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Abstract

In this paper we tackle a variant of the job shop scheduling problem with
uncertain task durations modelled as fuzzy numbers. Our goal is to simul-
taneously minimise the schedule’s fuzzy makespan and maximise its robust-
ness. To this end, we consider two measures of solution robustness: a pre-
dictive one, prior to the schedule execution, and an empirical one, measured
at execution. To optimise both the expected makespan and the predictive
robustness of the fuzzy schedule we propose a multiobjective evolutionary
algorithm combined with a novel dominance-based tabu search method. The
resulting hybrid algorithm is then evaluated on existing benchmark instances,
showing its good behaviour and the synergy between its components. The
experimental results also serve to analyse the goodness of the predictive ro-
bustness measure, in terms of its correlation with simulations of the empirical
measure.
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1. Introduction

Operations scheduling is one of the most critical issues in manufacturing
and production systems, as well as in information processing environments.
The importance of scheduling as a research topic is undeniable, both as a
source of interesting complex combinatorial optimisation problems and as
a field with multiple real applications in industry, finance, welfare, etc. In
particular, shop problems in their multiple variants— for instance, incorpo-
rating flexibility, operators or energy efficiency— can model many situations
which naturally arise in manufacturing environments [30, 34, 52, 60].

Unfortunately, classical scheduling cannot model many practical situa-
tions due to the fact that project decisions usually have to be made in ad-
vance, when activity durations are still highly uncertain. A great variety
of approaches have been considered to deal with these real-life situations,
as can be seen for instance in [36]. Fuzzy sets have contributed to en-
hancing the applicability of scheduling, helping to bridge the gap between
classical techniques and real-world user needs. They have been used both for
handling flexible constraints and uncertain data [20, 65, 69]. They are also
demonstrating to be an interesting tool for improving solution robustness, a
much-desired property in real-life applications [43, 56].

When there is uncertainty in some of the input data, robustness becomes
an important factor to be taken into account. The better-known approaches
to robustness, based on min-max or min-max regret criteria, aim at con-
structing solutions having the best possible performance in the worst case
motivated by practical applications where an anticipation of the worst case
is crucial [2, 43, 68]. However, this kind of approach may be deemed as too
conservative in some cases where the worst case is not that critical and in-
stead an overall acceptable performance is preferred [42]. Here, we take an
approach that might be more adequate in these situations.

Clearly, when the improvement in robustness must not be obtained at the
cost of loosing performance quality in the solutions, we face a bi-objective
scheduling problem. In general there is a growing interest in multiobjective
optimisation for scheduling and, given its complexity, in the use of meta-
heuristic techniques to solve these problems, as can be seen in [5, 14, 26, 37]
among others. In particular, the multiobjective fuzzy job shop problem is re-
ceiving an increasing attention, mostly to optimise objective functions related
to makespan and due-date satisfaction. Existing proposals include genetic
algorithms [27, 64], differential evolution algorithms [38], or hybrid strategies
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like the genetic simulated-annealing algorithm from [68]. Interestingly, the
latter contemplates finding both robust and satisfactory schedules, although
the robustness optimisation criterion is based on the worst-case approach.

In the single-objective case, it is common to hybridise evolutionary al-
gorithms with local search to produce memetic algorithms, which bene-
fit from the synergy between their components to provide a better search
capacity. It is possible to find various multiobjective memetic algorithms
(MOMAs) in the literature, some of them applied to manufacturing prob-
lems [12, 13, 39, 51, 62]. However, according to [49], the number of mul-
tiobjective local search algorithms proposed so far is still reduced. In fact,
the main difficulty in designing multiobjective memetic algorithms is the
implementation of the local search, which essentially is a single-objective
optimisation technique. Some multiobjective memetic algorithms resort to
scalarisation methods to guide the local search towards concrete areas of the
Pareto front, for instance [39, 40, 51]. Other MOMAs use instead accep-
tance criteria for the local search based on Pareto-dominance [44, 47, 62].
In most cases, the local search method uses a hill-climbing strategy. On the
other hand, in [41] a multiobjective flexible job shop scheduling problem is
solved not with an evolutionary algorithm but a combination of tabu search,
based on the TSAB from [53] and only for makespan minimisation, and path
relinking.

In the following we tackle the fuzzy job shop problem, where uncertainty
in task durations is modelled using fuzzy numbers. After introducing the
problem in Section 2, in Section 3 we give a precise definition of two ro-
bustness measures based on the average behaviour across all possible cases:
an a-priori measure to be evaluated in constant time from the predictive
schedule, and an a-posteriori measure, to be evaluated at the moment of
executing the schedule or, in the absence of a real execution, by a surrogate
obtained with Monte-Carlo simulations. In Section 4 we propose a hybrid
method to find non-dominated solutions with respect to the makespan—the
total time needed to complete all jobs— and the a-priori robustness measure.
This algorithm combines a multi-objective evolutionary algorithm with a new
dominance-based tabu search as iterative improvement method. In Section 5,
we report and analyse results of an experimental study which contemplates
the synergy between the method components, the performance of the pro-
posed method and the relation between both robustness measures. Finally,
some conclusions are given in Section 6.
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2. The fuzzy job shop scheduling problem

The job shop scheduling problem, also denoted JSP, consists in schedul-
ing a set of jobs {J1, . . . , Jn} on a set of physical resources or machines
{M1, . . . ,Mm}, subject to a set of constraints. There are precedence con-
straints, so each job Ji, i = 1, . . . , n, consists of m tasks {θi1, . . . , θim} to be
sequentially scheduled. Also, there are capacity constraints, whereby each
task θij requires the uninterrupted and exclusive use of one of the machines
for its whole processing time pij. A feasible schedule is an allocation of start-
ing times for each task such that all constraints hold. The objective is to
find a schedule which is optimal according to some criterion, most commonly
that the makespan is minimal.

2.1. Uncertain durations

In real-life applications, it is often the case that the exact processing time
of tasks is not known in advance. However, based on previous experience, an
expert may be able to estimate, for instance, an interval of possible values for
the processing time or its most typical value, and he/she may even be able to
assess whether some values in the interval appear to be more plausible than
others. This naturally leads to modelling such durations using fuzzy inter-
vals or fuzzy numbers, which have been extensively studied in the literature
(cf. [22]). A fuzzy interval A is a fuzzy set on the reals (with membership
function µA : R → [0, 1]) such that its α-cuts Aα = {u ∈ R : µA(u) ≥ α},
α ∈ (0, 1], are intervals. A fuzzy interval is a fuzzy number if its α-cuts (de-
noted [aα, aα]) are closed, its support A0 = {u ∈ R : µA(u) > 0} is compact
(closed and bounded) and there is a unique modal value u∗, µA(u∗) = 1.
Clearly, real numbers can be seen as a particular case of fuzzy ones.

The simplest model of fuzzy interval is a triangular fuzzy number or TFN,
using an interval [a1, a3] of possible values and a modal value a2 in it. For a
TFN A, denoted A = (a1, a2, a3), the membership function takes the follow-
ing triangular shape:

µA(x) =











x−a1

a2−a1
: a1 ≤ x ≤ a2

x−a3

a2−a3
: a2 < x ≤ a3

0 : x < a1 or a3 < x

(1)

If TFNs are to be used to extend the job shop to handle uncertainty, two
issues must be addressed: first, how the arithmetic operations of addition and
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maximum are to be extended to work with TFNs and, second, the precise
meaning of “minimal makespan” when such makespan is a TFN.

