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Robust Multimodal Representation Learning with

Evolutionary Adversarial Attention Networks
Feiran Huang, Alireza Jolfaei, Ali Kashif Bashir

Abstract—Multimodal representation learning is beneficial for
many multimedia-oriented applications such as social image
recognition and visual question answering. The different modali-
ties of the same instance (e.g., a social image and its correspond-
ing description) are usually correlational and complementary.
Most existing approaches for multimodal representation learning
are not effective to model the deep correlation between different
modalities. Moreover, it is difficult for these approaches to deal
with the noise within social images. In this paper, we propose a
deep learning-based approach named Evolutionary Adversarial
Attention Networks (EAAN), which combines the attention mech-
anism with adversarial networks through evolutionary training,
for robust multimodal representation learning. Specifically, a
two-branch visual-textual attention model is proposed to cor-
relate visual and textual content for joint representation. Then
adversarial networks are employed to impose regularization
upon the representation by matching its posterior distribution
to the given priors. Finally, the attention model and adversarial
networks are integrated into an evolutionary training frame-
work for robust multimodal representation learning. Extensive
experiments have been conducted on four real-world datasets,
including PASCAL, MIR, CLEF, and NUS-WIDE. Substantial
performance improvements on the tasks of image classification
and tag recommendation demonstrate the superiority of the
proposed approach.

Index Terms—Adversarial networks, attention model, evolu-
tionary, multimodal, representation learning.

I. INTRODUCTION

W ITH the advent of the Internet, multimodal data has be-

come increasingly popular in the everyday life of peo-

ple in the past few years. People share photos, write comments,

and watch videos on various Internet sites such as Facebook,

Twitter, and Flickr. Different modalities of multimodal data

usually carry correlational and complementary information.

Learning a multimodal representation to transform multiple

modalities into a joint vector is very useful to extract the fea-

ture needed for further analysis and applications. The learned

representation has been extensively applied to multimedia-

related tasks such as social image classification [1], [2], [3], tag
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recommendation [4], [5], and visual question answer [6], [7].

In the field of social multi-media, the representation learning

of multimodal data is becoming increasingly important and

has also attracted growing research interests.

However, the representation learning of multimodal data

also brings some tough challenges to researchers. First, there

are various manifestations of social images such as visual con-

tent and textual captions. These modalities are characterized by

different statistical properties and exist in heterogeneous fea-

ture spaces. Therefore, the representation learning approaches

should fuse different modalities by effectively bridging the

modal gap. Second, different modalities usually carry comple-

mentary information from each other. It is necessary to extract

comprehensive and non-redundant features from the input

multimodal data. Third, since social images are shared freely

and the corresponding descriptions are written casually, a lot

of noisy information may exist in these multimodal content.

Therefore, the approaches should learn robust representation

to deal with the noise within multimodal data.

In the past few years, there have been a lot of approaches

on multimodal representation learning. These methods can be

generally classified into two types. The first line of research

aims to transform multiple modalities of input data into a

joint embedding vector. Ngiam et al. [8] proposed a bi-

modal deep denoising autoencoder to encode unlabeled data

for multimodal representation. Srivastava et al. [9] employed

a deep boltzmann machine to fuse multiple data modalities

for representation learning. However, the correlation between

different modalities is not fully mined by these methods. The

second strategy of multimodal representation learning projects

different modalities to a shared vector space with a constraint

to capture the cross-modal correlation. DCCA [10], [11] is

an extension of Canonical Correlation Analysis with deep

learning techniques which learns projection of two views by

maximizing cross-view relations. WSABIE [12] and DeVISE

[13] both employed a hinge loss to rank the similarity of

input images-text pairs and project them into separate vectors

with the same embedding size. These approaches are usually

capable of excavating the cross-modal interaction, but they are

not effective to capture the complementary information from

different modalities. Moreover, It is difficult for the two types

of approaches to deal with the noise within social images for

robust representation learning without additional constraints.

On the other side, clues can also be found from the

correlated and sequential characteristics of social images to

learn multimodal representation. First, there exists fine-grained

correlation between different modalities of images and texts.

Take Figure 1 as an example. It can be seen that some specific
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Description

The smiling boy in a yellow T-shirt  is playing 

with a ball at park Nikon D850.

Fig. 1: An example of social image and its description: (1)

the image and its corresponding description fine-granularly

correlated to each other. The words in brown boxes can be

easily found in the image, and the image areas of “ball” and

“boy” cover the main semantics of the corresponding texts.

(2) There exists a lot of noise in the social multimodal data.

For example, “Nikon D850” is the camera model taking this

picture, yet it has no contribute to the representation learning.

words (e.g., “smiling” and “boy”) are more relevant to the

image. For another, the visual areas of ”ball” and ”boy” cover

more semantic information from the corresponding sentence

than other regions. If the fine-grained correlation can be well

parsed, the images and texts are easier to be modeled to

mine the complementary information within multi-modalities.

Attention mechanism has been extensively used as an effective

technique to learn salient features. It has been successfully

applied to many vision and language-related tasks, such as

visual question answering [6], [7], image captioning [14], [15],

and cross-modal retrieval [16], [17]. However, employing the

attention mechanism for multimodal representation learning

still needs further study. Second, since the multi-modalities

of social images are filled with noisy information as shown in

Figure 1, it is necessary to model the uncertainty within social

images during the representation learning process. Generative

adversarial networks (GANs) have emerged recently as a pow-

erful generative learning approach to model the distribution

of data, which benefit many tasks, such as image generation

and style transfer. It has been demonstrated that well-designed

adversarial networks are effective to learn representation for

image [18], [19] and text [20]. However, these models are not

devised for multimodal representation learning against noise.

To deal with the challenges, we propose a novel approach

named Evolutionary Adversarial Attention Networks (EAAN)

for robust multimodal representation learning. Specifically,

a two-branch visual-textual attention model is proposed to

correlate the modalities of image and text fine-granularly.

