 0, 0) gives a bi-
dimensional poverty headcount, namely, the proportion of individuals with both of their
well-being indicators in the poverty domain defined as in Figure1. P (zx(y), zy; 1, 0)
sums the poverty gaps inx (given bymax(zy(x) − y, 0)) for those that are poor iny,
and then normalizes this sum by the size of the total population.P (zx(y), zy; 1, 1) sums
the product of the poverty gaps inx and iny, again normalized by the size of the total
population, and can therefore be thought of as a bidimensional average poverty gap index,
with the weights on the poverty gaps in one dimension being the poverty gaps in the other
dimension. Analogous interpretations exist for other combinations ofαx andαy values.

Instead, however, of relying on the ranking of one or a few arbitrary poverty indices
and using one or a few poverty frontiers, we will investigate the ranking of poverty over
areas of poverty frontiers and classes of poverty indices, classes that are defined in terms
of the reactions ofπ(x, y; zx(y), zy(x)) to changes inx andy. This approach will gener-
ate tests of whether multidimensional poverty rankings are robust to the index and frontier
chosen, that is, tests that are valid for every one of a variety of ways of aggregating in-
dividual well-being indicators into indices of aggregate poverty over an area of poverty
frontiers. These tests of multidimensional poverty robustness can be carried out at differ-
ent orders of poverty dominance in each dimension of well-being.

To consider poverty dominance at a combination of two separate orders of dominance,
sx for x andsy for y, we need to definebi-dimensional stochastic dominancesurfaces,
denoted byDsx,sy(zx, zy):

Dsx,sy(zx, zy) = c

∫ zy

0

∫ zx

0
(zx − x)sx−1(zy − y)sy−1 f(x, y) dx dy (4)

wherec = ((sx − 1)!(sy − 1)!)−1 is a constant which plays no role in the interpretation
and in the comparisons of poverty in which we are interested, and which will therefore
generally be ignored. Whenzx(y) ≡ zx, it is clear from (3) and (4) that the bi-dimensional
dominance surface,Dsx,sy(zx, zy), is equal to the bi-dimensional FGT poverty index,
P (zx, zy; αx = sx − 1, αy = sy − 1), times the constantc. Otherwise, the two differ.
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We assume that the general poverty index in (1) is left differentiable4 over the regions
of [0, zx(y)] and [0, zy] up to the relevant orders of dominance,sx for derivatives with
respect tox andsy for derivatives with respect toy. Denote byπx the first derivative5 of
π(x, y; zx(y), zy(x)) with respect tox; by πy the first derivative ofπ(x, y; zx(y), zy(x))
with respect toy; by πxy the derivative ofπ(x, y; zx(y), zy(x))) with respect tox and to
y; and treat similar expressions accordingly.

We first assume that the poverty indices over which we want to assess the robustness
of poverty comparisons are continuous along the poverty frontier, namely, thatπ(zx(y), y;
zx(y), y) = 0 for all values ofy. This excludes the multidimensional poverty headcount,
which is discontinuous at the poverty frontier; we will come back to the case of this par-
ticular index below. We then define the following classΠ̈1,1(zx(y), zy) of bidimensional
poverty indices:

Π̈1,1(zx(y), zy) =





P (zx(y), zy)

∣∣∣∣∣∣∣

z
(1)
x (y) ≤ 0,

π(zx(y), y; zx(y), y) = 0, ∀y
πx ≤ 0, πy ≤ 0 andπxy ≥ 0, ∀x, y.





(5)

The first assumption in (5) says that the poverty frontierzx(y) is weakly decreasing iny:
this was discussed above in Section2.1. The second assumption is the above-mentioned
continuity assumption at the poverty frontier. The third assumptions say that indices that
are members of̈Π1,1 are weakly decreasing inx and iny, and that they are also more
affected by a change inx the lower is the value ofy. These assumptions imply that an
increase in eitherx or y is good for poverty reduction, and also that the marginal poverty
benefit of an increase in eitherx or y decreases with the value of the other variable.
These implications would seem to be ethically unproblematic. For the indices to be non-
degenerate, we must have thatπx < 0, πy < 0 andπxy > 0 over some ranges ofx andy.
6

Denote by∆F = FA − FB the difference between a functionF for A and forB.
The class of indices defined in (5) then gives rise to the following̈Π1,1 bi-dimensional
dominance condition:

Theorem 1 (Π̈1,1 poverty dominance)

∆P (ζx(y), ζy) > 0, ∀P (ζx(y), ζy) ∈ Π̈1,1(ζx(y), ζy)
and∀ζy ∈ [0, zy] and∀ζx(y) ∈ [0, zx(y)]

iff ∆D1,1(x, y) > 0, ∀y ∈ [0, zy] and∀x ∈ [0, zx(y)]. (6)

4This differentiability assumption is made for expositional simplicity. It could be relaxed.
5The derivatives include the effects ofy in the termzx(y) and ofx in the termzy(x).
6Note also that the inequalities in (5) are weak, which is different from the strong inequalities that are often

found in the literature. This is consistent, however, with the way in which we will proceed to test dominance – we
will test for strict ordering of the dominance surfaces, instead of the weak orderings often tested in the empirical
literature.
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Proof: See the appendix.
If condition (6) is met, Theorem1 says that poverty will be unambiguously higher in
A than inB for all of the poverty indices that are members ofΠ̈1,1 and for all poverty
frontiers for whichζy ∈ [0, zy] andζx(y) ∈ [0, zx(y)]. Because of its generality, this is a
powerful ordering of multidimensional poverty acrossA andB.

Condition (6) requires that the dominance surfaceD1,1(x, y) be higher forA than
for B for all pairs of intersection poverty frontiers,(x, y), for which x ∈ [0, zx(y)] and
y ∈ [0, zy]. To see more clearly what this implies, return to Figure1 and consider first
an intersection poverty definition. In this case,zy andzx(y) are upper bounds that can
be set to the constantscy andcx respectively, and the relevant domain for the test is the
rectangle defined by the axes and the upper bounds(cx, cy). Thus, to establish a robust
poverty comparison on this domain, we must check thatA’s dominance surface is above
B’s at every point over this rectangle. Note, however, that once this is established, we are
assured of a robust poverty ordering not only at the precise intersection poverty frontier,
(cx, cy), but also for all other poverty frontiers(y, zx(y)) of bi-dimensional poverty lines
which ”fit” into the rectangle. These alternative poverty frontiers would includeall of the
intermediate frontiers(of the type ofz∗∗x (y) in Figure1) that could fit in the rectangle
defined by(0, 0) and(cx, cy).

For a union estimator, the test domain of these poverty frontiers is the L-shaped region
defined in Figure1 byx ∈ [0, z∗x(y)] andy ∈ [0,∞]. Again, condition (6) requires that the
dominance surface be higher forA than forB for all pairs ofintersectionpoverty frontiers
over that region. If that is established, we are assured of a robust poverty ordering for all
other union, intersection, or intermediate poverty frontiers(y, zx(y)) which are included
in that testing area. The extension to more general functions such asz∗∗x (y) follows
naturally.

Theorem1 is convenient because it does not require comparing all of the (infinitely
numbered) possible poverty indices that are members ofΠ̈1,1, just the dominance sur-
faces. In addition, it does not require that we test poverty dominance for all possible
frontiers(y, zx(y)), but just for the intersection frontiers that fit within the domain of the
test. A cost of this simplification is thaẗΠ1,1 poverty dominance does not guarantee that
indices that are discontinuous at the poverty frontier will be greater inA than inB for all
poverty frontiers that belong to the test domain, since these discontinuous indices are not
members of̈Π1,1. We will come back to the continuity issue in Section4.

2.3 Higher order dominance tests

For higher-order dominance, we either increase the order in one dimension or in both
simultaneously. Either approach adds further assumptions on the effects of changes in ei-
therx or y on aggregate poverty, and thus limits the applicable class of poverty measures.
These further assumptions are analogous to those found in the unidimensional dominance
literature, and impose that indices react increasingly favorably to increases in living stan-
dards at the bottom of the distribution of well-being. The assumptions further require that
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the reactions of the indices to changes in one indicator be the greater the lower the level
of the other indicator of well-being.