2.1.1. Arithmetic of TFNs

In the fuzzy job shop, we essentially need two arithmetic operations on
fuzzy numbers, the sum and the maximum. These are obtained by extend-
ing the corresponding operations on real numbers using the Extension Prin-
ciple. However, computing the resulting expression is cumbersome, if not
intractable; also, the set of TFNs is not always closed under the resulting
operation. For the sake of simplicity and tractability of numerical calcula-
tions, it is fairly common in the literature, following [25], to approximate the
results of these operations by interpolation, evaluating only the operation
on the three defining points of each TFN. It turns out that the sum and its
approximation coincide, so for any pair of TFNs A and B:

A + B = (a1 + b1, a2 + b2, a3 + b3). (2)

Regarding the maximum, we have:

max(A,B) ≈ maxI(A,B) = (max(a1, b1),max(a2, b2),max(a3, b3)). (3)

The approximation maxI has been widely used in the scheduling literature,
from earlier works [25, 46] to more recent ones [55, 68], to mention but a few.
Additionally, some arguments can be given to support this approximation.

First, for any two fuzzy numbers A and B, if f is a bivariate continuous
isotonic function, that is, f : R2 → R such that for any u ≥ u′ and v ≥ v′

it holds that f(u, v) ≥ f(u′, v′), then F = f(A,B) is another fuzzy number
such that Fα = [f(aα, bα), f(aα, bα)]. Computing f(A,B) is then equivalent
to computing f on every α-cut. In particular, the addition and the maximum
are continuous isotonic functions, so they can be calculated by evaluating two
sums or maxima of real numbers for every value α ∈ [0, 1]. If seems then
natural to approximate the maximum by the TFN that results from using
linear interpolation, evaluating Fα only for certain values of α (as proposed
for 6-point fuzzy numbers in [25]). Given that the defining values (a1, a2, a3)
of a TFN A are such that A0 = [a1, a3] and A1 = [a2, a2], maxI in (3)
corresponds to such an interpolation for α = 0 and α = 1.

Secondly, if F = max(A,B) denotes the maximum of two TFNs A and B

and G = maxI(A,B) its approximated value, then F = G if A and B do not
overlap and, in any case, it holds that ∀α ∈ [0, 1], f

α
≤ g

α
, fα ≤ gα. The
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approximated maximum G is thus a TFN which may artificially increase the
value of the actual maximum F , while maintaining the support and modal
value, that is, F0 = G0 and F1 = G1.

Unless otherwise stated and for the sake of a simpler notation, we shall
simply write max when referring to the interpolated maximum maxI .

2.1.2. Ordering TFNs

For a given fuzzy schedule, the makespan Cmax (the completion time of
the last task to be executed) is a TFN; if several schedules are available, the
“best” one would be the one with minimal makespan. Deciding which is the
optimal schedule thus requires comparing fuzzy numbers, but unfortunately
no natural total order exists for them. Numerous ranking methods have
been and keep being proposed in the literature, and several have been used
in the field of fuzzy scheduling (cf. [9] and [1, 20]). Here, we shall adopt an
ordering based on expected values, analogously to what is done in stochastic
scheduling approach.

Let A be a TFN, its expected value is given by:

E[A] =
1

4
(a1 + 2a2 + a3). (4)

This expression is obtained following different approaches: as the credibilistic
expectation of the fuzzy variable underlying A [50], as the expected value of
a fuzzy number based on random sets [35], as the generative expected value
induced by the evidence A [11], as the centre of the mean value of A [23] and
as the expected value of the so-called pignistic probability distribution that
is the centroid of the set of probabilities P(ΠA) dominated by the possibility
measure associated with A [18].

The expected value can be used to define an index-based ranking method;
in particular, it induces a total ordering ≤E in the set of fuzzy intervals [25],
where for any two fuzzy intervals A,B A ≤E B if and only if E[A] ≤ E[B].
Notice that ≤E coincides with several other ranking methods from the litera-
ture which are not based on expected values, as highlighted in [57]. Addition-
ally, a recent numerical study [9] suggests that, for TFNs, the ranking based
on the expected value is very similar to seven more ranking methods, in the
sense the ordering they induce in a sample of TFNs is strongly correlated
(see [9] for further detail).

Interestingly, it is also possible to establish a relationship between the
ranking method based on expected values and classical interval comparison
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in the light of imprecise probabilities [17, 19]. In particular, it comes down to
using Hurwicz criterion for classical interval comparison on upper and lower
expectations derived from A. This provides us with an interpretation for
comparisons based on ≤E as those corresponding to a decision maker who
keeps an equilibrium between pessimism and optimism.

In summary, with the expected value approach, not only are we taking
an analogous stance to stochastic scheduling, but we are also modelling the
behaviour of a moderate decision maker as well as taking into account many
other ranking methods from the literature, either because they fully coincide
with ≤E for TFNs or because they yield very similar orderings to it.

The problem that results from modelling uncertain processing times as
TFNs will be referred to as fuzzy job shop problem or FJSP in short. It
corresponds to what is called fuzzy JSP with fuzzy processing time in [1],
where different extensions of JSP using fuzzy sets, all of them receiving the
generic name “fuzzy job shop” in the literature, are classified and reviewed.

3. Robust scheduling

A fuzzy schedule does not provide exact starting times for each task.
Instead, it gives a fuzzy interval of possible values for each starting time,
provided that tasks are executed in the order determined by the schedule. In
fact, it is impossible to predict what the exact time-schedule will be, because
it depends on the realisation of the task’s durations, which is not known yet.
This idea is the basis for a semantics for fuzzy schedules from [31] by which
solutions to the fuzzy job shop should be understood as a-priori solutions,
also called baseline or predictive schedules in the literature [36]. When tasks
are executed according to the ordering provided by the fuzzy schedule we
shall know their real duration and, hence, obtain a real (executed) schedule,
the a-posteriori solution with deterministic times. Clearly, it is desirable that
a fuzzy solution yields reasonably good executed schedules at the moment of
its practical use, in clear relation with the concept of schedule robustness.

Roughly speaking, according to [3] a schedule is said to be robust if it
minimises the effect of executional uncertainties on its primary performance
measure, the makespan in our case. This straightforward definition may, how-
ever, be subject to many different interpretations when it comes to specifying
robustness measures [63]. In this work, we will consider only uncertainties
in task processing times and distinguish between a-priori and a-posteriori
robustness measures. We consider the a-priori robustness to be the one that

7



can be measured in advance from the predictive schedule. We may say this
is a prediction on the “real” robustness of the schedule. The a-posteriori
robustness would then be the real robustness of the schedule, measured af-
ter executing it in a real environment. In the following, we give a precise
definition of a measure for each kind of robustness.

It is worth noticing that the approach to robustness taken here is different
from the better-known approach from combinatorial optimisation, based on
min-max or min-max regret criteria, which aims at constructing solutions
having the best possible performance in the worst case [2]. The study of
such criteria is motivated by practical applications where an anticipation
of the worst case is crucial and there already exist proposals to translate
it to the fuzzy framework [43, 68]. However, the min-max approach may
be deemed as too conservative in some cases where the worst case is not
that critical and an overall acceptable performance is preferred [42]. It is
in these situations where an approach such as the one proposed here might
be more adequate. Also, more classical approaches measure robustness as a
deviation from the optimal solution on each possible case, thus assuming that
such optimal solution can indeed be found. Unfortunately, this is a somewhat
unrealistic assumption when dealing with complex problems such as job shop
(even in its deterministic version). Our approach takes the alternative stance
of measuring deviations between the prediction and the real execution (be it
optimal or not).