To make the learned representation more effective, siamese

similarity with an asymmetrical attention strategy is employed

to guide the learning of attention weights. Then adversarial

networks are employed to constrain the representation by

matching its posterior distribution to the given priors. The

adversarial learning model acts as a regularizer that regu-

lates the representation more robust to deal with noise. The

adversarial learning reinforces the learned joint multimodal

representation more robust to deal with noisy information.

Finally, the attention model and adversarial networks are

integrated into an evolutionary training framework for robust

multimodal representation learning. The contributions of this

work can be summarized as follows:

• We investigate the problem of learning multimodal rep-

resentation by excavating the fine-grained correlation and

modeling the uncertainty to deal with noise. Our model

is unsupervised and task independent, which is suitable

for multiple types of data mining tasks.

• We propose a novel approach named Evolutionary Adver-

sarial Attention Networks (EAAN) for joint multimodal

representation learning. To the best of our knowledge,

we are the first to learn multimodal representation com-

bining attention mechanism and adversarial learning with

evolutionary training.

• Extensive experiments have been carried out on four real-

world datasets. The proposed approach makes significant

improvement of performance over state-of-the-art meth-

ods for multimodal representation learning.

This paper improves its preliminary version [21] in terms of

both experimental performance and technique. First, we design

a two-branch visual-textual attention model to learn more

effective representation and employ an asymmetrical attention

strategy to learn the attention weights. Second, we employ

WGAN [22] to replace the original GAN to make the training

more stable. Third, evolutionary algorithm is employed dur-

ing the training process to select the hyper-parameters more

effectively. Fourth, more extensive experiments are conducted

and one more dataset is added to evaluate our method. Finally,

the proposed approach and model settings are presented and

described in more detail.

The remainder of the paper proceeds as follows. Related

work is reviewed in Section II. Next, we define the studied

problem and introduce the proposed EAAN in detail. The

experiments are then elaborated in Section IV. Lastly, we draw

conclusions.

II. RELATED WORK

A. Multimodal Representation Learning

The representation learning of unimodal data has been

broadly studied [23], [24]. With the explosive growth of social

media, increasing interests have been drawn on the multimodal

representation learning. It supports many applications, such as

social image classification [25], visual question answering [6],

[7], and image captioning[14], [26], [15].

At early stage, many statistics-based multimodal represen-

tation learning methods [27], [28], [29] have been proposed.

Blei et al. [27] proposed Corr-LDA to model the joint distri-

bution of multimodal data with corresponding latent Dirichlet

allocation, in which multiple conditional relations between the
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representations of images and texts are found. Rasiwasia et

al. [29] combined semantic abstraction with the encoding of

cross-modal relations to learn representations for retrieval task.

Though these methods have achieved certain performance on

multimodal representation learning, it is difficult for them to

detect the high-level features with shallow structures.

Recently, many deep neural network-based methods have

been proposed for multimodal representation learning. These

approaches can be generally classified into two types. The first

line of research aims to transform multiple data modalities

into a joint embedding vector. The easiest way is to rep-

resent each modality separately and then concatenate them

as the joint representation. However, simple concatenation

of separate representations is easy to result in large length

vector which contains redundant information. Ngiam et al. [8]

proposed a bi-modal deep denoising autoencoder pre-trained

with sparse RBMs to learn multimodal features from unlabeled

data. Srivastava and Salakhutdinov [9] built a deep boltzmann

machine network to fuse multiple data modalities for represen-

tation learning. Suk et al. [30] employed multimodal DBM to

learn feature embedding from 3D patches and then performed

Alzheimers disease classification on imaging data. However,

These methods are not good at capturing the relationships

between different modalities.

The second strategy of multimodal representation learning

projects different modalities to a shared vector space with

a constrain to capture the cross-modal correlation. Feng et

al. [31] proposed a deep model named correspondence auto-

encoder to minimize the correlation loss and representation

learning loss jointly for cross-modal retrieval. DCCA [10],

[11] is a deep learning-based Canonical Correlation Analysis

which learns complex nonlinear projection of two views

by maximizing the cross-view relations. WSABIE [12] and

DeVISE [13] both employed a hinge ranking loss to learn the

transformations of images and texts into a shared representa-

tion space. DSPN [32] uses a two-branch network to combine

ranking constraints with structure preservation constraints for

image-text representation learning. CMDN [33] is proposed

to integrate cross-media and intra-media correlation to learn

shared representations with a two-stage deep framework.

ACMR [34] is proposed to learn modality-independent and

discriminative representations with an adversarial structure for

cross-modal retrieval. However, ACMR is mainly applied to

retrieval task and the adversarial structure is employed to

discriminate the image and text. These methods well exploit

the cross-modal interactions, but they cannot effectively cap-

ture the complementary information from different modalities.

Moreover, these two types of methods both suffer from lack

of additional constraints to deal with the noise within social

images for robust representation learning.

B. Attention Mechanism

Attention mechanism has been extensively introduced to the

field of computer vision [6], [14], [26] and natural language

processing [35], [36], [37].

In machine translation, Bahdanau et al. [35] proposed a neu-

ral machine translation model containing a bidirectional RNN

as the encoder and an attention layer as the decoder to predict

targeting sentence. It can automatically make the alignment of

related words in the source sentence with each predicted word.

Gehring et al. [36] extended the sequence to sequence structure

from RNN to CNN for translation, which made a large im-

provement on training speed. In image classification, Wang et

al. [38] built a residual attention network with both top-down

and bottom-up attention structure to classify images. In image

captioning, Xu et al. [14] employed two types of attentions,

i.e., hard attention and soft attention, to focus on salient

objects while generating output sequence. You et al. [26]

employed a multi-level attention model to semantically select

important concepts and visual regions to predict captions. In

visual question answering, SANs [6] was proposed to build a

stacked attention strategy to predict the answer step by step.

Lu et al. [7] built a co-attention model to predict answers by

jointly reasoning upon image and question attention. Different

from existing attention models, for each social image and its

textual description, our attention model learns the multimodal

embedding by merge these two modalities with deep fusion.