To illustrate this, assume in addition to the above conditions forΠ̈1,1 that the first-
order derivativeπx(x, y) is continuous atx = zx(y), that is, thatπx(zx(y), y) = 0.
Further suppose that equalizing transfers inx at a given value ofy weakly reduce ag-
gregate poverty, and that this effect is decreasing in the value ofy. We then obtain the
following class of bidimensional poverty indices:

Π̈2,1(zx(y), zy) =





P (zx(y), zy)

∣∣∣∣∣∣∣∣∣

P (zx(y), zy) ∈ Π̈1,1(zx(y), zy)
πx(zx(y), y) = 0 ∀y,
πxx(x, y) ≥ 0 ∀x,
andπxxy(x, y) ≤ 0, ∀x, y.





(7)

This leads to the following dominance condition:

Theorem 2 (Π̈2,1 poverty dominance)

∆P (ζx(y), ζy) > 0, ∀P (ζx(y), ζy) ∈ Π̈2,1(ζx(y), ζy)
and∀ζy ∈ [0, zy] and∀ζx(y) ∈ [0, zx(y)]

iff ∆D2,1(x, y) > 0, ∀y ∈ [0, zy] and∀x ∈ [0, zx(y)]. (8)

Proof: See appendix.
This tests simultaneous dominance of order 2 forx and of order 1 fory by checking
whether the average poverty gap inx (given byD2,1(x, y)), progressively cumulated in
the dimension ofy, is greater inA than inB, regardless of which intersection poverty
frontier,(x, y) with x ∈ [0, zx(ζy)] andy ∈ [0, zy], is chosen. The ordering properties are
analogous to those of Theorem1.

Although it may not prove necessary, we can move to higher orders of dominance
in the x dimension. The classes of poverty indices belonging toΠ̈sx,1(zx(y), zy) be-
come increasingly restricted assx increases. For̈Π3,1(zx(y), zy) for instance, poverty
indices must obey the principle of transfer sensitivity7 in x, and react more to a favorable
composite transfer the lower the value ofy. Higher values ofsx imply compliance with
higher-order principles of transfers8.

In addition, we can simultaneously increase bothsx andsy. The procedures, classes
of poverty indices, and dominance relationships are analogous to those described above.
For instance, the conditions for membership inΠ̈2,2(zx(y), zy) require that the poverty
indices be convex in bothx andy, and that they therefore obey the principle of transfers
in both of these dimensions. They also require that this principle be stronger in one
dimension of well-being the lower the level of the other dimension of well-being. Finally,
they also impose that the level of convexity in one dimension of well-being be convex

7For a definition, see for instance Shorrocks and Foster (1987).
8For an illustration of this in the unidimensional setting, see Fishburn and Willig (1984).
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in the level of the other indicator of well-being. The dominance condition then checks
whetherD2,2(x, y) is greater inA than inB for all combinations of poverty lines for
whichx ∈ [0, zx(y)] andy ∈ [0, zy].

2.4 Relevance of the methods

The methods that we propose above are more general than two other methods that re-
searchers have used to consider poverty in multiple dimensions. One approach has been
to combine many indicators of well-being into one, unidimensional index, and then com-
pare that index across populations. The best-known example is the Human Development
Index (UNDP, 1990). To see how this method differs from ours, return to Figure1, which
shows the domain for tests using two well-being variables. If we chose to compare a
single aggregate welfare index of these two variables, the effect would essentially be to
reduce the domain for the test to a single line emanating from the origin and being closer
to the x or y axis according to the weight that x and y receive in the welfare index. Our
proposed tests clearly generalize on this approach.

The second approach is to compare many indicators of well-being independently.
Such univariate comparisons are also a special case of our approach. To see this, re-
call that the dominance surfaceDsx,sy(x, y) is cumulative in both dimensions. Hence,
integrating out one dimension only leaves the univariate dominance curve for the other
dimension of well-being. In terms of Figure1, the domain of separate univariate tests
would be a horizontal line up tocy at x = ∞ for they variable, and a vertical line up to
cx aty = ∞ for thex variable.

There are then two ways in which our test could differ from this ”one-at-a-time” ap-
proach. First, it is possible that the univariate dominance curve forA lies above that for
B at bothx = ∞ andy = ∞ for the relevant range of poverty lines, but thatA is not
aboveB at one or more interior points in the test domain shown in Figure1. In this case,
the one-at-a-time approach would conclude that poverty is higher inA thanB, but our
bivariate approach would not. Indeed, the bivariate approach checks thejoint distribution
of all indicators of well-being, and it is thus able to show the correlation across such in-
dicators, which is of ethical importance since it helps capture ”multiple” poverty – that
is, the joint incidence of deprivation in multiple dimensions. One-at-a-time analysis fails
to do this. Alternatively, it is possible for the dominance surfaces to cross atx = ∞
and/ory = ∞, but for A’s surface to be aboveB’s for a large area of interior points in
the test domain. In this case, the one-at-a-time approach would not be able to establish a
ranking of poverty, but our test would for an intersection definition of poverty and some
intermediate definitions.9

To visualize these methodological differences, consider Figure2, which graphs a typ-
ical dominance surface. A larger ”hump” in the middle of the surface corresponds to a

9A union definition, however, would include the margins of the surface in its test domain and would therefore
not find a robust ordering of poverty.
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larger positive correlation between the two well-being variables. Also, the univariate dom-
inance curve for one dimension is found at the upper extreme of the dominance surface’s
other dimension. On Figure2, the univariate curve for the log of household expenditures
lies on the extreme right of the surface, while that for the height-for-agez-score (to which
we return below) is behind it.

When we make dominance comparisons, we test for the difference between two sur-
faces like the one shown in Figure2. Figure3 depicts such a difference for the case in
which one surface has highly correlated welfare variables while the second does not (the
difference in these surfaces ”bulges” in the middle). Although differences in the univari-
ate dominance curves in both dimensions clearly cross the origin (at the extreme left and
right of the figure), there is a significant interior section where the first surface is entirely
above the second. Hence, there are poverty frontiers for which the first distribution has
more poverty than the second. Conversely, we could think of shifting Figure3 down
such that the univariate differences were all negative. The first distribution would then
dominate the second in both dimensions individually, but there would still be a section in
the middle where the first surface would lie above the second. Thus, there would be no
bivariate poverty dominance due to the first distribution showing two much incidence of
multiple deprivation. We will give further examples of this in section2.6.

2.5 Estimation and inference

We now consider the estimation of the tools derived above for multidimensional poverty
analysis. In this, we generalize to more than one dimension some of the results of David-
son and Duclos (2000).

Suppose first that we have a random sample ofN independently and identically dis-
tributed observations drawn from the joint distribution ofx andy. We can write these
observations ofxL andyL, drawn from a populationL, as(xL

i , yL
i ), i = 1, . . . , N . A

natural estimator of the dominance surfacesDsx,sy(zx, zy) (see4) is then:

D̂
sx,sy

L (zx, zy)
=

∫ zy

0

∫ zx
0 (zy − y)sy−1(zx − x)sx−1 dF̂L(x, y)

= 1
N

∑N
i=1(zy − yL

i )sy−1 (zx − xL
i )sx−1I(yL

i ≤ zy)I(xL
i ≤ zx)

= 1
N

∑N
i=1(zy − yL

i )sy−1
+ (zx − xL

i )sx−1
+

(9)

whereF̂ denotes the empirical joint distribution function,I(·) is an indicator function
equal to 1 when its argument is true and 0 otherwise, andf+(x) = max(0, x). A more
general case of (9) is that of the multidimensional FGT and other additive indices with
an arbitrarily-defined poverty frontier, a case which we consider in the proof of Theorem
3 in the Appendix. For arbitrarysx andsy, (9) has the convenient property of being a
simple sum of IID variables, even allowing for the fact thatx andy and will generally be
correlated across observations.
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The following theorem allows us to perform statistical inference in the case in which
we have a sample from each of two populations,A andB, that may or may not have been
drawn independently from each other.