3.1. A-priori measure

Given that a predictive schedule provides a most plausible value for the
makespan (C2

max), we propose to interpret the a-priori robustness as the
maximum deviation that the makespan of the executed schedule may suffer
with respect to this value. Thus, we define the a-priori robustness measure,
denoted RobD, as the maximum possible difference between the modal value
C2

max and the bounds of the support of the fuzzy interval Cmax, as follows:

RobD = max{C2
max − C1

max, C
3
max − C2

max}. (5)

Obviously, the smaller this difference, the better the robustness.
It is easy to see that RobD thus defined measures the maximum possi-

ble difference between the makespan of a real execution and the most likely
estimated makespan value. Indeed, as mentioned above, the First Decompo-
sition Theorem ensures that the predicted makespan Cmax (a TFN obtained
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time units

Cmax

J1 θ1,1 θ1,2

J2 θ2,1 θ2,2

J3 θ3,1 θ3,2

Fuzzy schedule
Cmax,pred

Real
environment

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J1 θ11 θ12

J2 θ21 θ22

J3 θ31 θ32

time units

Real schedule
Cmax,ex

θ11, θ21, θ31, θ22, θ32, θ12

Task ordering

prediction error? (ǫ)

Figure 1: Graphical representation of the a-posteriori robustness measure (ǫ-robustness).

using the sum and the approximated maximum) is such that its support con-
tains all the exact makespan values resulting from all possible realisations of
the schedule. Interestingly, for the particular case of triangular fuzzy num-
bers, RobD coincides with the entropy of Cmax as defined in the setting of
credibility theory [48].

3.2. A-posteriori measure

Regarding the a-posteriori robustness, we shall adopt the concept of ǫ-
robustness proposed in [6] for stochastic scheduling, already adapted to the
fuzzy open shop and fuzzy flexible job shop in [56] and [57] respectively.
This definition states that a predictive schedule is considered to be robust
if the quality of the eventually executed schedule is close to the quality of
the predictive schedule. In particular, for the fuzzy job shop, a predictive
schedule with makespan value Cmax,pred (a TFN) is ǫ-robust for a given ǫ if
the objective value Cmax,ex of the eventually executed schedule (a real value)
is such that:

(1 − ǫ) ≤
Cmax,ex

E[Cmax,pred]
≤ (1 + ǫ) (6)

or, equivalently,
|Cmax,ex − E[Cmax,pred]|

E[Cmax,pred]
≤ ǫ. (7)

That is, the relative error of the estimation made by the predictive schedule
(i.e. its expected makespan) is bounded by ǫ. Obviously, the smaller ǫ is,
the better.

Figure 1 illustrates this definition of ǫ-robustness, where the idea is to
measure the deviation between the performance predicted by the fuzzy sched-
ule and the actual performance obtained during execution (assuming that
operations are executed in the order established by the fuzzy schedule).
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Notice however that this definition requires a real execution of the prob-
lem which may not always be available. In fact, in the literature it is very
common to use synthetic problems for which no real execution exists. In
this case we propose to run a Monte-Carlo simulation to provide a surrogate
of the ǫ-robustness measure. Specifically, given a fuzzy instance, we may
generate a sample of K possible realisations (also called scenarios) of that
instance by assigning an exact duration to each task, that is K deterministic
instances on which we can evaluate the ǫ-robustness of the solution. Now
for each realisation k = 1, . . . , K, let Cmax,k denote the exact makespan ob-
tained by executing tasks according to the ordering provided by a predictive
schedule. Then, the average ǫ-robustness of the predictive schedule, denoted
ǫ, is calculated as:

ǫ =
1

K

K
∑

k=1

|Cmax,k − E[Cmax]|

E[Cmax]
, (8)

where E[Cmax] is the expected makespan estimated by the predictive sched-
ule. The process followed to compute the ǫ value is illustrated in Figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time units

Cmax

J1 θ1,1 θ1,2

J2 θ2,1 θ2,2

J3 θ3,1 θ3,2

Fuzzy Cmax

Monte-Carlo

simulation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J1 θ11 θ12

J2 θ21 θ22

J3 θ31 θ32

time units Cmax,1

. . . . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

J1 θ11 θ12

J2 θ21 θ22

J3 θ31 θ32

time units Cmax,k

Surrogate robustness: ǫ = 1
K

∑K

k=1
|Cmax,k−E[Cmax]|

E[Cmax]

θ11, θ21, θ31, θ22, θ32, θ12

Task ordering

Figure 2: Graphical representation of the surrogate ǫ-robustness measure.

Clearly, a crucial factor in this method is the way in which we determine
crisp durations for the tasks. This is done by simulating crisp durations for
tasks following a probability distribution that is consistent with the possi-
bility distribution µA defined by each fuzzy duration A. In [56], the authors
use a simple renormalisation technique for possibility-probability transforma-
tion, consistent in dividing the membership function µA by the area under
the triangle. However, this technique can be objected to: according to [18],
it is arbitrary, since the obtained probability may fail to belong to P(µA),
the set of probability measures dominated by µA. In consequence, here we
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shall consider two alternative approaches to obtain a probability distribution
for the simulation.

The first approach consists in considering the uniform probability distri-
bution that is bounded by the support of the TFN; we shall refer to resulting
simulation as “Scenario I”. This transformation is motivated by several re-
sults from the literature (see [4, 21]) that justify the use of TFNs as fuzzy
counterparts to uniform probability distributions and model-free approxima-
tions of probability distributions with bounded support.

The second method consists in taking the probability distribution ob-
tained from each fuzzy duration after applying the pignistic transformation
obtained by considering cuts as uniformly distributed probabilities [24]. This
is the probability one would obtain from the membership function of a fuzzy
duration applying a generalised version of the Insufficient Reason Principle
by Laplace. The probability distribution thus obtained is much more “fo-
cused” on the modal value, in the sense that it gives high probability to
values close to the mode and very low probability to values at the extreme of
the support interval. We shall refer to the simulation that results from this
transformation as “Scenario II”

4. The multiobjective approach

It is easy to find in the literature many works on scheduling that assume a
deterministic setting and aim at optimising classical objective functions such
as makespan or tardiness. However, when there is uncertainty in some of
the input data, solution robustness becomes an important factor to be taken
into account. Indeed, an optimal solution found for an ideal deterministic
scenario (for instance, assuming that all durations take their modal value)
may be of little or no use when it is executed if changes in the input data affect
its real performance. Therefore, our aim in this work is to optimise both a
performance or quality function as well as the robustness of the solution with
respect to that function.

Clearly, robustness measures such as those defined in Section 3 are de-
pendent on the performance function. Therefore we opt for an optimisation
strategy that allows us to optimise both the quality function and the as-
sociated robustness measure simultaneously. Specifically, there will be an
objective function related to performance, the expected makespan E[Cmax],
and an objective function related to robustness, the a-priori measure RobD.
Ideally, the surrogate of the a-posteriori measure ǫ should be used, but the
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fuzzy job shop problem instance

a1 a3a2

uncertain duration

A = (a1, a2, a3)

MOEA + DBTS

fuzzy schedule

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

time units

Cmax

J1 θ1,1 θ1,2

J2 θ2,1 θ2,2

J3 θ3,1 θ3,2

Objective 1:
Performance E[Cmax]

Objective 2:
Robustness RobD

Figure 3: Flow of information of the proposed algorithm.

simulations required to compute its value translate into an excessive compu-
tational cost, in contrast with the constant time required by RobD.