This model well explores the fine-grained relation between the

image and text by two branch attentions, i.e., visual attention

and textual attention. Especially, the visual attention branch is

built to capture the alignment between image regions and the

description while the textual attention branch is built for the

alignment between textual words and the image.

C. Generative Adversarial Networks

Generative adversarial networks (GANs) [39] have been

introduced recently as a new technique of modeling dis-

tributions of data. The core concept of the GANs is the

adversarial training of its two main components, i.e., generator

and discriminator. The generator is used to generate fake data

from a prior sample while the discriminator tries to differ-

entiate fake data from the real data. With a minimax game,

the two networks of generator and discriminator are trained

iteratively against one another. Since the original GANs suffer

the issues of mode collapse, instability, and low quality, some

variants are employed to address these problems. DCGANs

[18] and WGANs [22], [40] were proposed to ease the training

difficulty and avoid the potential issue of mode collapse. GANs

have also been extended to use supervised knowledge. For

instance, conditional GANs [41] were constructed to generate

images with label information.

Due to the powerful ability of GANs, a number of adversar-

ial training algorithms have been proposed recently for repre-

sentation learning [18], [19], [20], [42], [43], [44]. Adversarial

autoencoder [43] is proposed to learn representation from

unlabeled data by matching the posterior of the hidden state

of the autoencoder with a prior distribution. Donahue et al.

[42] proposed bidirectional generative adversarial networks for

unsupervised image feature learning by projecting data back

into the latent space with an additional encoder. Different from

these works, we employ the adversarial learning to make the

learned multimodal representation match a prior distribution,

which acts as a regularizer for robust representation learning.
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Fig. 2: The framework of EAAN. It mainly contains a siamese learning module and an adversarial learning module.

III. MULTIMODAL REPRESENTATION LEARNING

In this section, we first define the studied problem and

outline the framework of EAAN. Then we detail the two

components of EAAN, i.e., visual-textual attention model and

adversarial learning model. Finally, the two components are

integrated for joint multimodal representation learning.

A. Problem Statement

Without loss of generality, we consider two of most com-

mon modalities, i.e., the image and the textual description. Let

V = {V1, ..., Vi, ..., Vn} and T = {T1, ..., Ti, ..., Tn} denote

a set of n images and the corresponding text descriptions

respectively. Then, for each image Vi and text Ti, our goal is to

learn a d-dimensional joint representation Zi. After training,

the generated representation can be applied to various tasks

e.g., multi-label classification and tag recommendation.

Figure 2 illustrates the framework of EAAN. Specifically,

the visual-textual attention model with two branch networks

is proposed to learn the multimodal representation by captur-

ing fine-grained cross-modal correlation. The visual attention

branch is built to capture the alignment between image regions

and the text while the textual attention branch is built for the

alignment between textual words and the image. Then siamese

similarity with an asymmetrical attending policy is employed

to learn the attention weights with pair-wised hinge rank

loss. To deal with the noise within social images, adversarial

learning is then employed to impose a prior distribution

on the learned representation as a regularizer. It makes the

generated multimodal representation considering uncertainty

via the adversarial training between the discriminator and

generator. Through the adversarial process, it is expected that

the learned representation is more consistent with the under-

lying semantics of the raw data with much noisy information.

Finally, the attention model and adversarial learning model are

integrated into an evolutionary learning framework for robust

multimdoal representation learning.

B. Visual-Textual Attention Model

As aforementioned, there exist two types of fine-granularly

cross-modal correlations as shown in Figure 1. Some visual

regions cover more semantics from the corresponding text

while some specific words are more relevant to the image.

We propose a two-branch visual-textual attention model to

excavate these two types of correlations for multimodal rep-

resentation learning. The neural structure of our two-branch

attention model is shown in Figure 3.

1) Visual attention branch: Given an image-text pair

(Vi, Ti), our aim is to discover the salient visual region features

most related to the corresponding description. For image

Vi, we use pretrained deep convolutional neural networks to

extract the region features Ri ∈ R
e×m×m, where e is the

dimension of each region and m×m is the number of regions.

As for the text Ti, we embed each word as pretrained word

embeddings and feed the sequence to an LSTM. Then we use

the last cell’s output as text features Hi ∈ R
h.

To correlate the region features Ri and text features Hi, we

first transform these them into a common vector space and

then fuse them with element-wise multiplication as

R′

i = tanh(WrRi + br), R′

i ∈ R
c×m×m, (1)

H ′

i = tanh(WhHi + bh) · 1, H ′

i ∈ R
c×m×m, (2)

F
(c)
i = R′

i ⊙H ′

i, Fi ∈ R
c×m×m, (3)
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Fig. 3: The neural structure of our two-branch attention model.

where c denotes the dimension of common vector, Wr ∈ R
c×e

and Wh ∈ R
c×h are parameter matrices to be learned, br ∈ R

c

and bh ∈ R
c are bias terms, 1 ∈ R

c×m×m is an all 1 matrix

that broadcasts the dimension of the left term to c×m×m,

and the symbol⊙ indicates an element-wise multiplication or a

Hadamard product. The attention scores are then calculated by

the convolving operation of the merged feature F
(c)
i with the

kernel of radius 1 activated by softmax over all the regions

as

αi = softmax(Wα ∗ F
(c)
i + bα), αi ∈ R

m×m, (4)

where Wα and bα are trainable convolution parameters, ∗
represents the convolving operation, softmax function is used

to normalize attention scores between 0 and 1. In attention map

αi, the attention score of each region is assigned with a value

based on the relational degree the corresponding description.

Intuitively, we consider that the original region feature should

multiply with the attention score at each corresponding visual

region. In such way, the importance of each region can be

taken into account for feature extraction. Then, the attended

region features is computed by the weighted averaging of the

original features of the m×m regions as

R
(a)
i =

m×m
∑

j=1

αi,jRi,j , R
(a)
i ∈ R

e. (5)

Compared to the original visual features, the attended visual

features have a closer reflection of the correlation to the

corresponding description.

