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Abstract

We propose two methods for robustifying multilinear
principal component analysis (MPCA) which is an exten-
sion of the conventional PCA for reducing the dimensions
of vectors to higher-order tensors. For two kinds of outliers,
i.e., sample outliers and intra-sample outliers, we derive it-
erative algorithms on the basis of the Lagrange multipliers.
We also demonstrate that the proposed methods outperform
the original MPCA when datasets contain such outliers ex-
perimentally.

1. Introduction

Dimensionality reduction is of fundamental importance
in image processing, pattern recognition and computer vi-
sion (CV) as it is necessary to avoid the curse of dimension-
ality [8]. Principal component analysis (PCA) [12] is one
of the most fundamental and well-known techniques for di-
mensionality reduction. There is a broad community in CV
and image analysis that makes use of PCA and its exten-
sions, which includes many application areas, e.g., shape
analysis [18], shape statistics [4], segmentation using de-
formable models [17] and handwritten digit classification
[16].

Xu and Yuille [20] proposed self-organizing rules for ro-
bust PCA. Higuchi and Eguchi [11] generalized their ap-
proach [20] and adaptively selected a set of tuning param-
eters which control the degree of robustness. De la Torre
and Black [5, 6] pointed out that the previous robust ap-
proaches to PCA are of limited application in CV problems
as they reject entire images as outliers, i.e., they are robust
to sample outliers, and proposed another robust PCA which
is robust to intra-sample outliers, e.g., outlier pixels in an
image sample. Although these methods achieve improved
tolerance to outliers compared with the conventional PCA,
it might be difficult to apply them to higher-order tensors
because they are formulated for reducing the dimensions of
vectors. Therefore, tensors have to be transformed into vec-
tors in advance. However, this transformation might cause a

high-dimensional situation in which the above robust PCA
approaches fail.

In order to address the problem of high-dimensionality
caused by the transformation of tensors into vectors, Yang
et al. [21] proposed two-dimensional PCA (2DPCA) for re-
ducing the dimensions of matrices rather than vectors, i.e.,
matrices do not need to be preliminarily transformed into
vectors. However, the 2DPCA is approximately equivalent
to the conventional PCA operated only on the row vectors
of matrices [19, 9, 25]. Ye et al. [23] proposed generalized
PCA (GPCA) which reduces the dimensions of both rows
and columns of matrices, i.e., GPCA is a generalization of
2DPCA [21]. Cai et al. [2] proposed Tensor PCA and Ten-
sor LDA; the former is essentially equivalent to GPCA [23].
Ye [22] also proposed generalized low rank approximations
of matrices (GLRAM) which is highly similar to GPCA
[23]. While GPCA [23] assumes that data are of zero mean,
GLRAM [22] does not. Recently, Lu et al. [13] proposed
multilinear PCA (MPCA) which reduces the dimensions of
all modes of higher-order tensors, i.e., MPCA is a general-
ization of GPCA [23] and 2DPCA [21]. Although these ex-
tensions of PCA for vectors to that for higher-order tensors
resolve the problem resulting from the high-dimensionality
of vectors, their tolerance to outliers is limited because they
are formulated as Frobenius norm minimization problems.

This work is motivated by the above observation of
the state-of-the-art PCA techniques. That is, robustifying
MPCA [13] will improve the tolerance of MPCA to out-
liers and avoid the problem of high-dimensionality simul-
taneously. Since the conventional PCA and its extensions
including the above techniques are widely used in CV and
other areas, the robust version of MPCA will increase the
applicability of the PCA techniques in various areas.

In this paper, we propose two methods for robustifying
the MPCA [13] to sample outliers and intra-sample outliers.
For both of them, we derive iterative algorithms on the basis
of the Lagrange multipliers. We experimentally compare
our robust MPCA (RMPCA) with MPCA [13] and show
the effectiveness of the RMPCA.

The rest of this paper is organized as follows. Section
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2 summarizes the MPCA [13]. Section 3 describes our
RMPCA for both sample outliers and intra-sample outliers.
Section 4 illustrates experimental results. Finally, Section 5
concludes this paper.

