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Robust Multi-Person Tracking from a Mobile

Platform
Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc van Gool

Abstract— In this paper, we address the problem of multi-
person tracking in busy pedestrian zones using a stereo rig
mounted on a mobile platform. The complexity of the problem
calls for an integrated solution that extracts as much visual infor-
mation as possible and combines it through cognitive feedback
cycles. We propose such an approach, which jointly estimates
camera position, stereo depth, object detection, and tracking.
The interplay between those components is represented by a
graphical model. Since the model has to incorporate object-object
interactions and temporal links to past frames, direct inference
is intractable. We therefore propose a two-stage procedure: for
each frame we first solve a simplified version of the model
(disregarding interactions and temporal continuity) to estimate
the scene geometry and an overcomplete set of object detections.
Conditioned on these results, we then address object interactions,
tracking, and prediction in a second step. The approach is
experimentally evaluated on several long and difficult video
sequences from busy inner-city locations. Our results show that
the proposed integration makes it possible to deliver robust
tracking performance in scenes of realistic complexity.

Index Terms— Mobile vision, multi-object tracking, pedestrian
detection, stereo depth, visual odometry, graphical model

I. INTRODUCTION

Recent research successes have fostered the demand for mobile

vision systems that can operate in unconstrained scenarios of

daily human living. Building such systems has been a far-end

goal of scene understanding since the 1970ies, but it is also a

crucial requirement for many applications in the near future of

mobile robotics and smart vehicles. So far, however, the sheer

complexity of many real-world scenes has often stymied progress

in this direction.

In this paper, we focus on the challenging task of multi-

person tracking in busy street scenes as seen from a mobile

observer. This could be a mobile robot, an electric wheelchair,

or a car passing through a crowded city center. The scenario

is extremely challenging due to a variety of factors: motion

blur, varying lighting, large numbers of independently moving

objects (sometimes covering almost the entire image), frequent

partial occlusions between pedestrians, and sub-optimal camera

placement dictated by constraints of a moving platform. (As the

cameras are less than 1m above ground, a localization error of 1

pixel in y direction for an object 20m away equals about 1m in

depth).

It has long been argued that scene analysis in such complex

settings requires the combination of and careful interplay between
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several different vision modules. However, it is largely unclear

how such a combination should be undertaken and which prop-

erties are critical for its success.

In this paper, we integrate visual odometry, depth estimation,

pedestrian detection, and tracking in a graphical model and pro-

pose a two-step procedure to perform approximate inference with

the model. An important component of the proposed integration

is the concept of cognitive feedback. The underlying idea is that

the higher-level information extracted by a certain vision module

should be fed back to other modules in order to improve per-

formance there, leading to cognitive loops. Several instantiations

of this concept have been successfully demonstrated in recent

years, among them the feedback from recognition to segmentation

[7], [33], from geometry estimation to object detection [24], [29],

from tracking to detection (e.g. [1], [19], [32], [39], [57]), and

recently also feedback of object semantics to visual odometry

[14].

In the described framework, data assignment problems arise

both at the level of assigning image pixels to object detections

and at the level of linking object detections to tracks. These

ambiguities lead to implicit loops in the graphical model, which

would require an infeasible modeling of the scene at the pixel

level. Furthermore, the temporal connections to represent object

persistence and the temporal continuity of geometric context over

multiple frames would render the model prohibitively large. We

therefore apply a hybrid approach, resolving only part of the

modeled interactions through belief propagation and optimizing

the remaining ones through a model selection procedure.

To make the model practically useful, inference is carried out

in a causal way (i.e. each frame is treated separately, using

only estimates from previous frames as fixed priors). Within

each frame, depth measurements and object detections are jointly

optimized disregarding object interactions; then these interactions

are resolved and object trajectories are estimated using quadratic

pseudo-boolean optimization. Finally, the camera motion estimate

is updated using the current image and the estimated trajectories.