2) Textual attention branch: Similarly, we also want to

focus on important words related to the corresponding image.

For the description Ti, we use pre-trained word embeddings

to embed each word and then feed them into a bidirectional

LSTM1 to encode word features as Qi ∈ R
q×l, where q is the

dimension of word feature and l is the length of the text. As

for image Vi, we use pre-trained deep CNNs to extract visual

features Pi ∈ R
p.

1We have also tested LSTM but found that Bi-LSTM behaved better.

To correlate the word features Qi and image features Pi,

we first transform them into a common vector space and then

fuse them with element-wise multiplication as follows:

Q′

i = tanh(WqQi + bq), Q′

i ∈ R
s×l, (6)

P ′

i = tanh(WpPi + bp) · 1, P ′

i ∈ R
s×l, (7)

F
(s)
i = Q′

i ⊙ P ′

i , F
(s)
i ∈ R

s×l, (8)

where s denotes the dimension of common vector, Wq ∈
R

s×q , Wp ∈ R
s×p, br ∈ R

s, and bh ∈ R
s are parameters,

1 ∈ R
s×l is all 1 matrix used to broadcast the dimension

of the left term to s × l. Then attention scores are obtained

by convolving operation of the merged feature F
(s)
i with the

kernel of length 1 activated by softmax over all the words,

as follows:

βi = softmax(Wβ ∗ F
(s)
i + bβ), βi ∈ R

l, (9)

where Wβ and bβ are trainable convolution parameters. In

attention map βi, the attention score of each word is assigned

with a value based on its relevance to the corresponding image.

The attended word features is computed by the weighted

averaging of original features of the l words:

Q
(a)
i =

l
∑

j=1

βi,jQi,j , Q
(a)
i ∈ R

q, (10)

Compared with the original textual features, the attended

word features are more effective to reflect the correlation to

the corresponding image.

3) Siamese Learning: Through the two attention branches,

the attended region features R
(a)
i and attended word features

Q
(a)
i have been obtained. Then, R

(a)
i and Q

(a)
i are input to

a multi-layer perceptron (MLP) to learn the representation of

the multimodal contents Yi.

Yi = mlp(R
(a)
i , Q

(a)
i ), Y

(a)
i ∈ R

d, (11)

where function mlp(·) simulates the neural networks of MLP

and d is the dimension of the generated multimodal represen-

tation. To make the whole procedure in an end-to-end form,
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given the input pair (Vi, Ti), we denote it as a generator

function to obtain the representation as

Yi = g(Vi, Ti; θd), Yi ∈ R
d, (12)

where θd is the parameter of the generator function g(·).
Ideally, we want the two attention networks to assign correct

attention scores on visual regions and textual words for multi-

modal representation learning, i.e., discover the salient visual

region features most related to the corresponding description

and focus on important words related to the corresponding

image. However, no explicit knowledge is available to learn

the alignments. Therefore, to learn the fine-grained correlation

between the image-text pair, we need to make the model

distinguish the relevance and difference between an image and

a text. Motivated by the recent work of visual-textual learning

[13], [45], we employ siamese similarity to guide the training

of the attention model. For each image, we define the negative

text sample as a randomly sampled text which has no relation

to the image. For the image and text pair (Vi, Ti), a negative

text T−

i is first sampled. Then both (Vi, Ti) and (Vi, T
−

i ) are

fed into the attention model. We employ margin ranking loss

to learn the matching scores of the positive sample Ti and the

negative sample T−

i .

Ls(V, T ; θg, θh)

=
n
∑

i=1

max[0,M − h(g(Vi, Ti; θg); θh) + h(g(Vi, T
−

i ; θg); θh)],

(13)

where function h(·) learns the matching scores given the

representation g(Vi, Ti; θg) and g(Vi, T
−

i ; θg) generated from

the attention branches. We use another MLP activated by tanh

to simulate the function h(·). θg and θh are the parameters

shared for both positive and negative samples. This loss

function is intended to ensure that the matching score of the

positive pair (Vi, Ti) is greater than the negative pair (Vi, T
−

i )
such that the fine-grained correlation between the image-text

pair can be captured.

For the positive image-text pairs, the image is closely related

to its corresponding text descriptions. However, it is usually

hard to find the connection between the image and its negative

text sample. Then Eq. (4) and Eq. (9) are not appropriate

for negative pairs to learn attention weights. Therefore, the

calculation of attention weights by Eq. (4) could mislead

the visual attention branch to obtain incorrect alignments

between visual regions and corresponding text for negative

pair (Vi, T
−

i ) (similar for Eq. (9)). To tackle this problem, an

asymmetrical attending policy is adopted to calculate attention

weights:

αi =















softmax(Wα ∗ F
(c)
i + bα) input : (Vi, Ti)

1

m×m
input : (Vi, T

−

i )

(14)

βi =















softmax(Wβ ∗ F
(s)
i + bβ) input : (Vi, Ti)

1

l
input : (Vi, T

−

i )

(15)

Through this approach, it can be ensured that negative

correspondences are neglected and the attention weights for

positive pairs are assigned with reasonable values to find the

cross-modal alignments.

C. Adversarial Learning Model

Since the multiple modalities of social images are filled

with noisy information as shown in Figure 1, it is necessary

to model the uncertainty within social images in the process

of representation learning. Generative adversarial networks

(GANs) [39] have been proved to be of efficacy in learning

representation for image and text [18], [19], [20], [42], [44].

Different from these works, adversarial learning employed in

this work act as a regularizer for robust representation learning,

which makes the learned representation in accordance with

the underlying semantics of the raw data with much noisy

information.

GANs are usually composed of two main components: a

generator g(·; θg) and a discriminator d(·; θd). In our adver-

sarial learning model, g(·; θg) is the visual-textual attention

model which generates representation from multimodal input,

while d(·; θd) learns a discriminating function which maps the

input following the wanted distribution.