Theorem 3 Let the joint population moments of order 2 of(zy−yA)sy−1
+ (zx−xA)sx−1

+

and(zy−yB)sy−1
+ (zx−xB)sx−1

+ be finite. ThenN1/2
(
D̂

sx,sy

A (zx, zy)−D
sx,sy

A (zx, zy)
)

andN1/2
(
D̂

sx,sy

B (zx, zy)−D
sx,sy

B (zx, zy)
)

are asymptotically normal with mean zero,
with asymptotic covariance structure given by (L,M = A,B):

limN→∞Ncov
(
D̂

sx,sy

L (zx, zy), D̂
sx,sy

M (zx, zy)
)

= c2E
(
(zy − yL)sy−1

+ (zx − xL)sx−1
+ (zy − yM )sy−1

+ (zx − xM )sx−1
+

)

−D
sx,sy

L (zx, zy) D
sx,sy

M (zx, zy)

. (10)

Proof: See the appendix.
When the samples from the populationsA andB are independent, the variance of each
of D̂

sx,sy

A (zx, zy) andD̂
sx,sy

B (zx, zy) can be found by using (10) and by replacingN by
NA andNB respectively. The covariance between the two estimators is then zero. The
elements of the asymptotic covariance matrix can be estimated consistently using their
sample equivalents.

2.6 Examples

As a first example, consider the question: are rural people poorer than the urban ones in
Viet Nam? Many studies, of Viet Nam and elsewhere, find that people living in rural areas
tend to be poorer when judged by expenditures or income alone. However, it is possible
that people are better nourished in rural than urban areas,ceteris paribus, because they
have tastes for foods that provide nutrients at a lower cost, or because unit prices of com-
parable food commodities are lower. In such cases, including an indicator of nutritional
status may change the relative well-being of rural and urban residents. To test this, we
measure welfare in two dimensions:per capitahousehold expenditures and nutritional
status, as measured by a childs’ gender and age standardized height, transformed into
standard deviation or z-scores. Stunted growth in children is widely used as an indicator
of malnutrition and poor health. The sample comes from the Viet Nam Living Standards
Measurement Survey carried out in 199310. This is a nationally representative household
survey that collected detailed expenditure and anthropometric data. The latter, however,
are available only for children younger than 60 months, so our sample is actually these
children only, rather than for all of the members of the households interviewed.

10Information on the LSMS surveys is available in Grosh and Glewwe (1998). Information about the specific
survey that we use is available at the LSMS website:
http://www.worldbank.org/html/prdph/lsms/country/vn93/vn93bid.pdf.
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The test described in equation (6) requires comparison of the two dominance surfaces
of urban and rural children in Viet Nam: this is shown in Figure4 for sx = sy = 1. The
y axis measures the height-for-agez-score (stunting); thex axis measures theper capita
expenditures for the child’s household; and thez axis measures the cumulative proportion
of children that fall below the points defined in the(x, y) domain. The poorest children
are in the front left-hand corner of the graph. If the rural dominance surface is above the
urban surface over the relevant area of poverty frontiers (values of per capita expenditures
and stunting), poverty is higher (more people are below the given well-being levels in
each dimension) in rural areas. This conclusion is then robust to the choice of poverty
indices in the class̈Π1,1(zx(y), zy), and robust to the choices of poverty frontiers within
[0, zy] and[0, zx(y)].

In theory, we should test over the entire area defined byzx(y) andzy, but it is more
practical to choose a grid of points in the(x, y) domain over which to test. Here we use
a grid that is 20x20, spread evenly over theentiredomain of the log of per capita expen-
ditures and the height-for-agez-score. Following Howes (1996), we test for a significant
difference in the dominance surface at each point of the grid, and reject the null of non-
dominance ofA by B only if all of the t-statistics have the right sign and are significantly
different from 0.

Figure4 indicates clearly that, over almost the entire range of expenditures and stunt-
ing, rural children are poorer than urban. Table1 shows whether these statements are
statistically significantly at the 5% level. A negative sign indicates that the urban domi-
nance surface is significantly below the rural one, a positive sign indicates the opposite,
and a zero indicates that the difference is not statistically significant. The negative dif-
ferences are statistically significant for any reasonable pair of poverty lines (except at the
very bottom right of Table1. Hence, by Theorem1, the conclusion that rural children are
poorer than urban ones is valid for almost any intersection, union or intermediate poverty
frontier.

Our second example tests for first-order poverty dominance in three dimensions. We
ask whether poverty declined in Ghana between 1993 and 1998, using data from the
Demographic and Health Surveys. The three welfare variables that we consider are for
children under five years old: their survival probability, their height-for-age z-score (stunt-
ing), and an index of their household’s assets.11 We compare dominance surfaces for these
three measures in 1993 and 1998, the two years for which DHS data exist. While we can-
not graph the resulting four-dimensional surface, Figure5 summarizes the results of the
statistical test. We use a 20x20x20 grid of test points, and each horizontal layer in Figure
5 is similar to Table1 in the previous example.12 A light gray point indicates that the
1998 surface is significantly above the 1993 surface; a darker gray point indicates that the
1998 surface is significantly below the 1993 surface; and a black point indicates that they
are statistically indistinguishable at the five-percent significance level. It is clear from the

11Information on the estimation of survival probabilities and the asset index may be found in Sahn, Stifel, and
Younger (1999) and Sahn and Stifel (2000).

12We have excluded some of the horizontal layers to make the graph more legible.
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figure that there is no robust poverty dominance result. Over some of the domain, poverty
does seem to have declined between 1993 and 1998. But in significant areas, particularly
for low values in the asset dimension, the reverse is true.

In addition to showing that our tests are possible in more than two dimensions, this
example shows the importance of checking for the robustness of poverty comparisons
using tests such as those we employ. For the intersection headcount, shown by points on
the dominance surfaces, a judicious choice of the poverty lines could lead one to conclude
that poverty worsened, improved, or did not change, depending on the specific choice.
None of these results would be robust, but any would seem plausible if it appeared on its
own.

The next two examples highlight the difference between using bivariate dominance
testsvs.one-at-a-time univariate tests on the same variables. Table2 gives the results for
tests of the differences in the dominance surfaces for stunting and child survival proba-
bility in Cameroon and Madagascar. The data come from the 1997 Demographic Health
Surveys (DHS) in those countries.13 The ”one-at-a-time” dominance curves are given
in the last row of the table (for survival probability) and in the last column (for stunt-
ing). It is clear that these univariate comparisons would conclude that poverty is worse
in Madagascar than in Cameroon, whether measured by stunting or survival probability.
Nevertheless, the bivariate comparison shows several internal points where the surfaces
are not significantly different, including two where the point estimate of the difference is
in fact positive. So our method would not come to the same conclusion, finding instead
that there is no statistically-significant first-order poverty ordering of these two popula-
tions.

Table3 shows the other possibility for different conclusions. These results are also
for tests of the differences between first-order dominance surfaces for stunting and child
survival probability, in Colombia and the Dominican Republic, and come from the DHS
surveys for those countries, carried out in 1995 and 1996 respectively. In this case, there
is dominance on one margin (for survival probability), but not the other (stunting), so the
one-at-a-time approach would not find poverty to be necessarily lower in one population
than the other. However, Colombia’s dominance surface is significantly below the Do-
minican Republic’s over a very large range of the interior points, suggesting that under
an intersection definition of poverty, and several intermediate ones as well, poverty was
robustly lower in Colombia than in the Dominican Republic.

3 Bounds to multidimensional dominance

Implementing the approaches to multidimensional poverty dominance developed in sec-
tion 2 requires specifying the position of the upper frontierzx(y) andzy. Although there
may be some intuitive feel that extreme values ofzx(y) andzy are not sensible, there

13Information on these surveys is available at http://www.measuredhs.com. The child survival probability is
estimated as in Sahn, Stifel, and Younger (1999).
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is rarely reliable empirical evidence about what the precise value of these upper bounds
should be. Specifying their valuea priori is thus necessarily subject to some degree of
arbitrariness. An alternative approach that gets around such arbitrariness is to estimate
directly from the samples the upper limit of the poverty frontiers for which multidimen-
sional poverty dominance holds in the sample. These upper bounds can be termedcritical
poverty frontiers since they will determine the area of poverty frontiers which may not be
exceeded for a robust multidimensional ordering of poverty to be possible. The researcher
can then judge whether these limits are sufficiently high to justify a conclusion of poverty
dominance.