To optimise the two objective functions, we shall take a dominance-based
approach. In general, for a minimisation problem with fi, i = 1, . . . , n objec-
tive functions, a solution s is said to be dominated by a solution s′, denoted
s′ ≻ s iff for each objective function fi, fi(s

′) ≤ fi(s) and there exists at
least one objective function such that fi(s

′) < fi(s). Our goal will then be
to find non-dominated solutions to the FJSP with respect to E[Cmax] and
RobD. To achieve this, we propose a dominance-based hybrid method, com-
bining a multiobjective evolutionary algorithm (MOEA) with a dominance-
based tabu search (DBTS). Figure 3 illustrates the flow of information of
the resulting method, which receives as input a problem instance with fuzzy
numbers as task durations and returns a fuzzy schedule, for which the two
objective functions E[Cmax] and RobD are evaluated.

4.1. Multiobjective evolutionary algorithm

Our MOEA is based on the well-known NSGA-II template for a
dominance-based evolutionary algorithm [15]. Roughly speaking, an initial
population P0 is randomly created and evaluated and then the algorithm iter-
ates over a number of generations, keeping a set of non-dominated solutions.
At each iteration i a new population Off(Pi) is built from the current one
Pi by applying the genetic operators of selection and recombination and a
replacement strategy is applied to obtain the next generation Pi+1. Finally,
the algorithm stops if no solution belonging to the set of non-dominated
solutions is removed from this set after maxMOEA iterations.

4.1.1. Representation

Solutions are codified into chromosomes using permutations with re-
peated elements, as introduced in [7] for the JSP. This is a permuta-
tion of the set of tasks, each being represented by its job number. For
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example, if we have a problem with 3 jobs: J1 = {θ11, θ12}, J2 =
{θ21, θ22, θ23, θ24}, J3 = {θ31, θ32, θ33}, then a topological order of tasks
π = {θ21, θ11, θ22, θ31, θ23, θ32, θ33, θ24, θ12} is represented by the sequence v =
(2 1 2 3 2 3 3 2 1). With this encoding, every feasible processing order has
a unique associated permutation.

A given chromosome is evaluated by generating an associated schedule
and then computing the pair of fitness values formed by the makespan ex-
pected value and the a-priori robustness. To do this, each task is sched-
uled using an insertion strategy following the sequence given by the chromo-
some [58]. More precisely, given a task θij that is to be scheduled, we define
a feasible insertion interval as a time interval [tS, tE] in which the machine
required by θij is idle and such that θij can be processed within that time in-
terval without violating precedence constraints. In our case, this means that
for all three components k = 1, 2, 3 of the TFN it holds that tkS+pkij ≤ tkE, and
tkS ≥ Ck

i(j−1), where Ci(j−1) denotes the completion time of the predecessor in

the job θi(j−1) (if j = 0, Ci(j−1) is taken to be the TFN (0, 0, 0)). Then, task
θij is scheduled with starting time Sij, where Sij is the smallest tS that can
be found, and hence its completion time is Cij = Sij + pij.

4.1.2. Genetic operators

In the selection phase all chromosomes are randomly grouped into pairs,
and then each of these pairs is mated to obtain two offspring. For the mat-
ing we have considered three of the most common crossover operators for
the JSP : the Job Order Crossover (JOX), the Generalized Order Crossover
(GOX) and the Generalized Position Crossover (GPX) [8]. In order to pre-
serve the diversity of individuals inside the population and prevent the algo-
rithm from getting stuck in local optima, three different mutation strategies
are also introduced: swap, reverse and insertion mutation [66].

4.1.3. Replacement strategy

The replacement strategy is a key factor in MOEA algorithms. It es-
tablishes how population Pi of size N and population Off(Pi) that results
from applying selection and mating to Pi are combined to generate the new
population Pi+1 for the next iteration of the algorithm. Here we adopt a
strategy based on the non-dominated sorting approach with diversity preser-
vation from [15]. Initially, for each individual j in the pool Pi ∪ Off(Pi) a
non-domination rank (rank(j)) and a crowding distance (dist(j)) are calcu-
lated. The former sorts the pool into different non-domination levels while
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the latter estimates the density of solutions in the area of the non-domination
level where the individual lies. Population Pi+1 is then formed by the best
N individuals from the pool Pi ∪ Off(Pi) according to the lexicographical
order defined by (rank, dist). That is, solutions belonging to a lower (bet-
ter) non-domination rank are preferred and, between two solutions in the
same non-dominance level, we prefer the solution located in the less crowded
region.

In order to provide greater diversity to the algorithm, we have included
an additional step in the above strategy. Specifically, we propose to start
by removing from the pool of individuals Pi ∪ Off(Pi) those which are re-
peated, in the sense that there exists in the pool at least another individual
having identical values for all objective functions. Only after this elimina-
tion is the above strategy based on (rank, dist) applied. In the case that
such elimination causes the pool to contain less than N individuals, all the
non-repeated individuals pass onto the next generation Pi+1, which is later
completed with the best repeated individuals according to their rank level
and crowding distance.

4.2. Dominance-based tabu search

Tabu search (TS) is an advanced local search technique, proposed in [28]
and [29], which may select non-improving neighbours in order to escape from
local optima and promotes the exploration of new promising regions of the
search space by maintaining a so-called tabu list of moves. Due to the sen-
sitivity of TS to its starting solution, it is common practice to use it in a
multi-start fashion, with several runs from different starting solutions which
are either generated randomly or using a problem-specific heuristic that yields
good starting points. Alternatively, TS is often used in combination with
other metaheuristics in such a way that the tabu search provides exploita-
tion while the other metaheuristic provides exploration. Indeed, tabu search
combined with additional techniques is the basis for two of the state-of-the-
art approaches to deterministic JSP [54, 70].

Given the above, we propose to combine the MOEA from Section 4.1 with
a dominance-based tabu search procedure (DBTS), in such a way that DBTS
is applied to every individual in the population right after its evaluation, as
illustrated in Figure 4. We shall refer to the resulting multiobjective memetic
algorithm as MTEA (the acronym for multiobjective tabu evolutionary algo-
rithm).
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Figure 4: Flow chart of the hybrid algorithm MTEA.

4.2.1. Neighbourhood structure

Clearly, a central element of any tabu search procedure is the definition
of the neighbourhood structure. Several neighbourhoods have been proposed
in the literature for the JSP; here we adopt the structure for makespan op-
timisation initially proposed in [67] and extended to the fuzzy case in [33].
This structure is based on reversing critical arcs in a graph representation
of a schedule S and exhibits some nice properties, in particular, it always
generates feasible neighbours, avoiding the need of repair procedures.

4.2.2. General schema

The DBTS algorithm used herein follows a similar schema to many TS
algorithms in the literature. In the first step, the initial solution, here pro-
vided by the MOEA, is evaluated. Then the TS iterates for a number of
steps, so at each iteration, the neighbourhood of the current solution is cal-
culated and the best neighbour is then selected as new solution (in our case,
such best neighbour will be selected based on dominance-based criteria, as
explained below). Then the arc that was reversed to generate the best neigh-
bour is stored as tabu, so any neighbour is considered to be tabu (unless an
aspiration criterion holds) if it has been generated by reversing a tabu arc.
Additionally, we use a dynamic length schema for the tabu list and a cycle
checking mechanism as proposed in [16]. The TS procedure finishes after
a given number of iterations maxDBTS without improvement, returning the
best solution found so far.