We first designate a prior distribution p(Z) to generate real

data, while the generated representation by the attention model

is treated as fake samples. During training, the generator is

trained to generate representation like prior distribution which

is intended to cheat the discriminator, while the discriminator

is built to differentiate the generated representation from prior

(or true) samples. The generator and discriminator form a two-

player game against each other until they reach equilibrium.

We formulate the loss function of the discriminator as

Ld(V, T ,Z; θd)

=−
n
∑

i=1

log(d(Zi; θd)) + log(1− d(g(Vi, Ti; θg); θd)),
(16)

where Zi is a random sample from prior distribution p(Z) and

d(·; θd) denotes the possibility of a sample coming from real

data. θg remains unchanged when discriminator is training. To

deceive the discriminator that the generated representation is

from prior distribution, the generator is intended to reduce the

following loss as

Lg(V, T ,Z; θg) = −
n
∑

i=1

log(d(g(Vi, Ti; θg); θd)), (17)

where θd remains unchanged when the generator is training.

However, the Jenson-Shannon divergence of original GANs

easily fall into the instability problem as stated by [22], [46].

To increase training stability, WGAN [22], [40] is proposed

with Earth Mover distance (EM distance). EM distance can

provide usable and reliable gradient for the loss to achieve

synthesis results more easily with better quality. Therefore, we

employ WGAN for more stable adversarial learning. based on
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original loss of generator (Eq.16) and discriminator (Eq.17),

the updated version for WGAN is then written as

L′

d(V, T ,Z; θd) = −
n
∑

i=1

d(Zi; θd)− d(g(Vi, Ti; θg); θd),

(18)

L′

g(V, T ,Z; θg) = −
n
∑

i=1

d(g(Vi, Ti; θg); θd). (19)

Note that the choice of the prior distribution p(Z) is also

important in adversarial learning. We usually select Gaussian

or Uniform as the prior distribution such as [18], [43], [47]. In

this work, experiments with two types of prior are conducted,

but no significant difference displays. However, different dis-

tributions may show big gap of performance on some specific

tasks, such as prior domain knowledge-rich tasks.

D. Evolutionary Adversarial Attention Networks

As discussed above, the visual-textual attention model is

proposed to excavate the correlation between different modal-

ities and the adversarial learning model is built to regularize

the generated representation becoming robust against noise. To

make the two models trained into a joint learning procedure,

loss Eq.(13) and Eq.(19) are jointly minimized by rewriting

the loss function for the generator as

L
′′

g (V, T ,Z; θg, θh) =

La(V, T ; θg, θh) + σ · L′

g(V, T ,Z; θg) + λ · LL2
(θg, θh),

(20)

where σ and λ are the hyperparameters, and LL2
is an L2-

normalization regularizer to reduce overfitting. Similarly, the

loss of discriminator Eq.(16) is rewritten by adding an L2-

norm regularizer as

L
′′

d (V, T ,Z; θd) = σ · L′

d(V, T ,Z; θd) + λ · LL2(θd). (21)

The generator and discriminator can be trained alternatively

with stochastic gradient descent (SGD) over the shuffled mini-

batches. In the learning step of the generator, the loss function

Eq.(20) is minimized to learn parameters θg and θh. For

the discriminator learning step, the samples from the prior

distribution and the learned representation generated from the

attention model are fed in as input. Then, the parameter set

θd is updated according to the loss function Eq.(21). We use

gsteps and dsteps to represent the number of iterations of gen-

erator and discriminator in each training epoch respectively.

For most of the deep learning models, the choice of hy-

perparameters is conventional done by grid search or man-

ually by the user and often has a significant impact on the

performance of the deep learning algorithm. However, grid

search of hyperparameters for deep neural networks is very

time-consuming, while the efficiency and effectiveness of the

manually searching depends heavily on the starting positions

across different trials. Inspired by recent work [48], [49] on

the evolutionary algorithm on neural networks, we employ

evolutionary learning to select the hyper-parameters for our

model. The main hyper-parameters include the margin M ,

balance parameter σ and λ, the number of iterations gsteps

and dsteps. Each hyperparameter needs to be searched for the

model is regarded as a gene for each individual. We also define

the range and resolution of each gene to focus on the search

space of interest. the population is initialized by sampling the

gene values randomly with the uniform distribution. Then the

model with each individual or hyperparameter set is trained

and the fitness is calculated on the evaluation set. After that,

we use the process of selection, recombination, and mutation

to generate the next generation according to the fitting degrees

of the individuals. Specifically, the selection can directly

inherit the optimized individuals and deliver their genes to

the next generation. Recombination integrates the parents to

form children by simple crossover operations. Mutation is used

to insure that there is a diversity among the population. The

best individual is selected at the last generations. Basically, the

detailed training process of the proposed EAAN is illustrated

in Algorithm 1.

Algorithm 1 Training algorithm of EAAN with step size µ,

using minibatch SGD for simplicity.

Input: mini-batch Images V ,

corresponding mini-batch texts T ,

negative texts sampled from T ,

prior samples Z ,

Output: learned joint multimodal representation generated by

the trained model with the best individual.

1: population ← Initialize()

2: for #generations do

3: repeat

4: for gsteps do

5: θg ← θg − µ · ∇θgL
′′

g (V, T ,Z; θg, θh)

6: θh ← θh − µ · ∇θhL
′′

g (V, T ,Z; θg, θh)
7: end for

8: for dsteps do

9: θd ← θd − µ · ∇θdL
′′

d (V, T ,Z; θd)
10: end for

11: until model converges

12: Evaluate(population)

13: parents ← Selection(population)

14: offspring ← Recombination(parents)

15: population ← Mutation(offspring)

16: end for

IV. EXPERIMENTS

In this section, the proposed EAAN is evaluated with two

tasks, i.e., multi-label classification and tag recommendation,

on four real-world datasets.