To develop this idea further, assume that these critical poverty frontiers exist in the
two populations of multidimensional well-being being compared. Assume therefore that
B initially dominatesA but that their dominance surfaces eventually cross and that the
ranking of the dominance surfaces is thus eventually reversed. Hence, for a given value
of y, let ζ+

x (y) then be the first crossing point14 of the surfaces in thex dimension, with
D

sx,sy

A (ζ+
x (y), y) = D

sx,sy

B (ζ+
x (y), y). Carrying out this exercise for a range[0, zy] of y

leads to the estimation of a critical poverty frontier in thex dimension. By the results
derived in section2, this procedure will provide an estimate of the space[0, zx(y)] and
[0, zy] in which we can locate all of the possible poverty frontiers (union, intersection, or
intermediate) for which there is necessarily more poverty inA than inB for all poverty
indices that are members ofΠ̈sx,sy . This procedure can be applied for any desired orders
of bi-dimensional dominancesx andsy, and can be generalized to more dimensions.

To summarize, the critical poverty frontierζ+
x (y) limits the poverty frontiers for which

poverty inA can be said to be robustly above that inB. For poverty frontiers lying above
ζ+
x (y), it would always be possible to find a poverty index withinΠ̈sx,sy that would show

more poverty inB than inA15. The frontierζ+
x (y) also locates theintersectionpoverty

frontiers for which the bi-dimensional FGT poverty indices would be exactly the same in
the two distributions. In other words, a social-decision maker using the multidimensional
intersection FGT index as a social evaluation function would be indifferent between the
two distributions at any pair of poverty lines along that frontier.

3.1 Estimation and inference

To establish the sampling distribution of estimators of the critical frontierζ+
x (y), assume

that within some bottom areax ∈ [0, cx] and at a given value ofy, the population dom-
inance surface forA lies above that forB, but that these surfaces cross (exactly) in the
population at some higher critical pointζ+

x (y). For a fixed value ofy, a natural estimator
ζ̂+
x (y) of the location of that point can be defined by the first point abovey at which the

sample ordering of the dominance surface changes. If the sample dominance surface for

14Note thatζ+
x (y) will depend on the orders of dominance(sx, sy) considered, and should formally be written

asζ+
x (y; sx, sy)). For expositional simplicity, however, we do not make this dependence explicit.

15This is by the necessity part of conditions (6) and (8).
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A were to lie always above that forB abovey, then we could set̂ζ+
x (y) to an arbitrarily

large value (denote it byz+
x ). Formally,ζ̂+

x (y) is then defined as16:

ζ̂+
x (y) = sup

{
x|∆P̂ (x, y; sx − 1, sy − 1) ≥ 0 andx ≤ z+

x

}
(11)

Applying this estimator over a range ofy leads to an estimator of the critical frontier
ζ+
x (y). Under these conditions, the sampling distribution ofζ̂+

x (y) is given by the follow-
ing theorem4. For this, however, it is expositionally convenient to define an FGT index
with anegativeαx as:

P (zx, zy;−1, αy) =
∫ zy

0
(zy − y)αyf(y|x = zx)dy fx(zx) (12)

= E
[
(zy − y)αy

+ |x = zx
]
fx(zx) (13)

wherefx(zx) is the marginal density ofx atzx andf(y|x) is the conditional density ofy
atx. This leads to the following theorem.

Theorem 4 Let the joint population moments of order 2 of
(
xA

)(sx−1)(
yA

)(sy−1)
and

(
xB

)(sx−1)(
yB

)(sy−1)
exist. If the samples fromA andB are independent, assume that

the ratior = NA/NB of their respective sample size tends to a constant asNA andNB

tend to infinity. Under the conditions mentioned above (in particular, thatζ+
x (y) exists in

the population),N1/2
(
ζ̂+
x (y)− ζ+

x (y)
)

is then asymptotically normal with mean zero,
and its asymptotic variance is given by

lim
N→∞

var
(
N1/2

(
ζ̂+
x (y)− ζ+

x (y)
))

=
[
δ · (PA(ζ+

x (y), y; sx − 2, sy − 1)− PB(ζ+
x (y), y; sx − 2, sy − 1)

)]−2

×
[
var

(
(y − yA)sy−1

+ (ζ+
x (y)− xA)sx−1

+

)
+ var

(
(y − yB)sy−1

+ (ζ+
x (y)− xB)sx−1

+

)

−2 cov
(
(y − yA)sy−1

+ (ζ+
x (y)− xA)sx−1

+ , (y − yB)sy−1
+ (ζ+

x (y)− xB)sx−1
+

)]
(14)

when the samples are dependent, and by

lim
NA→∞

var
(
N

1/2
A

(
ζ̂+
x (y)− ζ+

x (y)
))

=
[
δ · (PA(ζ+

x (y), y; sx − 2, sy − 1)− PB(ζ+
x (y), y; sx − 2, sy − 1)

)]−2

×
[
var

(
(y − yA)sy−1

+ (ζ+
x (y)− xA)sx−1

+

)
+ r var

(
(y − yB)sy−1

+ (ζ+
x (y)− xB)sx−1

+

)]
(15)

when the samples are independent, and by settingδ = sx − 1 whensx > 1, andδ = 1
whensx = 1.

Proof: See appendix.

16Recall that∆P = PA − PB .
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3.2 Example

Figure6 shows the critical poverty frontier for which poverty, measured by children’s
weight-for-heightz-score and their survival probability, is lower in Madagascar than in
Egypt. A lower frontier is also drawn 2 standard errors below the estimated one. The
frontier and the standard errors are calculated in the vertical dimension (weight-for-age
z-score). The data come from the DHS surveys for these countries in 1997 and 1992,
respectively. Madagascar’s dominance surface is significantly below Egypt’s for a large
range of interior points, including all negativez-scores. But the bound drops sharply at
higher values of the survival probability, limiting considerably the range over which union
poverty dominance can be established.

4 Multivariate dominance with discrete indicators
of well-being

We now show in this section how the results of section2 specialize to the case of discrete
distributions. This discrete setting will also help understand better the assumptions made
earlier and the testing procedures involved. Suppose that the population can be split into
K exhaustive and exclusive population subgroups, whose population share is denoted by
φ(k), k = 1, ...,K. Hence,

∑K
k=1 φ(k) = 1. We can define these subgroups based on

a discrete welfare measure such as literacy, political enfranchisement, access to a public
service, or physical capabilities. Alternatively, we can differentiate households by their
relative needs, based on size and composition, type of activities, or area of residence. In
either case, the important point is that these discrete differences in the characteristics of
households or individuals suggest that, for a given value of the continuous measure(s)
of well-being, certain groups have lower overall well-being than others. This can be be-
cause the discrete variable is itself a measure of well-being (being illiterate is worse than
being literate), or because it indicates differences in needs, prices, or poverty lines. In
addition, we can suppose that there is some uncertainty as to the precise value of these
differences. We will assume below that theK subgroups can be ordered in decreasing
value of “needs”, in such a way that at common alternative indicators of well-being, in-
dividuals in subgroup 1 have more needs than individuals in subgroup 2, who have more
needs than individuals in subgroup 3, and so on.