A drawback of the procedure as described above is that it requires eval-
uating the entire neighbourhood of the current solution in order to find the
best neighbour, with the consequent computational cost. For the sake of effi-
ciency, we introduce a mechanism to estimate for each neighbour the value of
both objective functions, so the choice of best neighbour is no longer based
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on the actual objective values, but on their estimates. Specifically, we use
here the method proposed in [61] to estimate the neighbour’s fuzzy makespan
as the length of the longest path passing through the nodes affected by the
move, since it has proved to be both fast and accurate, always providing a
lower bound for the expected makespan.

4.2.3. Dominance-based selection

A very important issue when applying tabu search to a multiobjective
setting is to establish a selection criterion for the best neighbour. In gen-
eral, given the solution s and its neighbourhood, there is not a single “best”
neighbour, since the dominance relation ≻ defines a partial order. In the
literature we can find different approaches to this issue. For instance, in [39]
and [40] the authors propose to scalarise the objective function vector to
guide the search. However, according to [49], the scalarising approach has
the inconvenience that “in the combinatorial case, a number of efficient so-
lutions known as non-supported efficient solutions, are not optimal for any
weighted-sum aggregation function”. Other authors propose instead to de-
fine acceptance criteria based on a dominance relation; for instance, in [10]
or [45] the local search provides a set of candidate solutions by keeping an
archive of non-dominated ones.

Here we propose a dominance-based approach which bears certain sim-
ilarities to the PAES (Pareto Archived Evolution Strategy) from [45]. As
PAES, it starts from a single initial solution and performs the selection based
on dominance. However, our approach is different in many other aspects.
For instance, we do not keep and return an archive of limited size of non-
dominated solutions; instead, our local search procedure provides a single
(hopefully improved) output solution, what is called “one-point iteration” in
[47]. In addition, thanks to the estimation procedure we are using we can
explore the whole neighbourhood looking for the most promising neighbour.
Finally, the selection of the best neighbour is based on dominance and with
additional criteria somehow related to crowding, but always relative to the
neighbourhood. The combination of the “one-point iteration” strategy with
the estimation procedure allows to apply the local search to every individual
in the population at each iteration; this would not be possible for very inter-
esting alternatives such as the Pareto Local Search [59], given their greater
computational load.

For a given solution s and its neighbourhood N (s), we define three sets,
forming a dominance-based neighbourhood partition:
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• NND(s) = {ni ∈ N (s) : ni ≻ s} the subset of neighbours dominating
s;

• ND(s) = {ni ∈ N (s) : s ≻ ni}, the subset of neighbours dominated by
s;

• N ED(s) = N (s) − N (s)ND − N (s)D, the subset of neighbours that
neither dominate nor are dominated by s.

Obviously, these three sets are disjoint and form a partition of the neigh-
bourhood N (s).

Now let Ns = {ni ∈ N (s) : ∄nj ∈ N (s), nj ≻ ni} be the subset of non-
dominated neighbours and let NND

s = NND(s) ∩Ns, N
D
s = ND(s) ∩Ns and

NED

s = N ED(s)∩Ns denote the intersection of the non-dominated neighbours
with the three sets above. Clearly, it cannot be the case that NND

s 6= ∅ and
ND

s 6= ∅ simultaneously.
Figure 5 illustrates these definitions depicting the projection of a solution

and its neighbourhood in the objective space. The black dot represents
the current solution s, the dark squares represent the estimates of the non-
dominated neighbours in Ns and the grey dots represent the estimates of the
dominated neighbours in N (s) − Ns, while the dotted lines partition N (s)
in three regions corresponding to the three sets above, NND(s), ND(s) and
N ED(s). In this case, ND

s = ∅.
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We now define the set of candidate neighbours as the following subset of
the non-dominated ones:

N ′

s =











NND

s , if NND

s 6= ∅,

NED

s , if NND

s = ∅ ∧NED

s 6= ∅,

ND
s , otherwise

(9)

The rationale behind this definition is to isolate from Ns those neighbours
that improve the current solution, provided they exist, or at least, those
which are not worse than the current solution in terms of the dominance
relation.

Finally, to continue the iterative process the DBTS selects a single element
from N ′

s ⊆ Ns based on the following criterion: normalise the objective values
of all the neighbours in N ′

s and then select as the “best” element the one that
minimises the Euclidean distance to the origin (0, 0).

Regarding the stopping criterion and the dynamic length schema for the
tabu list, we consider that there is an improvement only in the case where
DBTS moves to a solution ni ∈ NND

s .

5. Experimental results

In this section we provide an empirical evaluation of the proposed al-
gorithm and an analysis on the obtained results in terms of makespan and
robustness. Experiments are made on instances available in the literature for
the FJSP [32]. Specifically we use a set of 12 instances generated by fuzzy-
fying 12 well-known benchmark problems for deterministic job shop which
are considered hard to solve: FT10 (size 10 × 10), FT20 (20 × 5), La21,
La24, La25 (15×10), La27, La29 (20×10), La38, La40 (15×15), and ABZ7,
ABZ8, ABZ9 (20×15). We take a fuzzy instance generated from each original
problem following [25], so task durations become symmetric TFNs where the
modal value is the original duration. This ensures that the optimal solution
to the original problem in terms of makespan provides a lower bound (LB)
for the expected makespan of the fuzzified version. All the experiments re-
ported in this section correspond to a C++ implementation running on a PC
with Xeon processor at 2,2Ghz and 24 Gb RAM running Linux (SL 6.0.1).

5.1. Experimental framework

As a result of a preliminary parametric analysis, the parameter setup for
the MTEA is as follows: population size 100, GOX crossover with probability
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1.0, inversion mutation with probability 0.1, maxMOEA = 25 as stopping
criterion for the evolutionary algorithm and maxDBTS = 100 as stopping
criterion for the local search. Given the stochastic nature of the algorithm,
it is run 10 times on each instance, so 10 different sets of non-dominated
solutions (one per run) are stored in order to obtain representative data.

In the literature we find many proposals to compare different configura-
tions or setups of a multiobjective algorithm. In this work we adopt two
well-known indicators: the hypervolume (HV) and the unary additive ǫ indi-
cator (Iǫ+) [66, 71]. Additionally, to avoid problems derived from the different
scales of the objective functions, we normalise their values. For a set of solu-
tions S and an objective function fi, let f−

i (S) and f+
i (S) denote respectively

a lower and an upper bound of fi in S, then the objective value fi(s) of each
solution s ∈ S is normalised as follows:

fi(s) =
fi(s) − f−

i (S)

f+
i (S) − f−

i (S)
. (10)

In our case, the lower bound for the expected makespan E[Cmax] will be given
by the best-known solution of the deterministic counterpart of each instance,
whereas the lower bound for the new proposed robustness measure RobD will
be taken to be 0. As for the upper bound, it is calculated with the following
expression:

f+
i (S) = max{fi(s) : s ∈ S}+0.05∗(max{fi(s) : s ∈ S}−min{fi(s) : s ∈ S})

By taking this upper bound, we prevent the solutions from having a value
equal to 1, which can be troublesome when computing comparison metrics
such as the hypervolume. The lower and upper bounds used for the union of
all sets of solutions reached for the three methods are provided in Table 1.