A. Experimental Preparation

The experiments are performed on the datasets of PASCAL,

MIR, CLEF, and NUS-WIDE, which are collected from Flickr

and labeled manually. By using the image URLs2 collected

by [50], we crawl the original photos and corresponding

descriptions and tags from Flickr. The details are presented

as follows:

2https://snap.stanford.edu/data/web-flickr.html
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- PASCAL [51] is a widely used dataset for the task of

image classification. It contains 9,963 images, of which

9,474 images can be found in Flickr.

- MIR [52] contains 1,000,000 images, with only 25,000

annotated. Among them, 13,368 images can be found in

Flickr.

- CLEF [53] is a subset of MIR dataset with newly added

labels, which contains 18,000 images. Among them,

4,179 of the annotated images can be found in Flickr.

- NUS-WIDE [54] is a benchmark dataset for various

vision-related tasks. NUS-WIDE has 269,648 images, of

which 226,912 can be found in Flickr.

We remove the images with no groundtruth label or tag. The

titles of images are extracted as the textual content. Next, we

choose the most frequently appeared 1,000 tags as the tag set

for the recommendation experiments. Meanwhile, the image-

text pairs containing no words in the tag set are removed. The

statistics of these datasets are shown in Table I.

TABLE I: Statistics of the datasets.

PASCAL MIR CLEF NUS-WIDE

#image 6,151 5,033 3,821 163,862
#label 20 14 99 81
#label per image 1.9 1.92 4.97 2.35
#tag 1,000 1,000 1,000 1,000
#tag per image 4.62 5.98 5.21 9.63

The images are resized to 224 × 224 with channel RGB

as the visual input. Then VGG19 net [55] pre-trained on

ImageNet challenge dataset [56] is employed. For visual

attention branch, the output features of layer “conv5 4” is

used as the region features, of which the dimensionality is

512 × 14 × 14. This means that there are 14 × 14 regions

need to be attended on an image and each region has 512-

dimensional features. The output of the last hidden layer of

VGG19 is used as the image features for textual attention

branch. As to the texts, we employ GloVe [57] to represent

each word with a 300-D vector. Both LSTM and Bi-LSTM in

the visual-textual attention model are set to have 256 hidden

neurons. The MLP to learn multimodal representation is set

with the network structure of 1024-1024-5123 activated with

tanh. The network structure of MLP in siamese learning is set

as 256−128−1 with tanh activation. For the discriminator of

the framework, it is designed as a three-layer MLP, with the

structure of 512(tanh)− 256(tanh)− 2(sigmoid). The prior

distribution for the adversarial learning is set to be Gaussian

distribution with the standard deviation. The hyper-parameters

of M , σ, λ, gsteps, and dsteps are automatically selected by

evolutionary training.

B. Baselines

We compare our models with state-of-the-art methods in-

troduced below:

• Bimodal-AE [8]: A bi-modal deep denoising autoencoder

to learn multimodal features.

3The number of neurons in the last layer equals to the dimension of the
joint multimodal representation d.

• M-DBM [9]: A deep boltzmann machine model to fuse

multiple data modalities for representation learning.

• Corr-AE [31]: A correspondence autoencoder method

to minimize representation learning error and correlation

learning error jointly.

• DCCA [11]: Deep learning version of CCA which learns

nonlinear projection of two views.

• DSPN [32]: A deep network combining ranking con-

straints with structure constraints to learn representation.

• CMDN [33]: A two stage multi-view framework which

integrates cross-media and intra-media correlation.

Besides, to verify the improvements of our approach com-

pared to our preliminary version AAN [21], we also make a

comparison with AAN in the experimental results.

C. Multi-Label Classification

All the datasets used are multi-labeled with unbalanced class

distribution. In [58], the metrics for multi-label classification

are detailed described. Here we employ macro/micro preci-

sion, macro/micro recall, macro/micro F1-measure and mean

Average Precision (mAP) as evaluating metrics. To ensure a

fair comparison, we randomly split the vectors learned by

different methods with the same ratio of 8:1:1 for training,

validation, and testing sets respectively. Then a common multi-

layer perceptron (MLP) classifier is built for all the methods.

we repeat this process 5 times and present average results.

Experimental results on the 4 datasets are illustrated in table

II. It shows that the proposed EAAN consistently outperforms

other compared methods on all the four datasets. First, from

the results of Bimodal-AE and M-DBM, one can see that the

two models show relatively worse results due to that they

do not fully exploit the nonlinear correlation between differ-

ent modalities. The results of Corr-AE, DCCA, DSPN, and

CMDN indicate that CMDN is the most competitive baseline

among them. However, our model EAAN still makes more

obvious improvements compared with CMDN. It demonstrates

the efficacy of our attention model and adversarial networks

on learning multimodal representation. From the comparison

of AAN (our preliminary model) and EAAN, one can see that

EAAN obtains relatively better metric scores on all the four

datasets. It confirms that the two-branch attention network with

asymmetrical attending policy proposed in the current version

is more effective to excavate the fine-grained correlations

between image and text for representation learning. Note that

we use Bi-LSTM in the textual attention branch because it

shows about 0.1% mAP improvement over LSTM on the

datasets. The performance gap is relatively small thus the

selection of different LSTMs in the textual attention branch

has little effect over the final experimental results.

To further analyze the performance of our model on noisy

data, a subset of images is corrupted with additive Gaussian

noise of standard deviation of σ = 10. Then we follow the

aforementioned learning and classification procedure to report

the results of different multimodal representation learning

methods on the dataset NUS-WIDE. The results are shown

in Figure 4, which indicate that EAAN performs significantly

and consistently better than the baselines. It is worth noting
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TABLE II: Comparison of multi-label classification.