Since the relevant indices are again assumed to be additive, poverty in each of the
population subgroups can be defined as:

P (k; z(k)) =
∫ z(k)

0
πk(x)f(x; k)dx (16)

wheref(x; k) is subgroupk’s density of living standards atx, andz(k) is subgroupk’s
poverty line in the dimension ofx. πk(x; z(k)) is the contribution to subgroupk’s poverty
of an individual in that subgroup with living standard equal tox. Since the non-poor do
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not, by definition, contribute to total poverty, we have thatπk(x) = 0 if x > z(k). Total
poverty in the population is given by:

P (z(1), ..., z(K)) =
∑K

k=1 φ(k)
∫ z(k)
0 πk(x)f(x; k)dx

=
∑K

k=1 φ(k)P (k; z(k)).
(17)

For expositional simplicity, we will sometimes denoteP (z(1), ..., z(K)) simply by P .
One such poverty index is the sum of FGT indices across subgroups, each with its own
poverty line. Denote the FGT index for subgroupk by

P (k; z(k);α) =
∫ z(k)

0
(z(k)− x)αf(x; k)dx. (18)

The P (k; z(k);α) indices are again closely related to the unidimensional dominance
curves for subgroupk, Ds(k; z(k)), which are defined asc · φ(k) · P (k; z; α = s − 1),
wherec = 1/(s− 1)! is a constant. Total poverty as measured by the FGT index is then:

P (z(1), ..., z(K);α) =
K∑

k=1

φ(k)P (k; z(k);α). (19)

Note thatP (z(1), ..., z(K); 0) is the population headcount, with each subgroupk be-
ing assigned its specific poverty linez(k). Similarly, P (z(1), ..., z(K); 1) is the average
poverty gap in the population, again with each subgroupk being assigned its specific
poverty linez(k). Other multidimensional additive poverty indices can be defined along
similar lines, extending, for instance, the unidimensional Watts (1968) or Chakravarty
(1983) poverty indices.

We assume that the poverty lines of the subgroups can be ordered from the highest-
needs to the lowest-needs group as follows:

z(1) ≥ z(2) ≥ . . . ≥ z(K). (20)

This is the discrete analogue of conditionz
(1)
x (x) ≤ 0 in Section2. The ordering in (20) is

sensible since we assume that individuals in groupk have lower welfare or greater needs
than those in groupk + 1, all else equal. We also suppose for analytical simplicity that
πk(x) is left differentiable between 0 andz(k) up to the relevant order of dominance,s.
For first-order dominance, we then need an ordering of the first-order derivatives ofπk(x)
with respect tox, which we denote asπ(1)

k :

π
(1)
1 (x) ≤ π

(1)
2 (x) ≤ ... ≤ π

(1)
K (x) ≤ 0, ∀x. (21)

Assumption (21) says that an increase inx causes a greater poverty reduction the greater
the needs of individuals. It is the analogue ofπxy ≥ 0 in section2.

16



4.1 Continuous poverty indices

For expositional and analytical convenience, assume that the derivatives of the functions
π

(1)
k (x) are continuous at the poverty line, up to the(s− 1)th order. For first-order domi-

nance, this requires that:

πk(z(k)) = 0, ∀k = 1, . . . , K. (22)

As in the case of continuous welfare variables, note that the continuity assumption (22) is
not obeyed by the multidimensional poverty headcount. The consequences of this will be
discussed shortly. The class,Π1(z(1), . . . , z(K)), of multidimensional first-order poverty
indices then includes all of theP indices defined in equation (17) that satisfy assumptions
(20), (21) and (22). This definition then leads to the following equivalence:

Theorem 5 (First-order poverty dominance for heterogeneous populations)

∆P (ζ(1), . . . , ζ(K)) > 0,

∀P (ζ(1), . . . , ζ(K)) ∈ Π1(ζ(1), . . . , ζ(K))
and∀ζ(k) ∈ [0, z(k)], k = 1, . . . , K

iff
i∑

k=1

∆D1(k; ζ) > 0, ∀ζ ∈ [0, z(i)] and∀i = 1, . . . , K. (23)

Proof: See Atkinson (1991) and Jenkins and Lambert (1993). For ease of reference, a
proof is also shown in the appendix.

Recall thatD1(k; ζ) is the headcount in subgroupk for a poverty lineζ, times the
population share of subgroupk.

∑i
k=1 D1(k; ζ) thus gives as a proportion of the total

population the number of individuals belowζ in subgroups 1 toi, that is, in thei most
deprived, or neediest, subgroups.

∑i
k=1 D1(k; ζ) can then be termed the cumulative head-

count index atζ for the i neediest subgroups. The first-order dominance condition (23)
requires that this cumulative headcount be greater inA than inB, whatever the number
i of groups we wish to include, and at all common poverty lines0 ≤ ζ ≤ z(i). Note,
however, that it does not require that each subgroupk have independently more poor in
A than inB, nor does it require that the population headcount (with each subgroup being
assigned its own particular poverty line) be greater inA than inB.

To see this more clearly, consider the case of poverty comparisons involving only two
groups of individuals,K = 2, with z(1) being the poverty line of the neediest group
and z(2) the poverty line of the less needy individuals. Multidimensional dominance
is checked first by comparing the headcount of the poor in group 1 for poverty linesζ
between 0 andz(1), and then by comparing the combined poverty headcounts of the two
groups at all common poverty lines between 0 andz(2). This is illustrated in Figure
7, whereζ(1) and ζ(2) denote the poverty lines at which poverty in each of the two
subgroups is assessed. ForΠ1(z(1), z(2)) dominance, we need to compare the global
poverty headcount at all of the combinations of poverty lines on theζ(1) axis (up to
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z(1), that is, up to point G) and on the 45 degree line (until point E). Comparing poverty
for the combination of poverty lines on theζ(1) axis amounts to checking the sign of
∆D1(1; ζ) for ζ ∈ [0, z(1)]. Comparing poverty for the combination of poverty lines on
the 45 degree line (until point E) amounts to checking the sign of

∑2
k=1 ∆D1(k; ζ) for

ζ ∈ [0, z(2)].
If the dominance conditions in (23) are met, then we obtain a very robust ordering of

multidimensional poverty. Indeed, we can then assert with confidence that all of the multi-
dimensional poverty indices contained inΠ1(ζ(1), . . . , ζ(K)) will show more poverty in
A than inB, and this, regardless of the selection of any particular combination of poverty
lines, so long as they belong to the set defined byζ(k) ∈ [0, z(k)], k = 1, . . . , K.

4.2 Discontinuous poverty indices

The dominance condition becomes more stringent, however, if we include in the analysis
the headcount and other indices that are discontinuous at the poverty line (in the man-
ner, for instance, of Bourguignon and Fields (1997)) and replace assumption (22) by the
following:

π1(x) ≥ π2(x) ≥ ... ≥ πK(x) ≥ 0, ∀x. (24)

A larger classΠ̃1(z(1), . . . , z(K)) of additive poverty indices then includes all theP
indices defined in equation (17) that satisfy assumptions (20), (21) and (24). The “tra-
ditional” headcount index, by which total poverty is measured by assigning each sub-
group itsown poverty line, belongs tõΠ1 but not toΠ1. We thus expect the dom-
inance conditions for̃Π1 to be correspondingly more demanding. The definition of
Π̃1(z(1), . . . , z(K)) leads to the following equivalence:

Theorem 6 (First-order poverty dominance without continuity)

∆P (z(1), . . . , z(K)) > 0,

∀P (z(1), . . . , z(K)) ∈ Π̃1(z(1), . . . , z(K))

iff

{ ∑i
k=1 ∆D1(k; ζ) > 0, ∀ζ ∈ [0, z(i)] and∀i = 1, . . . ,K

and
∑i

k=1 ∆D1(k; z(k)) > 0, ∀i = 1, . . . , K.
(25)

Proof: See the appendix.
The first condition in (25) is identical to the one already discussed in (23). In addi-
tion, we must check that the cumulative headcounts are positive when each groupk has
its specific poverty line set toz(k). That is the second condition in (25). In the two-
group case of Figure7, this adds to the previously-discussed test locations on more test
at point F on the figure. The dominance conditions are thus more demanding than be-
fore. More importantly, however, note also that the combinations of poverty lines over
which theΠ̃1(z(1), . . . , z(K)) ranking is robust are far more restricted than for the pre-
vious result: in fact, dominance by (25) ensures robustness only at the exact combination
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of lines {z(1), . . . , z(K)}. To extend the results to all of the poverty linesζ(k) con-
tained in[0, z(k)] as in (23), we must also check the sign of the cumulative headcount
when each subgroup is assigned its specific poverty line, instead of a common valueζ.
This new condition would need to be checked for all combinations of poverty lines (other
than{z(1), . . . , z(K)}) for which we would wish the poverty ordering̃Π1 to be robust.
For the 2-group case, this requires checking for dominance at all of the combinations of
poverty lines defined by the shaded area of Figure7. This is clearly a much more stringent
condition than that stated in Theorem5.