These lower and upper bounds are used also as reference points for mea-
suring the hypervolume indicator. To compute the ǫ-indicator, Iǫ+, it is
necessary to have a reference set of non-dominated solutions RF . Ideally,
this set RF should be the optimal Pareto front PO∗, but in our case this
is not known because the proposed benchmark has not been solved yet to
optimality even for the single objective Cmax and the robustness metric is
proposed in this work for the first time. In consequence, we follow an stan-
dard approach and approximate RF by the non-dominated elements in the
union of all sets of solutions [66].
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Instance f−(S) f+(S)

E[Cmax] RobD E[Cmax] RobD

ABZ7 656 0 895 54
ABZ8 645 0 865 49
ABZ9 661 0 955 47
FT10 930 0 1205 73
FT20 1165 0 1570 100
La21 1046 0 1340 108
La24 935 0 1225 95
La25 977 0 1230 84
La27 1235 0 1605 105
La29 1152 0 1550 104
La38 1196 0 1590 99
La40 1222 0 1615 108

Table 1: Lower and upper bounds for each objective in the proposed instances

5.2. Analysis of MTEA performance

In order to asses the performance of our hybrid algorithm MTEA, we
shall compare it with each of its components: the MOEA algorithm with
no DBTS and the DBTS alone, both starting from solutions generated at
random. For the sake of fairness in comparisons, DBTS has been iteratively
applied for as many iterations as the number of individuals evaluated by
MTEA and MOEA evolves a population (of size 100, the same as MTEA)
for the same running time as DBTS.

The results obtained by MOEA and DBTS run separately as well as by
MTEA can be seen in Tables 2 and 3. Table 2 shows, for each instance, the
average hypervolume (HV) and ǫ-indicator (Iǫ+) across the 10 sets of non-
dominated solutions obtained by each algorithm, with standard deviation
values between brackets. For each problem instance, after testing for nor-
mality with a Kolmogorov-Smirnov test, we have run T -tests for pair-wise
comparisons between algorithms on these results; we highlight in bold those
values in the table which are significantly better than their counterparts ac-
cording to these tests. Table 3 reports for each instance the average number
of solutions contained in each non-dominated set and the average runtime in
seconds for each method. We can see that both MOEA and MTEA clearly
improve DBTS both in terms of Iǫ+ and HV. More importantly, the hybrid
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Inst. DBTS MOEA MTEA

HV Iǫ+ HV Iǫ+ HV Iǫ+

ABZ7 0.347 (0.014) 0.260 (0.011) 0.561 (0.033) 0.115 (0.031) 0.612 (0.023) 0.072 (0.022)

ABZ8 0.274 (0.014) 0.307 (0.023) 0.447 (0.036) 0.173 (0.032) 0.539 (0.018) 0.068 (0.018)

ABZ9 0.300 (0.012) 0.289 (0.010) 0.483 (0.038) 0.174 (0.027) 0.565 (0.028) 0.098 (0.025)

FT10 0.412 (0.015) 0.167 (0.016) 0.508 (0.036) 0.111 (0.040) 0.555 (0.018) 0.066 (0.018)

FT20 0.264 (0.023) 0.328 (0.017) 0.592 (0.022) 0.057 (0.014) 0.594 (0.018) 0.055 (0.019)

La21 0.439 (0.010) 0.218 (0.010) 0.559 (0.034) 0.159 (0.019) 0.621 (0.048) 0.121 (0.043)

La24 0.435 (0.012) 0.170 (0.013) 0.542 (0.041) 0.105 (0.044) 0.578 (0.022) 0.060 (0.020)

La25 0.392 (0.021) 0.216 (0.019) 0.521 (0.023) 0.122 (0.028) 0.568 (0.018) 0.079 (0.022)

La27 0.315 (0.012) 0.291 (0.023) 0.557 (0.040) 0.099 (0.024) 0.574 (0.023) 0.095 (0.022)

La29 0.291 (0.013) 0.298 (0.014) 0.483 (0.043) 0.158 (0.052) 0.581 (0.030) 0.078 (0.031)

La38 0.317 (0.018) 0.305 (0.028) 0.461 (0.046) 0.208 (0.059) 0.626 (0.021) 0.041 (0.022)

La40 0.427 (0.015) 0.208 (0.010) 0.560 (0.033) 0.102 (0.017) 0.616 (0.029) 0.083 (0.030)

Avg.: 0.351 0.255 0.523 0.132 0.586 0.076

Table 2: Average indicator value and the standard deviation (in brackets) obtained by
MOEA, DBTS and MTEA

algorithm MTEA outperforms MOEA in terms of HV as well as Iǫ+, ex-
cept for 2 or 3 cases (depending on whether HV or Iǫ+ is considered) for
which the improvement is not statistically significant. Furthermore, the hy-
brid MTEA is able to obtain these results in less than half the runtime of
DBTS and MOEA. To complement Tables 2 and 3, Figure 6 depicts pairwise
comparisons between algorithms by means of empirical attainment functions
(EAFs) [71], plotting the difference in EAF values between each pair of al-
gorithms. The figure corresponds to instance La40, but the behaviour in the
remaining instances is similar. Comparing MOEA with DBTS, we can see
that the MOEA clearly dominates DBTS in all regions. The EAFs plots
also indicate that MTEA dominates MOEA, but with higher probability in
the region with better makespan than in the region with better robustness,
where there is some probability that solutions obtained by MOEA dominate
those obtained with MTEA. It is also clear that the sets of solutions obtained
with DBTS are dominated by the solutions of MTEA with a probability very
close to 1 in every region. This shows the potential of the combination of
both strategies in MTEA, due to a synergy effect.

Additionally, to measure the real impact of the local search step in MTEA,
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Instance Avg. #solutions Avg. runtime (s)

DBTS MOEA MTEA DBTS MOEA MTEA

ABZ7 7.5 28.5 23.8 607.34 607.34 231.08
ABZ8 7.0 22.9 18.9 616.77 616.77 235.42
ABZ9 6.5 26.5 18.5 525.86 525.86 208.40
FT10 5.9 17.7 16.4 73.42 73.42 35.19
FT20 4.2 35.7 30.7 385.64 385.64 156.22
LA21 8.6 31.0 21.8 165.01 165.01 70.53
La24 8.6 34.6 24.8 162.85 162.85 69.36
La25 7.5 21.8 22.8 147.58 147.58 62.59
La27 7.3 42.7 33.8 422.51 422.51 170.24
La29 6.3 42.7 27.2 482.26 482.26 186.76
La38 8.1 38.6 22.6 354.56 354.56 128.42
La40 10.4 56.3 38.6 375.88 375.88 134.48

Average: 7.3 33.3 25.0 359.97 359.97 140.72

Table 3: Average number of solutions in non-dominated fronts and average runtime for
MOEA, DBTS and MTEA.

we have considered variants thereof with different ratios of application of the
intensification mechanism, namely applying DBTS only to the best individual
of the population and to 10%, 25%, 50% and 75% of the remaining popula-
tion. The obtained results are depicted in Figure 7. It shows the average HV
values across all instances for each setup (in black), together with the CPU
time (in gray) required by each variant of MTEA. We can see how the HV
value increases as local search is applied to a greater proportion of the popu-
lation, and so does the CPU time. However, the above experimental results
suggest that the increase in computational cost incurred by intensification
is still acceptable. Indeed, MTEA outperforms DBTS and MOEA when the
local search is applied to all individuals, still requiring just 40% of the CPU
time of any of the other algorithms.