Dataset Model Micro-P Micro-R Micro-F1 Macro-P Macro-R Macro-F1 mAP

PASCAL

Bimodal AE [8] 71.3 34.0 46.0 42.8 39.4 41.0 44.5
Multimodal DBM [9] 70.9 35.4 47.3 41.5 39.1 40.3 45.2
Corr-AE [31] 71.2 34.3 46.2 42.6 37.2 39.7 43.3
DCCA [11] 73.3 37.8 49.9 44.9 42.7 43.8 47.3
DSPN [32] 74.5 40.0 52.1 45.1 44.3 44.7 48.7
CMDN [33] 75.0 40.3 52.4 46.1 45.6 45.8 49.4
AAN [21] 78.9 43.4 56.0 50.1 47.8 49.0 53.4
EAAN 81.2 44.8 57.7 52.1 48.8 50.4 54.7

MIR

Bimodal AE [8] 70.2 69.3 69.7 65.6 65.8 65.7 67.0
Multimodal DBM [9] 69.7 68.9 69.3 65.7 66.6 66.2 68.6
Corr-AE [31] 69.5 68.2 68.9 66.9 65.5 66.2 67.3
DCCA [11] 72.9 72.4 72.6 68.3 66.3 67.3 70.2
DSPN [32] 70.0 74.0 72.0 69.6 68.5 69.1 71.3
CMDN [33] 71.0 74.5 72.7 70.2 68.7 69.4 71.8
AAN [21] 76.9 76.1 76.5 71.5 72.8 72.2 75.3
EAAN 79.0 77.3 78.1 72.9 74.7 73.8 77.1

CLEF

Bimodal AE [8] 51.1 49.3 50.2 40.3 40.0 40.2 34.8
Multimodal DBM [9] 49.5 48.7 49.1 39.5 40.8 40.1 36.6
Corr-AE [31] 49.1 48.2 48.6 41.0 39.3 40.2 35.3
DCCA [11] 53.2 53.1 53.2 42.0 42.7 42.3 40.5
DSPN [32] 51.7 55.0 53.3 43.6 41.9 42.8 39.3
CMDN [33] 51.1 55.0 53.0 45.0 42.6 43.8 39.5
AAN [21] 57.6 55.5 56.5 45.1 46.2 45.7 43.4
EAAN 59.5 57.8 58.7 46.5 47.9 47.2 45.1

NUS-WIDE

Bimodal AE [8] 71.2 51.3 59.7 56.0 49.3 52.5 50.5
Multimodal DBM [9] 71.0 51.9 59.9 53.6 48.6 51.0 51.2
Corr-AE [31] 68.3 49.7 57.5 52.0 47.2 49.5 50.3
DCCA [11] 70.2 50.9 59.0 54.5 48.8 51.5 53.0
DSPN [32] 72.3 52.5 60.8 58.9 49.9 54.0 55.5
CMDN [33] 71.7 52.0 60.3 58.1 49.3 53.3 55.4
AAN [21] 79.0 56.1 65.6 62.4 52.8 57.2 58.3
EAAN 81.4 57.3 67.3 64.7 54.3 59.1 59.8
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1.0Fig. 4: Multi-label classification results (mAP) on NUS-WIDE

with different proportion of corrupted images.

that the margin between EAAN and other methods becomes

larger when there are more images corrupted in the dataset. It

implies that the proposed method is more robust and stable to

learn the joint representation from the multimodal data with

much noisy information. It demonstrates the effectiveness of

adversarial learning in our model to regularize the representa-

tion generating process against uncertainty.

D. Tag Recommendation

We also evaluate EAAN by comparing it with state-of-art

methods on the task of tag recommendation, i.e., recommend

related tags to a given social image. We filter the most

frequent 1,000 tags as the candidate set for recommending.

In practice, there are many noisy tags, e.g., some tags have no

specific meanings, such as “1” and “funny”, some tags have

no relation to the social images, some tags have duplicate

semantics, such as “cat” and “cats”. Thus this task can verify

whether the learned representation is effective and robust for

tag recommendation.

Table III shows the Micro-F1, Macro-F1, and mAP scores

of EAAN and the compared methods on the four datasets.

From the results, it can be concluded that the performance

of EAAN is better than Bimodal AE, M-DBM, Corr-AE,

DCCA, DSPN, and CMDN on all metrics. Since DSPN and

CMDN are state-of-the-art multimodal embedding methods,

it validates the effectiveness of our adversarial visual-textual

attention model for joint multimodal representation learning.

On the other side, these four datasets have different number

of data and instances, thus the improvement of our approach

over compared methods shows the generality of EAAN.

E. Visualization of learned attentions

One advantage of including the attention mechanism is

the ability to visualize what the model “sees”. To better

understand the interpretability of meaningful attention drawn
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TABLE III: Tag recommendation results on four datasets.

Dataset Model Micro-F1 Macro-F1 mAP

PASCAL

Bimodal AE [8] 20.4 17.8 19.1
Multimodal DBM [9] 18.4 17.1 18.3
Corr-AE [31] 19.9 18.7 19.4
DCCA [11] 21.5 20.0 21.0
DSPN [32] 24.2 21.0 22.4
CMDN [33] 22.8 21.3 22.7
AAN [21] 25.1 22.6 24.3
EAAN 28.7 25.1 26.5

MIR

Bimodal AE [8] 17.2 15.4 16.4
Multimodal DBM [9] 19.2 16.1 17.9
Corr-AE [31] 16.8 14.8 16.1
DCCA [11] 20.1 17.5 18.8
DSPN [32] 20.2 18.0 19.5
CMDN [33] 21.0 18.2 19.4
AAN [21] 24.2 20.0 22.2
EAAN 24.3 21.8 23.9

CLEF

Bimodal AE [8] 9.0 6.9 8.2
Multimodal DBM [9] 10.5 8.0 9.2
Corr-AE [31] 9.8 7.7 8.9
DCCA [11] 12.2 8.7 10.8
DSPN [32] 13.8 9.5 12.4
CMDN [33] 13.1 10.9 12.6
AAN [21] 14.7 13.2 14.1
EAAN 15.8 15.1 15.3

NUS-WIDE

Bimodal AE [8] 23.1 20.9 21.3
Multimodal DBM [9] 23.4 22.0 23.2
Corr-AE [31] 23.0 21.9 22.1
DCCA [11] 25.1 21.6 24.3
DSPN [32] 27.1 22.5 24.8
CMDN [33] 26.6 23.2 25.0
AAN [21] 28.8 25.3 28.4
EAAN 31.7 28.4 30.5

from the proposed two-branch attention model, we present four

examples in Figure 5. For the visual attention, similar to [14],

we first up-sample the attention scores and then use a Gaussian

filter. Different from [14], the up-sampled attention scores are

further drawn with a heat map for more colorful visualization.