As in the continuous case of section2, it is possible to extend the above reasoning to
any arbitrary order of dominance. For a given order of dominances, we would assume
continuity at the poverty line up to the(s− 1)th order. We would also require conditions

on thesth order derivativeπ(s)
k (y; z(k)), and on the ranking of these derivatives across

population subgroups. For second-order dominance, this would require thatπ2
1(y) ≥

. . . ≥ π2
K(y) ≥ 0,∀y. Indices inΠ2 would then be convex iny and thus decreasing

in mean-preserving equalizing transfers of living standards. They would thus obey the
Pigou-Dalton principle of transfers within each group. The convexity ofπk(y), and thus
the importance of the Pigou-Dalton principle of transfers, would also be assumed to be
decreasing ink and hence increasing in the needs of the subgroups. At a giveny, the
greater the needs of a subgroup of individuals, the greater the beneficial poverty effect of
a mean-preserving equalizing transfer within that subgroup.

The dominance conditions would then useD2(k; ζ) – which is the average poverty
gap in subgroupk for a poverty lineζ, times the population share of subgroupk

∑i
k=1 D2(k; ζ)

– and would cumulate it across thei neediest subgroups. When this cumulative average
poverty gap is greater inA than inB, whatever the numberi of neediest subgroups in-
cluded, and at all common poverty lines0 ≤ ζ ≤ z(i), poverty inA is unambiguously
greater than inB for all of the indices inΠ2(ζ(1), . . . , ζ(K)) and at all of the poverty
lines ζ ∈ [0, z(i)]. For the 2-group case, the graphical combinations of poverty lines
over which this condition must be tested are the same as in the discussion of Figure7 for
condition (23)17.

4.3 Estimation

As for section3.1 in the case of continuous indicators of well-being, suppose that we
have a random sample ofN independently and identically distributed observations drawn
from the joint distribution of membership in groupk and indicator of well-beingx. We
can write these observations, drawn from a populationL, as(kL

i , xL
i ), i = 1, . . . , N . A

natural estimator of the sum of the dominance curves
∑j

k=1 Ds(k; x) is then:

1
N

N∑

i=1

(zkL
i
− xL

i )s
+I(kL

i ≤ j). (26)

17The details of this and extensions to higher-order dominance can be found in Duclos and Makdissi (2000).
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Expression (26) has again the convenient property of being a simple sum of IID vari-
ables. We can therefore use the result of Theorem3 to show its asymptotic sampling dis-
tribution simply by replacing(zy(xL)−yL)αy

+ (zx(xL)−xL)αx
+ by (zkL−yL)s

+I(kL ≤ j)
in (10), for L = A,B. An exactly analogous exercise can be done for the sampling dis-
tribution of critical poverty frontiers indexed over the subgroupsk.

4.4 Examples

Our first example for this section handles the equivalence scale problem with the method
first suggested by Atkinson (1991). We ask the question, ”which type of transfer payment
reduces poverty more in Romania, child allowances or social security pensions?” Because
the answer can easily be influenced by the choice of equivalence scale, we will avoid that
choice altogether. Instead, we use bivariate dominance tests where the second variable is
household size, an indicator of greater needs. The neediest group is households with six
or more people,18 the next neediest contains households with five people,etc.. The data
come from the Romania Integrated Household Survey (Government of Romania, 1994).
The other well-being variable is household income, plus the relevant transfer payment
(child allowances or social security pensions). We have standardized these payments so
that they have the same mean, thus ensuring that the tests do not merely reflect that fact
that one program is very large relative to the other.

Table4 gives thet-statistics for the differences in the dominance curves of the neediest
group, the two neediest groups,etc., up to the entire sample, as required by theorem
5. The difference is the dominance curve for income plus child allowances minus that
for income plus social security pensions. For large households, child allowances clearly
reduce poverty by more than social security payments, but this result is reversed abruptly
once we include households with two people, where the dominance curves now cross,
and where social security payments appear to be more beneficial to poorer households.
The same pattern holds fors = 2 ands = 3 (involving the ”poverty gap” and ”poverty
severity” curves, respectively), suggesting that we cannot make any robust statement as to
the poverty reducing impact of these two transfer payments without excluding households
of 2 and 1 persons.

Our second example in this section considers a case in which poverty is measured
on two dimensions, household expenditures per capita and literacy, the latter of which is
discrete. We consider the change in poverty in Peru between 1985 and 1994, as measured
by the Encuesta Nacional de Nı́veles de Vida in those two years. Table5 is similar to
Table4, but the groups are now defined by literacy. We assume that, for a given level of
expenditure, those who cannot read and write have lower well-being than those who can.
Thus, the first group is the illiterate population. Thet-statistics are for the 1985 domi-
nance curve minus the 1994 curve. Except for the first ordinate for group 1, which just
misses the five percent significance level (and for which there are very few observations

18There are very few households with more than six people in the sample.
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in the sample), there is a clear worsening of poverty as measured by expenditures and
literacy.

5 Conclusion

In this paper, we have shown that it is possible to make sensible comparisons of poverty
when poverty is measured in multiple dimensions. These comparisons have several at-
tractive features:

1. In the spirit of the stochastic dominance literature, they can be tested for robustness
over broad classes of poverty indices. A special consideration for the multivariate
case is whether poverty is defined as the intersection or union of poverty in each
dimension. The methods that we describe are valid for both, as well as for interme-
diate cases in which the poverty line in one dimension is a non-increasing function
of well-being in other dimensions.

2. The poverty comparisons can be tested for robustness over a broad choice of fron-
tiers of poverty lines in each dimension. Alternatively, one can estimate a criti-
cal poverty frontier up to which multidimensional poverty dominance necessarily
holds.

3. Poverty comparisons are possible for a mixture of discrete and/or continuous wel-
fare variables.

4. The comparisons involve statistical tests, that make use of the sampling distribution
of multidimensional poverty estimators.

The importance of these methods rests on two considerations. The first is ethical and
rests on the widespread acknowledgement that well-being and poverty are multidimen-
sional in nature. We take this as given, based either on Sen’s philosophical arguments
that poverty should be viewed in terms of capabilities and functionings, or on the more
narrow recognition that a person’s well-being has dimensions that cannot be purchased
and that transcend levels of income. The second consideration is practical: to what extent
will multidimensional comparisons differ from unidimensional ones? Given the relatively
weak correlations that are often observed between income and other welfare variables, it
should not be surprising to find cases where poverty comparisons in multiple dimensions
differ from comparisons in only one of those dimensions, something that we found re-
peatedly in preparing the examples for this paper.

More generally, we have shown that our multidimensional comparisons can also differ
from univariate comparisons in each dimension in two ways. One could find dominance
in each dimension separately if the margins of the dominance surfaces differ in each
dimension, but may not find multidimensional dominance if the surfaces cross in the
surfaces’ interiors. This draws attention to the importance of capturing the incidence of
multiple deprivation. Alternatively, the one-dimensional dominance curves may cross,
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ruling out univariate dominance, but the interiors of the multidimensional surfaces may
be uniformly different, allowing multivariate dominance for intersection or intermediate
poverty definitions. How important empirically these two possibilities are remains to be
firmly established. Our admittedly limited experience based on comparisons of the DHS
surveys is that the first is rare, while the second is fairly common. But a firm sense of the
importance of our more general methods must await further practice with other samples
and other variables.