2. Multilinear Principal Component Analysis

In this section, we summarize the multilinear principal
component analysis (MPCA) [13] and rewrite the objective
function for the MPCA to another form which is suitable
for the robust one described in the subsequent section.

Let {A1, . . . ,AM} be a set of tensors, where Am =
[ami1...iN

] ∈ R
I1×···×IN for m = 1, . . . , M is an N th-

order tensor and ami1...iN
is the (i1, . . . , iN ) element of

Am. The total scatter of these tensors is defined as
ΨA =

∑M
m=1 ‖Am − Ā‖2F , where Ā = [āi1...iN

] =
1
M

∑M
m=1Am and ‖ · ‖F denotes the Frobenius norm.

Let U = {U (1), . . . , U (N)} be a set of matrices, where
U (n) = [u(n)

injn
] ∈ R

In×Jn , Jn ≤ In for n = 1, . . . , N

and u
(n)
injn

is the (in, jn) element of U (n). Then the se-
quence of the n-mode product [7, 1] of Am and UT =
{U (1)T

, . . . , U (N)T }, where U (n)T
denotes the transpose

of U (n), is denoted by

Bm = Am × {UT } (1)

= Am ×1 U (1)T · · · ×N U (N)T
, (2)

where Bm = [bmj1...jN
] ∈ R

J1×···×JN and bmj1...jN
is

the (j1, . . . , jN ) element of Bm, and Am ×n U (n)T
=

[
∑In

in=1 ami1...in...iN
u

(n)
injn

] ∈ R
I1×···In−1×Jn×In+1×···×IN

is the n-mode product of Am and U (n)T
. The MPCA is

formulated as follows:

max
U

ΨB (3)

subj.to U (n)T
U (n) = IJn

, n = 1, . . . , N, (4)

where ΨB =
∑M

n=1 ‖Bm − B̄‖2F , B̄ = 1
M

∑M
m=1 Bm is the

total scatter of {B1, . . . ,BM} and IJn
is the Jn×Jn identity

matrix.

Since ΨA is a constant, we may rewrite (3) as

min
U

ΨA −ΨB, (5)

from which we have another objective function for the

MPCA as follows:

ΨA −ΨB (6)

=
M∑

m=1

∥∥∥Ãm

∥∥∥2

F
−

M∑
m=1

∥∥∥B̃m

∥∥∥2

F
(7)

=
M∑

m=1

∥∥∥Ãm

∥∥∥2

F
−

M∑
m=1

∥∥∥Ãm × {UT }
∥∥∥2

F
(8)

=
M∑

m=1

(∥∥∥Ãm

∥∥∥2

F
− 2

∥∥∥Ãm × {UT }
∥∥∥2

F

+
∥∥∥Ãm × {UT }

∥∥∥2

F

)
(9)

=
M∑

m=1

∥∥∥Ãm −
(
Ãm × {UT }

)
× {U}

∥∥∥2

F
(10)

=
M∑

m=1

∥∥∥Ãm − B̃m × {U}
∥∥∥2

F
(11)

=
M∑

m=1

∥∥∥Am − Ā − B̃m × {U}
∥∥∥2

F
, (12)

where Ãm = [ãmi1...iN
] = Am − Ā and B̃m =

[b̃mj1...jN
] = Bm − B̄.

Unlike in the above Frobenius norm minimization for-
mulation where the mean tensor Ā is obtained analytically,
in the following robust MPCA (RMPCA), Ā, i.e., the robust
mean, must be estimated as well as {B̃} and U .

3. Robust MPCA

The above MPCA is formulated as a minimization of the
sum of the Frobenius norms. Therefore, the MPCA is not
robust to outliers. In this section, we propose two meth-
ods for robustifying the MPCA to sample outliers and intra-
sample outliers.