Since the intensification step (DBTS) is applied to each individual in the
population, MTEA might be suspected to essentially be a multi-start lo-
cal search. Figure 8 illustrates the actual impact of the evolutionary part
in MTEA, showing the evolution of MTEA compared to a multi-start local
search using DBTS. More specifically, if Np is the population size of MTEA,
DBTS is applied to Np randomly generated individuals, then to other Np ran-
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dom individuals and so forth, until the total number of DBTS applications is
the same as for MTEA. The set of non-dominated solutions is also updated
in the same manner as in MTEA, so the only difference between MTEA and
multi-start MTEA lies in the evolution-related operators. Figure 8 shows for
instance La38 the evolution along all generations of the HV and Iǫ+ values
for MTEA together with the evolution, every Np new starts, of the same in-
dicators for the Pareto archive of multi-start DBTS. We can appreciate that,
even though multi-start DBTS improves its set of non-dominated solutions,
the convergence of MTEA is clearly superior. A similar behaviour can be
observed on the remaining instances, showing that MOEA has a great impact
in the hybrid algorithm’s performance.

Regarding the overall performance of MTEA, looking again at Table 2 we
notice that the standard deviation values for Iǫ+ are very low, so the solution
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obtained in an arbitrary execution of the algorithm is a good representative of
its average behaviour, suggesting that MTEA is a stable algorithm. Also, the
average value of Iǫ+ is below 0.1, which means that a little translation suffices
for the solution obtained in a arbitrary execution to weakly dominate the
reference set. Furthermore, the average cardinality of the non-dominated sets
obtained by MTEA is 25 which means that 25% of the final population (with
size 100) is in that set. Even though this is not a definite quality indicator,
it constitutes an added value to the obtained results. The fact that MOEA
obtains even larger sets of non-dominated solutions (with average cardinality
of 33), might be explained because the NSGA-II template is designed to
keep a high diversity in the population, while adding DBTS increases the
algorithm’s convergence.

Unfortunately, straightforward comparisons with other methods are not
possible, since the a-priori robustness measure RobD is an original contribu-
tion of this work. For further reference on the quality of MTEA we propose
to compare the obtained sets of non-dominated solutions with the best re-
sults of the single-objective memetic algorithm (MA) for the FJSP from [61],
which was designed to optimise the makespan and proved to be competi-
tive with other approaches from the literature. Figures 9 and 10 portray for
each instance the ten sets of points in the objective space corresponding to
the sets of non-dominated solutions of MTEA, where grey circles represent
the elements of each set, joined by grey dotted lines, and a black bold line
represents the approximation of the Pareto front which results from taking
the non-dominated elements in the union of all these sets. We can also see
the best expected makespan (a cross) and the average expected makespan
(a vertical dotted line) obtained by MA on each instance. Notice that the
X-axis corresponds to the expected makespan, while the Y -axis corresponds
to the robustness value. The RobD value of the best solutions from MA has
been calculated from the TFNs provided in the original paper.

As expected, the solutions obtained by MA are very good in terms of
makespan but they do not perform that well in terms of robustness. For those
instances where MTEA does not produce solutions as good in makespan as
MA, we have on the other hand that the robustness RobD values for all solu-
tions produced by MA are so poor that these solutions never dominate any
of the solutions produced by MTEA. For the remaining instances, there are
always solutions from MTEA that either dominate or are equal to the best so-
lutions obtained by MA. Regarding the average behaviour, in most instances
MTEA is able to find solutions that are better in expected makespan than
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Figure 9: Detailed performance of MTEA and comparison with a single-objective MA
from [61] for instances FT10, FT20, La21, 24, 25 and 27
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Inst. Avg. E[Cmax] Inst. Avg. E[Cmax]

MA MTEA MA MTEA

FT10 938.00 938.60 La29 1196.00 1185.45

FT20 1174.00 1177.85 La38 1226.00 1205.15

La21 1059.00 1061.05 La40 1239.00 1240.53
La24 947.00 943.10 ABZ7 685.00 676.10

La25 985.00 986.83 ABZ8 698.00 685.23

La27 1264.00 1266.35 ABZ9 713.00 708.58

Table 4: Average makespan values of solutions from MA and MTEA.

the average obtained by MA. In fact, it is common to get more than one set of
solutions containing at least one solution improving the average performance
of MA. Table 4 contains for all the instances the average expected makespan
value of solutions of MA and the corresponding value of the solutions of the
MTEA located in the extreme of the fronts corresponding to this objective.
We can see that there are not significant differences between both methods
as far as makespan values are concerned. In 6 of the 12 instances, MTEA
provides better average expected makespan while in the other 6 differences
are below 0.5%. Therefore, in a single run of the MTEA we can expect the
non-dominated set of solutions to contain at least one element which, regard-
ing the makespan objective, is better than or similar to the solution we can
obtain with MA. Notice however that this similarity in expected makespan
optimisation does not translate into similarity in robustness. Indeed, the
RobD values of solutions given by MA are between twice and trice those we
can expect to find in one run of MTEA by focusing on the other extreme of
the resulting front. Since MTEA is a multiobjective algorithm that consid-
ers RobD, it is expected to improve MA (focused only on E[Cmax]) on this
aspect. What is perhaps less expected is that the multiobjective MTEA also
improves MA in terms of its single objective, the expected makespan.

5.3. Quality of the a-priori robustness measure

One of the main contributions of this work is to include solution robust-
ness as an objective of the optimisation process, by means of the definition of
a new a-priori robustness measure. With the goal of assessing if this a-priori
measure accurately represents the a-posteriori robustness, we perform a se-
ries of experiments to check the degree of correlation between both measures

28



0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

ABZ7 ABZ8 ABZ9 ft10 ft20 La21 La24 La25 La27 La29 La38 La40

Random Sol

Optimised Sol.

Figure 11: Detailed correlation index of a-priori (RobD) and a-posteriori (ǭ) robustness on
random and optimised solutions computed by MTEA under Scenario I

RobD and ǫ-robustness (in fact, its surrogate ǭ).
First, for each instance we randomly generate a set of non-dominated

solutions and measure both the average a-priori RobD and a-posteriori ǭ

robustness, where the latter is obtained under “Scenario I”. The results show
a moderate correlation index R2 in the largest La instances (between 0.55
and 0.70) and a high positive correlation in the other ones, with an average
correlation index across all instances of 0.71. Based on this, the proposed
a-priori measure RobD may be considered to be a good predictive approach
to the actual executed robustness.

The same experiment is repeated, but this time using the sets of non-
dominated solutions obtained with MTEA. In this case the correlation be-
tween both measures is much stronger, with an average correlation index
across all instances of 0.83. This is illustrated in Figure 11, which shows for
all instances the correlation index of both robustness measures with random
and optimised solutions.

The obtained results suggest that the simultaneous optimisation of the
a-priori robustness and the expected makespan enhances the quality of this
a-priori measure as an estimator of the real robustness. This supports the
idea of optimising both objectives simultaneously, as we have done in this
work.