6 Appendix

Proof of Theorem1.
We proceed by first integrating equation (1) by parts with respect tox. This gives:

P (zx(y), zy) =
∫ zy

0
[π(x, y; zx(y), zy(x)) F (x|y)] |zx(y)

0 f(y) dy

−
∫ zy

0

∫ zx(y)

0
πx(x, y; zx(y), zy(x)) F (x|y)f(y) dx dy. (27)

The first term on the right-hand-side of (27) is zero sinceF (x = 0|y) = 0 and since we
assumed thatπ(zx(y), y; zx(y), y) = 0. (Hence, it is here that the continuity assumption
at the set of poverty lines is technically useful.) To integrate by parts with respect toy the
second term, define a general functionK(y) =

∫ g(y)
0 h(x, y) l(x, y)dx and note that:

dK(y)
dy

= g(1)(y)h(g(y), y) l(g(y), y)

+
∫ g(y)

0

∂h(x, y)
∂y

l(x, y)dx

+
∫ g(y)

0
h(x, y)

∂l(x, y)
∂y

dx. (28)

Reordering (28) and integrating it from 0 toc, we find:

−
∫ c

0

∫ g(y)

0
h(x, y)

∂l(x, y)
∂y

dxdy

= −K(c) + K(0) +
∫ c

0
g(1)(y)h(g(y), y) l(g(y), y)dy

+
∫ c

0

∫ g(y)

0

∂h(x, y)
∂y

l(x, y)dxdy. (29)

Now replace in (29) c by zy, g(y) by zx(y), h(x, y) by πx(x, y; zx(y), zy(x)), l(x, y) by

F (x, y) andK(y) by its definitionK(y) =
∫ g(y)
0 h(x, y) l(x, y)dx. This gives:
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P (zx(y), zy) = −
∫ zx(zy)

0
πx(x, zy; zx(zy), zy(x)) D1,1(x, zy) dx

+
∫ zy

0
z(1)
x (y) πx(zx(y), y; zx(y), y) D1,1(zx(y), y) dy

+
∫ zy

0

∫ zx(y)

0
πxy(x, y; zx(y), zy(x)) D1,1(x, y) dx dy. (30)

For the sufficiency of condition (6), recall thatz(1)
x (y) ≤ 0, πx ≤ 0, andπxy ≥ 0,

with strict inequalities for either of these inequalities over at least some inner ranges of
x andy. Hence, if∆D1,1(x, y) > 0, for all y ∈ [0, zy] and for allx ∈ [0, zx(y)], then
it must be that∆P (ζx(y), ζy) > 0 for all of the indices and of the sets of poverty lines
specified in Theorem1.

For the necessity part, assume that∆D1,1(x, y) ≤ 0 for an area defined overx ∈
[c−x , c+

x ] andy ∈ [c−y , c+
y ], with c+

x ≤ zy and c+
x ≤ zx(y). Then any of the poverty

indices inΠ̈1,1 for whichπxy < 0 over that area and for whichπx(x, zy; zx(zy), zy(x)) =
πx(zx(y), y; zx(y), y) = 0 will indicate either that∆P = 0 or that∆P < 0. Condition
(6) is thus also a necessary condition for the ordering specified in Theorem1.

Proof of Theorem2.
Integrating (30) once more by parts with respect tox, and imposing the continuity

conditions characterizing the indicesΠ̈2,1(zx(y), zy) in (7), we find:

P (zx(y), zy) =
∫ zx(zy)

0
πxx(x, zy)D2,1(x, zy)dx

+
∫ zy

0
πxy(zx(y), y)D2,1(zx(y), y)dy

−
∫ zy

0

∫ zx(y)

0
πxxy(x, y)D2,1(x, y)dxdy. (31)

The rest of the proof is as for Theorem1.

Proof of Theorem3.
A natural estimator of the multidimensional FGT indicesP (zx(y), zy; αx, αy) is given

by:

P̂L(zx(y), zy; αx, αy)
=

∫ zy

0

∫ zx(y)
0 (zy(x)− y)αy(zx(y)− x)αx dF̂L(x, y)

= 1
N

∑N
i=1(zy(xL

i )− yL
i )αy (zx(yL

i )− xL
i )αxI(yL

i ≤ zy(xL
i ))I(xL

i ≤ zx(yL
i ))

= 1
N

∑N
i=1(zy(xL

i )− yL
i )αy

+ (zx(yL
i )− xL

i )αx
+

(32)
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A special case of (32) is the estimator of the dominance surface in (9), obtained simply
by specifyingzx(y) = zx, zy(x) = zy, andαx = sx − 1 andαy = sy − 1.

For each distribution, the existence of the appropriate population moments of order 1
lets us apply the law of large numbers to (32), thus showing that̂PK(zx(y), zy;αx, αy) is a
consistent estimator ofPK(zx(y), zy; αx, αy)). Given also the existence of the population
moments of order2, the central limit theorem shows that the estimator in (32) is root-N
consistent and asymptotically normal with asymptotic covariance matrix given by (10).
When the samples are dependent, the covariance between the estimator forA and forB
is also provided by (10).

Theorem3 thus provides the formula needed to estimate the sampling variability of
any point on the dominance surfaces and for any choice of multidimensional poverty
lines in the multidimensional FGT poverty indices. Extension of the result of Theorem3
to any additive multidimensional poverty indices is straightforward, and simply requires
substituting in (10) the relevant functionsπ(x, y; zx(y), zy(x)) for ((zy(x)−y)αy

+ (zx(y)−
x)αx

+ .

Proof of Theorem4.
The proof can be established along the lines of the proof of Theorem 3 in Davidson

and Duclos (2000). To see this, note that the conditions of Theorem4 assume that the
appropriate joint population moments exist, and that the critical frontierζ+

x (y) also exists
in the population. Furthermore, since this frontier is assumed to be where the dominance
surfacesexactlycross, we have that∆P x(ζ+

x (y), y; sx − 1, sy − 1) < 0. Note that this
derivative is given byδ · (PA(ζ+

x (y), y; sx − 2, sy − 1)− PB(ζ+
x (y), y; sx − 2, sy − 1)),

with δ = sx − 1 whensx > 1, andδ = 1 whensx = 1. Whensx = 1, we also have
PL(ζ+

x (y), y;−1, sy − 1) = E
[
(y − yL)(sy−1)

+ |x = ζ+
x (y)

]
fx(ζ+

x (y)), L = A,B.
Again, the elements of the asymptotic covariance matrix can be estimated consis-

tently by simply using their sample estimates. EstimatingP (ζ+
x (y), y; sx − 2, sy − 1)

is also easily done whensx > 1. EstimatingE
[
(y − yL)(sy−1)

+ |x = ζ+
x (y)

]
fx(ζ+

x (y))
is slightly more complicated, but can be done consistently using non-parametric regres-
sion procedures. In particular, we use in the illustration a Gaussian kernel,K(u) =
(2π)−0.5 exp−0.5u2

, and estimateE
[
(y − yL)(sy−1)

+

∣∣∣ x = ζ+
x (y)

]
fx(ζ+

x (y)) as:

(nh)−1
n∑

i=1

K

(
ζ+
x (y)− xL

i

h

) (
y − yL

i

)(sy−1)

+
. (33)

Proof of Theorem5.
We first use (17) to integrate by parts the difference∆P . We find:

∆P =
∑K

k=1 πk(z(k))∆D1(k; z(k))
−∑K

k=1

∫ z(k)
0 π

(1)
k (x)∆D1(k; x)dx.

(34)
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Recall the continuity assumption thatπk(z(k)) = 0, ∀k. For ∆P > 0, we thus need to
show that

K∑

k=1

∫ z(k)

0
π

(1)
k (x)∆D1(k;x)dx < 0. (35)

Recall thatπ(1)
k (x) = 0 if x > z(k); combined with (20), we can then rewrite (35) as:

∫ z(1)

0

K∑

k=1

π
(1)
k (x)∆D1(k; x)dx < 0. (36)

The inner sum in (36) can be rewritten as:

K∑

k=1

π
(1)
k (x)∆D1(k;x) = (37)

π
(1)
K (x)

K∑

l=1

∆D1(l;x) +
(
π

(1)
K−1(x)− π

(1)
K (x)

) K−1∑

l=1

∆D1(l; x) (38)

+ . . . +
(
π

(1)
1 (x)− π

(1)
2 (x)

)
∆D1(1;x) (39)

Denotingπ
(1)
K+1(x) ≡ 0, we can thus rewrite the right-hand-side of (36) as

∫ z(1)

0

K∑

i=1

[(
π

(1)
i (x)− π

(1)
i+1(x)

) i∑

k=1

∆D1(k; x)

]
dx. (40)

Note that by the definition of the class of indicesΠ1(ζ(1), . . . , ζ(K)), π
(1)
i (x) −

π
(1)
i+1(x) ≤ 0, ∀i = 1, . . . , K, with strict inequality for some values ofi over some range

of x ∈ [0, ζ(i)] (for the indices to be non-degenerate). Hence, if
∑i

k=1 ∆D1(k; ζ) >
0, ∀ζ ∈ [0, z(i)] and∀i = 1, . . . , K, then it must be that (35) holds for allP (z(1), . . . , z(K))
∈ Π1(z(1), . . . , z(K)). But this also implies that∆P (ζ(1), . . . , ζ(K)) > 0, ∀P (ζ(1), . . . , ζ(K))
∈ Π1(ζ(1), . . . , ζ(K)), and∀ζ(k) ∈ [0, z(k)], k = 1, . . . ,K. This proves the sufficiency
of condition (23).