3.1. RMPCA for Sample Outliers

First, we modify the minimization of (12) as

min
Ā,{B̃m}M

m=1,U

M∑
m=1

ρ
(∥∥∥Am − Ā − B̃m × {U}

∥∥∥
F

)
, (13)

where ρ(x) is a ρ-function for robust M -estimation.
Among several M -estimators including Andrews, bisquare,
Cauchy, and Huber estimators [10], we select the Welsch
estimator for which the ρ-function is given by

ρ(x) = 1− e−αx2
, (14)

because it worked well in our experiments described later.
Let F (Ā, {B̃m}, U) be the objective function in (13) with
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(14). Then we have

F
(
Ā, {B̃m}, U

)
= M −

M∑
m=1

e−α‖Am−Ā−B̃m×{U}‖2

F .

(15)
Since M is a constant, we may rewrite (13) as

max
Ā,{B̃m}M

m=1,U
F̃

(
Ā, {B̃m}, U

)
, (16)

where

F̃
(
Ā, {B̃m}, U

)
= M − F

(
Ā, {B̃m}, U

)
(17)

=
M∑

m=1

e−α‖Am−Ā−B̃m×{U}‖2

F . (18)

The Lagrange function for (16) with (4) is given by

L
(
Ā, {B̃m}, U, {Λ(n)}

)
= F̃

(
Ā, {B̃m}, U

)

+α

N∑
n=1

tr
[
Λ(n)

(
U (n)T

U (n) − IJn

)]
, (19)

where tr denotes the matrix trace and Λ(n) ∈ R
Jn×Jn for

n = 1, . . . , N is a symmetric matrix of which the elements
are the Lagrange multipliers. Then we have the following
necessary conditions for optimality:

∂L

∂Ā = 2α
M∑

m=1

(Cm − Ā
)
e−α‖Cm−Ā‖2

F = 0, (20)

where Cm = Am − B̃m × {U}, and

∂L

∂B̃m

= 2α
(
Ãm − B̃m × {U}

)
× {

UT
}

e−α‖Ãm−B̃m×{U}‖2

F = 0 (21)

for m = 1, . . . , M , and

1
2α

∂L

∂U (n)
=

M∑
m=1

[
Ãm(n) − U (n)B̃

(−n)
m(n)

] (
B̃

(−n)
m(n)

)T

e−α‖Ãm−B̃m×{U}‖2

F + U (n)Λ(n) = 0 (22)

for n = 1, . . . , N , where Ãm(n) and B̃
(−n)
m(n) are the mode-

n matricizing [1] of Ãm and B̃(−n)
m = B̃m ×−n {U} =

B̃m ×1 U (1) · · · ×n−1 U (n−1) ×n+1 U (n+1) · · · ×N U (N),
respectively. We also have

1
α

∂L

∂Λ(n)
= U (n)T

U (n) − IJn
= 0 (23)

for n = 1, . . . , N .

From (20) and (21), we have

Ā =
∑M

m=1 Cme−α‖Cm−Ā‖2

F∑M
m=1 e−α‖Cm−Ā‖2

F

(24)

and
B̃m = Ãm ×

{
UT

}
, (25)

respectively. From (22), we have

U (n) = P (n)
(
Q(n) − Λ(n)

)−1

, (26)

where

P (n) =
M∑

m=1

Ãm(n)

(
B̃

(−n)
m(n)

)T

e−α‖Ãm−B̃m×{U}‖2

F , (27)

Q(n) =
M∑

m=1

B̃
(−n)
m(n)

(
B̃

(−n)
m(n)

)T

e−α‖Ãm−B̃m×{U}‖2

F . (28)

By substituting (26) into (23) we find that

P (n)T
P (n) =

(
Q(n) − Λ(n)

)T (
Q(n) − Λ(n)

)
. (29)

Let
P (n)T

P (n) = V (n)Σ(n)V (n)T
(30)

be a spectral decomposition of P (n)T
P (n), where Σ(n) is

a diagonal matrix of which the diagonal elements are the

eigenvalues of P (n)T
P (n) and V (n) is an orthogonal matrix

of which the columns are the corresponding eigenvectors of

P (n)T
P (n). Then it follows from (29) and (30) that

Λ(n) = Q(n) − Σ(n)1/2
V (n)T

. (31)

Substituting this into (26), we have

U (n) = P (n)V (n)Σ(n)−1/2
. (32)

Consequently, we obtain the following algorithm:
Algorithm 1.