The final images drawn with attention are the original images

masked by the heat map with the transparency of 0.7. For

the textual attention, we simply red-stroke each word with

the corresponding attention scores. Therefore, if the attention

scores of the words are greater, the words are colored redder.

From the figure, it can be seen that our model draws the

right attention to the images and texts. For the first example,

the sentence “A golfball in the peaceful Lake” is drawn with

greater attentions on the words “golfball” and “Lake” while

the image is also drawn on the more importance regions which

reflect the semantic information of the text. The proposed

attention mechanism makes the relation between multimodal

contents explicit and interpretable, and the fine-grained corre-

lation between the multimodal contents is encoded to obtain

a more effective representation.

F. Parameter Sensitivity

In this subsection, we test the parameter sensitivity of

EAAN and present the results of mAP on the task of multi-

label classification with different parameter settings on NUS-

WIDE. Specifically, we evaluate how different balance param-

eters (σ and λ) and embedding dimensions (d) influence the

experimental results.

No. Original Image-text pair Attended Image Attended text 

1 

 

A golfball in the peaceful Lake 
 

A golfball in the 

peaceful Lake 

2 

 

Flesh-footed shearwater off the east 

coast … 

 

Flesh-footed 

shearwater off 

the east 

coast … 

3 

 

Good Dogs Wearing Tees 

 

Good Dogs 

Wearing Tees 

4 

 

Television Tower and lake 

 

Television 

Tower and lake 

 

Fig. 5: Examples of learned attentions. For each sample, we

present the original image-text pair, the attended image and

text. Red areas indicate the attended regions and red-stroking

are drawn on attended words.

Embedding dimension: We first fix σ = 0.3 and λ = 0.01
and change the dimensionality of the representation. From Fig-

ure 6, it can be seen that better performance can be achieved

at the beginning with a bigger dimension. This is reasonable

because more information can be encoded with more bits.

However, as the embedding dimension continuously boosts,

the performance of the model starts to deteriorate. This is

because that a too large dimension could also introduce noisy

information. Overall, it is important to choose an appropriate

embedding dimension size, and EAAN reaches the best mAP

score at about d = 256.

Balance parameters: In the model, we use σ to regulate

the importance of adversarial learning and λ as a trade-off

for L2-norm regularizer. We fix the dimensionality d = 256
and test the performance with different σ and λ. Based on the

curves in Figure 7, one can see that setting a trade-off term

is needed to reduce overfitting because the model performs

relatively poorly when λ = 0. However, too big L2-norm term

also affects the process of representation learning. For another,

the regulating parameter σ shows a more significant influence

on the performance. When σ = 0, only the visual-textual

attention model is optimized, which means the model is not

capable to learn from adversarial networks. When σ becomes

larger, the model concentrates more on the optimization of

adversarial learning. From the curve, it can be seen that the

best performance is obtained at σ = 0.3 and λ = 0.01.
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Fig. 7: Parameter sensitivity study for the balance parameters

of α and β.

G. Ablation Study

To analyze the effectiveness of the components used in the

proposed model for addressing noise, we ablate the proposed

model and conduct multi-label classification experiments on

both original data and corrupted data. Specifically, we re-train

our method by ablating different components: 1) visual-textual

attention networks (VTA), traditional generative adversarial

networks (GAN), and Wasserstein generative adversarial net-

works (WGAN).

TABLE IV: The ablative results (mAP) on the original NUS-

WIDE and corrupted NUS-WIDE.

Ablation Model NUS-WIDE Corrupted NUS-WIDE

SM 53.1 47.7
VTA 59.4 54.2
VTA+GAN 59.6 56.6
VTA+WGAN 59.8 57.3

The ablation results (mAP) for the task of multi-label

classification on the original NUS-WIDE and corrupted NUS-

WIDE are shown in Table IV. The simple model (SM) is a

simple version of our method by changing the two kinds of

attention mechanism with two average pooling layers. From

the results, one can see that VTA outperforms SM by over

6% on the metric of mAP. It validates that the visual-textual

attention model is useful to exploit the correlation for joint

representation learning. Both VTA+GAN and VTA+WGAN

outperforms VTA by employing the generative adversarial net-

works to regularize the representation for uncertainty learning.

Especially, one can see that the adversarial learning behaves

more effective on the corrupted NUS-WIDE than original

dataset. By comparing the two types of GANs, VTA+WGAN

shows slight improvements over VTA+GAN. The reason is

that WGAN supplies for more stable and effective training.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a multimodal representation

learning method named Evolutionary Adversarial Attention

Networks. It combines the attention mechanism with the

adversarial networks through evolutionary training to learn

the representation more effectively and robustly. Specifically, a

two-branch visual-textual attention model with siamese learn-

ing is proposed to exploit the fine-grained correlation between

different modalities. Then the adversarial learning model is

employed to regularize the representation generated by the

attention model. Next, the two models are optimized jointly

in a holistic evolutionary learning framework to learn the

representation. We evaluate our approach on four real-world

datasets with two tasks. The results demonstrate the efficacy

of the proposed EAAN on learning robust representation for

multimodal data.

In the future, we want to generalize our method to other

types of multimodal data such as voice and videos. Besides,

we will explore how to fuse other information, e.g., the social

links among images and the relationship among image owners,

for more effective learning for multimodal representation.
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