For the necessity part, it suffices to consider any particular case in which
∑i

k=1 ∆D1(k; ζ) ≤
0, for someζ ∈ [z−(i), z+(i)] and for some value ofi. Consider then a poverty index that

belongs toΠ1(z(1), . . . , z(K)) such thatπ(1)
k (x)− π

(1)
k+1(x) = 0 everywhere, except for

k = i and over that rangeζ ∈ [z−(i), z+(i)] over which
∑i

k=1 ∆D1(k; ζ) ≤ 0. Then, by
(40), ∆P ≤ 0 for that index, which therefore shows the necessity of condition (23).

Proof of Theorem6.
Consider again equation (34):

∆P =
∑K

k=1 πk(z(k))∆D1(k; z(k))
−∑K

k=1

∫ z(k)
0 π

(1)
k (x)∆D1(k; x)dx.

(41)
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The second part of condition (15) guarantees the non-negativity of the second part of (41),
as shown before in the proof of Theorem5. Denoting againπ(1)

K+1(y) ≡ 0, rewrite the
first part of (41) as:

K∑

i=1

[
(πi(z(i))− πi+1(z(i + 1)))

i∑

k=1

∆D1(k; z(i))

]
. (42)

Note that by the definition of the class of indicesΠ̃1(z(1), . . . , z(K)), πi(z(i)) −
πi+1(z(i + 1)) ≤ 0, ∀i = 1, . . . , K. Hence, if

∑i
k=1 ∆D1(k; z(k)) > 0, ∀i = 1, . . . , K,

then the first part on the right-hand-side of (41) is also non-negative. The combination of
the first and of the second parts of condition (25) guarantees that∆P > 0.

The necessity of condition (15) proceeds as for the proof of Theorem5.
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Figure 1: Union and intersection poverty indices
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Figure 2: Dominance surface for Ghanaian children, 1989
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Figure 3: Example of difference in dominance surfaces, intersection domi-
nance without marginal dominance
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Figure 4: Urban minus Rural Dominance Surface for Viet Nam
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Figure 5: Test results for difference between 1993 and 1998 first-order dom-
inance surfaces for Ghanaian children
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Figure 6: Critical Poverty Frontier, Children’s Wasting and Survival prob-
ability, Madagascar and Egypt
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Figure 7: Domain for dominance testing
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Table 1: Test results for difference between dominance surfaces for urban
and rural children in Viet Nam, 1993
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Table 2: Test results for difference between dominance surfaces for chil-
dren in Cameroon and Madagascar, 1997

Height-for-age z-score \ Survival probability
0.83 0.86 0.88 0.89 0.90 0.91 0.99 1.00

-4.19 - - 0 0 - - … - -
-3.66 0 0 0 0 - - … - -
-3.35 0 - - - - - … - -
-3.13 0 - - - - - … - -
-2.88 0 - - - - - … - -
-2.66 - - - - - - … - -
-2.50 - - - - - - … - -

… … … … … … … … …
0.46 - - - - - - … - -
5.39 - - - - - - … - .

Notes:1/ Sx=1, Sy=1
2/ A negative sign indicates that Madagascar's dominance surface is
significantly above Cameroon's, a positive sign indicates the opposite, 
and a zero indicates that the difference is not statistically significant.
3/ The ellipses indicate that all intervening signs are negative.
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Table 3: Test results for difference between dominance surfaces for chil-
dren in Colombia and the Dominican Republic, 1995 and 1996

Height-for-age z-score \ Survival probability
0.906 0.927 0.938 0.947 0.953 0.985 0.987 0.989 0.991 0.995 1.000

-2.85 - - - - - … - - - 0 0 0
-2.36 - - - - - … - - - - 0 0
-2.07 - - - - - … - - - - 0 0
-1.85 - - - - - … - - - 0 0 0
-1.67 - - - - - … - - - 0 0 0
-1.47 - - - - - … - - - 0 0 +
-1.33 - - - - - … - - - 0 0 +
-1.17 - - - - - … - - - 0 + +
-1.04 - - - - - … - - 0 0 + +
-0.92 - - - - - … - - - 0 0 +
-0.76 - - - - - … - - - 0 + +
-0.62 - - - - - … - - - 0 + +
-0.49 - - - - - … - - - 0 + +
-0.35 - - - - - … - - - - + +
-0.12 - - - - - … - - - - + +
0.07 - - - - - … - - - - 0 +
0.34 - - - - - … - - - - 0 +
0.68 - - - - - … - - - - 0 +
1.05 - - - - - … - - - - - +
5.92 - - - - - … - - - - - 0

 
Notes:Sx=1, Sy=1

A negative sign indicates that the Domincan Republic's dominance surface is  
significantly above Colombia's, a positive sign indicates the opposite, 
and a zero indicates that the difference is not statistically significant. 
The ellipses indicate that all intervening signs are negative.
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Table 4: t-statistics for difference between household income with child al-
lowancesvs.with social security (Romania)

Household income \ Household size
6 or more 5 or more 4 or more 3 or more 2 or more 1 or more

36,316       -30.51 -26.01 -20.24 -9.68 21.25 32.80
46,630       -36.27 -30.34 -24.34 -11.96 20.14 31.48
59,874       -41.95 -36.41 -29.30 -15.76 18.02 27.29
76,880       -47.80 -41.96 -34.84 -20.38 13.75 19.26
98,716       -54.91 -47.82 -39.52 -24.29 7.39 9.47

126,750     -57.50 -50.75 -42.30 -27.13 0.45 1.75
162,750     -59.59 -52.29 -45.60 -30.02 -10.08 -8.35
208,980     -47.90 -45.00 -42.05 -29.21 -15.98 -13.77
268,340     -38.35 -36.73 -35.02 -27.07 -17.62 -15.56
344,550     -27.02 -25.99 -25.41 -19.47 -13.52 -11.95
442,410     -17.74 -18.26 -17.04 -13.60 -8.63 -7.41
568,070     -18.13 -11.28 -10.25 -7.50 -4.46 -3.76
729,420     -7.23 -7.55 -7.58 -7.01 -2.68 -2.29
936,590     -4.30 -3.70 -3.26 -1.81 -0.25 -0.23

1,202,600  -10.34 -5.66 -3.48 -1.65 -0.07 -0.06
1,544,200  -7.86 -3.89 -2.17 -1.23 0.37 0.33

Notes: s=1. Results are similar for s=2 and s=3.
A negative sign indicates that income with child allowances dominates
income with social security payments, and vice-versa.
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Table 5: t-statistics for difference between per capita expenditures for liter-
ate and illiterate Peruvians, 1994vs.1985

Household income \ Literacy
Illiterate Literate

403 -1.95 -3.21
518 -4.93 -5.76
665 -7.69 -8.35
854 -14.93 -15.33

1,097 -22.37 -24.37
1,408 -28.97 -31.28
1,808 -35.47 -38.95
2,322 -41.48 -46.19
2,981 -46.16 -51.91
3,828 -48.38 -53.91
4,915 -49.63 -55.40
6,311 -46.49 -51.90
8,103 -40.41 -45.30

10,405 -35.02 -39.00
13,360 -26.61 -29.54
17,154 -21.45 -23.74
22,026 -16.02 -17.51

Notes: s=1.
A negative sign indicates that household
expenditures in 1985 dominate
those in 1994, and vice-versa.
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