Step 0: Initialize Ā and U as Ā(0) = 1
M

∑M
m=1Am and

U (0) = {U (1,0), . . . , U (N,0)}, where U (n,0) is an or-
thogonal matrix of which the columns are the eigen-
vectors of

∑M
m=1 Ã

(0)
m(n)(Ã

(0)
m(n))

T corresponding to

the largest Jn eigenvalues, where Ã
(0)
m(n) is the mode-

n matricizing of Ã(0)
m = Am − Ā(0). Then initialize

B̃m as B̃(0)
m = Ã(0)

m × {U (0)T } for m = 1, . . . , M .
Initialize the number of iterations as t = 0.

Step 1: Compute U (t+1) = {U (1,t+1), . . . , U (N,t+1)},
where U (n,t+1) is given by (32) into which Ā(t), U (t)

and {B̃(t)
m } are substituted.
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Step 2: For m = 1, . . . , M , compute B̃(t+1)
m by (25) into

which Ā(t) and U (t+1) are substituted.

Step 3: Compute Ā(t+1) by (24) into which
Ā(t), {B̃(t+1)

m } and U (t+1) are substituted.

Step 4: If, for ε > 0, [F̃ (Ā(t+1), {B̃(t+1)
m }, U (t+1)) −

F̃ (Ā(t), {B̃(t)
m }, U (t))]/M < ε, then stop, otherwise

increase t by 1 and go to Step 1.

3.2. RMPCA for Intra-Sample Outliers

Next, we modify the minimization of (12) as

min
Ā,{B̃m}M

m=1,U

M∑
m=1

I1∑
i1=1

· · ·
IN∑

iN=1

ρ (dmi1...iN
) , (33)

where dmi1...iN
= ami1...iN

− āi1...iN
−∑J1

j1=1 · · ·
∑JN

jN=1 b̃mj1...jN
u

(1)
i1j1

· · ·u(N)
iN jN

. Let

G(Ā, {B̃m}, U) be the objective function in (33) with
(14). Then we have

G
(
Ā, {B̃m}, U

)
= Θ−

M∑
m=1

I1∑
i1=1

· · ·
IN∑

iN=1

e−αd2
mi1...iN ,

(34)
where Θ = M

∏N
n=1 In. Since Θ is a constant, we may

rewrite (33) as

max
Ā,{B̃m}M

m=1,U
G̃

(
Ā, {B̃m}, U

)
, (35)

where

G̃
(
Ā, {B̃m}, U

)
= Θ−G

(
Ā, {B̃m}, U

)
(36)

=
M∑

m=1

I1∑
i1=1

· · ·
IN∑

iN=1

e−αd2
mi1...iN . (37)

The Lagrange function for (35) with (4) is given by

L̃
(
Ā, {B̃m}, U, {Λ̃(n)}

)
= G̃

(
Ā, {B̃m}, U

)

+α

N∑
n=1

tr
[
Λ̃(n)

(
U (n)T

U (n) − IJn

)]
, (38)

where Λ̃(n) ∈ R
Jn×Jn for n = 1, . . . , N is a symmetric

matrix of which the elements are the Lagrange multipliers.
Then we have the following necessary conditions for opti-
mality:

∂L̃

∂Ā = 2α

M∑
m=1

(Cm − Ā
)� Em = 0, (39)

where Em = [e−αd2
mi1...iN ] ∈ R

I1×···×IN for m =
1, . . . , M and � denotes the Hadamard product or elemen-
twise product [14] of tensors, and

∂L̃

∂B̃m

= 2α
[(
Ãm − B̃m × {U}

)
� Em

]
× {

UT
}

= 0

(40)
for m = 1, . . . , M , and

1
2α

∂L̃

∂U (n)
=

M∑
m=1

〈(
Ãm − B̃m × {U}

)
� Em,

B̃(−n)
m

〉
{K;K}

+ U (n)Λ̃(n) = 0 (41)

for n = 1, . . . , N , where K = {1, . . . , n−1, n+1, . . . , N}
and 〈·, ·〉{...;...} denotes the contracted product [1] of ten-
sors, and