Finally, the same experiments are run under “Scenario II”. In this case,
the obtained average correlation indices are 0.83 and 0.85 respectively. This
small gap shows that the optimisation proposed in this work has a greater
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impact in terms of robustness when there is a greater likelihood of deviations
from the most probable durations, which is the case of “Scenario I”. Notice
nonetheless that the correlation index after optimisation is quite high under
both simulation scenarios, which illustrates the high fiability of the proposed
metric RobD as a predictive estimate of the schedule’s executed robustness.

6. Conclusions

We have considered a variant of the job shop problem which incorporates
uncertainty in operation durations in the form of fuzzy numbers. In an
attempt to reduce the gap between academic and real-world problems, we
have proposed to optimise not just the time needed to perform all tasks,
known as makespan, but also the robustness of the solutions, understood as
an overall acceptable performance under variations in the input data.

To solve the resulting problem, we have proposed a new hybrid algo-
rithm, named MTEA, which combines a multiobjective evolutionary algo-
rithm (MOEA) with a dominance-based tabu search (DBTS) by applying
the latter to every newly generated chromosome. An important contribution
to the resulting algorithm is the use of a new dominance-based method as
criterion to select the “best” neighbour of a current solution at each itera-
tion of DBTS. The experimental results show that, even though the DBTS
evaluated on random solutions has worse performance than the MOEA, it
provides a good intensification mechanism, with MTEA obtaining better
results than MOEA or DBTS run independently, thanks to the synergy be-
tween both components of the hybrid method. The experimental results also
show that MTEA is competitive in terms of makespan optimisation with a
single-objective memetic algorithm from the literature (MA), with the sets
of non-dominated solutions of MTEA containing solutions similar and even
slightly better in average than those of MA. Additionally, as expected, the
non-dominated fronts of solutions produced by MTEA contain much more
robust solutions. Finally, given that the evaluation of the fitness function
is a critical operation in any evolutionary algorithm, we have proposed a
new predictive measure for the robustness, RobD, that can be evaluated in
constant time. The existing correlation between RobD and the a-posteriori
robustness measured on real executions has been assessed using two different
Monte-Carlo simulations. We have also seen that the reliability of the pre-
diction clearly benefits from the optimisation process when larger deviations
from the most probable durations are more likely to happen.

30



Acknowledgements

This research has been supported by the Spanish Government under
Grants FEDER TIN2013-46511-C2-2-P and MTM2014-55262-P.

References

[1] S. Abdullah and M. Abdolrazzagh-Nezhad. Fuzzy job-shop scheduling
problems: A review. Information Sciences, 278:380–407, 2014.

[2] H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max
regret versions of combinatorial optimization problems: A survey. Eu-
ropean Journal of Operational Research, 197:427–438, 2009.

[3] H. Aytung, M. A. Lawley, K. McKay, M. Shantha, and R. Uzsoy. Execut-
ing production schedules in the face of uncertainties: A review and some
future directions. European Journal of Operational Research, 161:86–
110, 2005.

[4] C. Baudrit and D. Dubois. Practical representations of incomplete prob-
abilistic knowledge. Computational Statistics & Data Analysis, 51:86–
108, 2006.

[5] J. Behnamian and S. Fatemi Ghomi. Multi-objective fuzzy multiproces-
sor flowshop scheduling. Applied Soft Computing, 21:139–148, 2014.

[6] J. Bidot, T. Vidal, and P. Laboire. A theoretic and practical framework
for scheduling in stochastic environment. Journal of Scheduling, 12:315–
344, 2009.

[7] C. Bierwirth. A generalized permutation approach to jobshop scheduling
with genetic algorithms. OR Spectrum, 17:87–92, 1995.

[8] C. Bierwirth, D. C. Mattfeld, and H. Kopfer. On permutation repre-
sentations for scheduling problems. In PPSN IV: Proceedings of the
4th International Conference on Parallel Problem Solving from Nature,
pages 310–318, London, UK, 1996. Springer-Verlag.

[9] M. Brunelli and J. Mezei. How different are ranking methods for fuzzy
numbers? A numerical study. International Journal of Approximate
Reasoning, 54:627–639, 2013.

31



[10] T. Buer and G. Pankratz. Grasp with hybrid path relinking for bi-
objective winner determination in combinatorial transportation auc-
tions. BuR – Business Research, 3:192–213, 2010.

[11] S. Chanas and M. Nowakowski. Single value simulation of fuzzy variable.
Fuzzy Sets and Systems, 25:43–57, 1988.

[12] T.-C. Chiang, H.-C. Cheng, and L.-C. Fu. NNMA: An effective memetic
algorithm for solving multiobjective permutation flow shop scheduling
problems. Expert Systems with Applications, 38:5986–5999, 2011.

[13] M. Chica, O. Cordón, S. Damas, and J. Bautista. Multiobjective
memetic algorithms for time and space assembly line balancing. En-
gineering Applications of Artificial Intelligence, 25:254–273, 2012.

[14] S. Dabia, E.-G. Talbi, T. van Woensel, and T. De Kok. Approximating
multi-objective scheduling problems. Computers & Operations Research,
40:1165–1175, 2013.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[16] M. Dell’ Amico and M. Trubian. Applying tabu search to the job-shop
scheduling problem. Annals of Operational Research, 41:231–252, 1993.

[17] S. Destercke and I. Couso. Ranking of fuzzy intervals seen through the
imprecise probabilistic lens. Fuzzy Sets and Systems, In press, 2014.

[18] D. Dubois. Possibility theory and statistical reasoning. Computational
Statistics & Data Analysis, 51:47–69, 2006.

[19] D. Dubois. The role of fuzzy sets in decision sciences: Old techniques
and new directions. Fuzzy Sets and Systems, 184:3–28, 2011.

[20] D. Dubois, H. Fargier, and P. Fortemps. Fuzzy scheduling: Modelling
flexible constraints vs. coping with incomplete knowledge. European
Journal of Operational Research, 147:231–252, 2003.

[21] D. Dubois, L. Foulloy, G. Mauris, and H. Prade. Probability-possibility
transformations, triangular fuzzy sets and probabilistic inequalities. Re-
liable Computing, 10:273–297, 2004.

32



[22] D. Dubois and H. Prade. Possibility Theory: An Approach to Com-
puterized Processing of Uncertainty. Plenum Press, New York (USA),
1986.

[23] D. Dubois and H. Prade. The mean value of a fuzzy number. Fuzzy Sets
and Systems, 24:279–300, 1987.

[24] D. Dubois, H. Prade, and S. Sandri. On possibility/probability trans-
formations. In Fuzzy Logic, volume 12 of Theory and Decision Library,
pages 103–112. Kluwer Academic, 1993.

[25] P. Fortemps. Jobshop scheduling with imprecise durations: a fuzzy
approach. IEEE Transactions of Fuzzy Systems, 7:557–569, 1997.

[26] M. Gen and L. Lin. Multiobjective evolutionary algorithm for man-
ufacturing scheduling problems. Journal of Intelligent Manufacturing,
25:849–866, 2014.

[27] O. A. Ghrayeb. A bi-criteria optimization: minimizing the integral value
and spread of the fuzzy makespan of job shop scheduling problems.
Applied Soft Computing, 2(3):197–210, 2003.

[28] F. Glover. Tabu search–part I. ORSA Journal on Computing, 1(3):190–
206, 1989.

[29] F. Glover. Tabu search–part II. ORSA Journal on Computing, 2(1):4–
32, 1990.
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