1
α

∂L̃

∂Λ̃(n)
= U (n)T

U (n) − IJn
= 0 (42)

for n = 1, . . . , N .
From (39) and (40), we have

Ā =

(
M∑

m=1

Cm � Em

)
�H, (43)

where H = [1/
∑M

m=1 e−αd2
mi1...iN ] ∈ R

I1×···×IN , and
(25), respectively. From (41), we have

U (n) = P̃ (n)
(
Q̃(n) − Λ̃(n)

)−1

, (44)

where

P̃ (n) =
M∑

m=1

〈
Ãm � Em, B̃(−n)

m

〉
{K;K}

, (45)

Q̃(n) =
M∑

m=1

〈
B̃(−n)

m � B̃(−n)
m , Em

〉
{K;K}

. (46)

Since (44) is analogous to (26), we can derive the following
equation in the same manner as the derivation of (32):

U (n) = P̃ (n)Ṽ (n)
(
Σ̃(n)

)−1/2

, (47)

where Σ̃(n) is a diagonal matrix of which the diagonal el-
ements are the eigenvalues of (P̃ (n))T P̃ (n) and Ṽ (n) is an
orthogonal matrix of which the columns are the correspond-
ing eigenvectors of (P̃ (n))T P̃ (n).

Consequently, we obtain the following algorithm:

Algorithm 2.
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Figure 1. Input images: the first five images of the 27th person in
the ORL database [15] and a sample outlier.

Step 0: Initialize Ā and U as Ā(0) = 1
M

∑M
m=1Am and

U (0) = {U (1,0), . . . , U (N,0)}, where U (n,0) is an or-
thogonal matrix of which the columns are the eigen-
vectors of

∑M
m=1 Ã

(0)
m(n)(Ã

(0)
m(n))

T corresponding to

the largest Jn eigenvalues, where Ã
(0)
m(n) is the mode-

n matricizing of Ã(0)
m = Am − Ā(0). Then initialize

B̃m as B̃(0)
m = Ã(0)

m × {U (0)T } for m = 1, . . . , M .
Initialize the number of iterations as t = 0.

Step 1: Compute U (t+1) = {U (1,t+1), . . . , U (N,t+1)},
where U (n,t+1) is given by (47) into which Ā(t), U (t)

and {B̃(t)
m } are substituted.

Step 2: For m = 1, . . . , M , compute B̃(t+1)
m by (25) into

which Ā(t) and U (t+1) are substituted.

Step 3: Compute Ā(t+1) by (43) into which
Ā(t), {B̃(t+1)

m } and U (t+1) are substituted.

Step 4: If, for ε > 0, [G̃(Ā(t+1), {B̃(t+1)
m }, U (t+1)) −

G̃(Ā(t), {B̃(t)
m }, U (t))]/Θ < ε, then stop, otherwise in-

crease t by 1 and go to Step 1.

4. Experimental Results

In this section, we experimentally evaluate the perfor-
mance of the proposed algorithms on the ORL face image
database [15]. The ORL database [15] contains face im-
ages of 40 persons. For each person, there are 10 different
face images. That is, the total number of the images in the
database is 400. The size of each image is 112× 92 pixels,
i.e., I1 = 112, I2 = 92 and N = 2. An example of face im-
ages in the database is shown in Fig. 1, where five images
of a person are arranged along with an example of sam-
ple outliers (the rightmost image). Reconstructed images
with MPCA and RMPCA for sample outliers are shown in
Fig. 2. Five reconstructed images from outlier-free data are
shown at the top row in Fig. 2(a), i.e., the clean reconstruc-
tion, where the rightmost image is the mean image of 10
face images of the person shown in Fig. 1. The correspond-
ing zoomed parts of the forehead of the person are aligned
at the bottom row in Fig. 2(a). Reconstructed images with
MPCA and RMPCA for data including sample outliers are
shown in Figs. 2 (b) and (c), respectively. In Fig. 2(b), the
left five reconstructed images and the rightmost mean image

(a)

(b)

(c)

Figure 2. Reconstructed images and (robust) mean images: (a)
outlier-free reconstruction by MPCA, (b) MPCA, (c) RMPCA. In
each subfigure, whole images are aligned at the top row and the
corresponding zoomed parts are aligned at the bottom row.

are disturbed by the sample outlier. On the other hand, in
Fig. 2(c), the left five reconstructed images are less sensitive
to the outlier and the rightmost robust mean image is close
to the outlier-free mean image in Fig. 2(a). In this example,
we set J1 = J2 = 30 for both MPCA and RMPCA, and
α = 10−6 and ε = 10−6 for RMPCA. Although we select
the value of α manually, some self-tuning algorithms [3, 24]
might work well. Let M̃ be the number of sample outliers
per person. Then we set M = 10+ M̃ for each person. Re-
constructed images are computed as Âm = B̃m×{U}+ Ā
for m = 1, . . . , 10. Sample outliers are numbered from 11
to M . Variation in the objective function F̃ until the con-
vergence is shown in Fig. 3, in which the horizontal axis
denotes the number of iterations and the vertical axis de-
notes the value of F̃ at each iteration. Reconstruction errors
calculated with all face images in the ORL database [15]
are shown in Fig. 4, in which we evaluated the errors by the
root mean squared error (RMSE) defined as

RMSE =

√√√√ 1
M

M∑
m=1

∥∥∥Am − Âm

∥∥∥2

F
. (48)

In this figure, the horizontal axis denotes the number of
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Figure 3. Variation in F̃ .
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Figure 4. Reconstruction errors.

Figure 5. Input images including intra-sample outliers.

sample outliers per person and the vertical axis denotes the
RMSE. MPCA and RMPCA are denoted by solid and bro-
ken lines, respectively. The RMSE for RMPCA is lower
than that for MPCA. Although the RMSE for MPCA in-
creases with the number of sample outliers, that for RM-
PCA is almost constant.

An example of face images including intra-sample out-
liers is shown in Fig. 5. In each image, 2% of pixels are out-
liers. In this experiment, we use the MATLAB function ‘im-
noise’ with ‘salt & pepper’ option to generate intra-sample
outliers. Reconstructed images with MPCA and RMPCA
for intra-sample outliers are shown in Figs. 6 (a) and (b),
respectively. At the top row in Fig. 6(a), the left five recon-
structed images and the rightmost mean image are disturbed
by the intra-sample outliers. The corresponding zoomed
parts are aligned at the bottom row. On the other hand, in
Fig. 6(b), the left five reconstructed images and the right-
most robust mean image are less sensitive to the outliers.
In this example, we set α = 10−3 and M = 10. Varia-
tion in the objective function G̃ until convergence is shown

(a)

(b)

Figure 6. Reconstructed images and (robust) mean images: (a)
MPCA, (b) RMPCA. In each subfigure, whole images are aligned
at the top row and the corresponding zoomed parts are aligned at
the bottom row.
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Figure 7. Variation in G̃.

in Fig. 7, in which the horizontal axis denotes the number
of iterations and the vertical axis denotes the value of G̃.
Reconstruction errors evaluated by the RMSE in (48) are
shown in Fig. 8, in which the horizontal axis denotes the ra-
tio of intra-sample outliers in all pixels and the vertical axis
denotes the RMSE. In this figure, MPCA and RMPCA are
denoted by solid and broken lines, respectively. The RMSE
for RMPCA is lower than that for MPCA. In contrast to the
RMSE for RMPCA in Fig. 4, which is almost constant, that
in Fig. 8 increases with the ratio of intra-sample outliers.
This result demonstrates the difficulty in detecting and re-
moving the intra-sample outliers compared to the sample
outliers.

5. Conclusion

We have proposed two robust methods for multilinear
principal component analysis (MPCA): one for sample out-
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Figure 8. Reconstruction errors.

liers and another for intra-sample outliers. For both of them,
we derived iterative algorithms on the basis of the Lagrange
multipliers. Experimental results show that the proposed
methods outperform the original MPCA when datasets con-
tain outliers. Future work will include the robustification of
multilinear discriminant analysis.
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