This paper makes the following main contributions: 1) We

present an approach to simultaneously estimate scene geometry,

detect objects, and track them over time in a challenging real-

world scenario and from video input. This approach integrates

and closely couples the different vision components in a combined

system. 2) We demonstrate how this integration can be performed

in a principled fashion, using a graphical model that allows depth

measurements and object detections in each frame to benefit from

each other and that links their results over time to object tracks

with the help of visual odometry. 3) For inference in this model,

we propose an iterative procedure that combines Belief Propa-

gation and Quadratic Pseudo-Boolean Optimization to account

for object-object interactions. 4) During the entire approach, we

specifically address the question how to avoid system instabilities

and guarantee robust performance. This is done by incorporating
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automatic failure detection and correction mechanisms, which

work together to avoid error amplification. 5) We experimentally

validate the proposed method on challenging real-world data,

encompassing over 5,000 video frame pairs, and demonstrate

that the proposed integrated approach achieves robust multi-object

tracking performance in very complex scenes.

The paper is structured as follows. After discussing related

work in the following section, Section III showcases the compo-

nents of the system. Section IV then presents the graphical model

at the core of our approach which describes the dependencies

between the different vision modules. Next, Section V introduces

a two-step procedure for performing approximate inference on

the model. This procedure consists of a simplified per-frame

version of the model and separate optimization procedures for

tracking over time and visual odometry. Practical considerations

about robustness are presented in Section VI, before experimental

results on a number of challenging video sequences are shown in

Section VII. Section VIII concludes the paper with a summary

and outlook.

II. RELATED WORK

A. Visual Odometry

The majority of the work in visual odometry (VO) is based

on local features and RANSAC-type hypothesize-and-test frame-

works [38], [47]. Some other approaches include Hough-like

methods [35] or recursive filtering [12], [13]. Most of these have

however not been demonstrated on extended runs in realistic

outdoor scenarios. The main problem with all these methods is the

assumption that a dominant part of the scene changes only due

to camera egomotion. As a result, these approaches are prone

to failure in crowded scenes with many independently moving

objects. While there has been work on multi-body Structure-

from-Motion [34], [41], most systems are still constrained to

short videos, and more importantly, assume sufficiently large,

rigidly moving objects. In robotics, various approaches for SLAM

in dynamic environments exist [5], [22], [55], related to the

above, but mostly focusing on range data. In this paper, we

propose to explicitly feed back information from object tracking

to egomotion estimation, thereby introducing semantics.

B. Pedestrian Detection

Human detection has reached an impressive level [10], [16],

[30], [53], [54], [57], with many systems also being able to

estimate the silhouettes of the detected pedestrians [19], [30],

[48], [58]. Still, pedestrian detection remains a difficult task

due to large intra-category variability, scale changes, articulation,

and frequent partial occlusion. To achieve robustness to adverse

imaging conditions, the importance of context has been widely

recognized. Depending on the authors, the rather loose notion of

“context” can refer to different types of complementary informa-

tion, including motion [11], [54], stereo depth [15], [19], scene

geometry [24], [29], temporal continuity [1], [31], [32], [57], or

semantics of other image regions [36], [40], [50], [51]. We build

upon those ideas and extend them for our scenario.

C. Multi-object Tracking

Many approaches are available for multi-object tracking from

stationary cameras (e.g. [4], [28]). The task is however made

considerably harder when the camera itself moves. In such cases,

Fig. 1. Mobile recording platforms used in our experiments. Note that in
this paper we only employ image information from a stero camera pair and
do not make use of other sensors such as GPS or LIDAR.

Pose prediction Object detection

Depth generation

Pose estimation

Object tracking

Visual odometry Tracking

Fig. 2. Components of our mobile vision system and their connections,
executed for each frame of a video sequence.

background subtraction [49], [52] is no longer a viable option and

tracking-by-detection appears to be the most promising alternative

[1], [2], [19], [21], [29], [32], [39], [57], [60]. Targets are typically

followed using classic tracking approaches, such as Extended

Kalman Filters (EKF) [20], particle filters [25], or Mean-Shift

tracking [8], which rely on a first-order Markov assumption and

hence carry the danger of drifting away from the correct target.

This danger can be reduced by optimizing data assignment and

considering information over several time steps, as in Multi-

Hypothesis Tracking (MHT) [9], [43] and Joint Probabilistic Data

Association Filters (JPDAF) [18]. However, their combinatorial

nature limits those approaches to consider either only few time

steps [43] or only single trajectories over longer time windows [4],

[26], [59]. Recently, [60] suggested a graph-based formulation for

multi-target tracking that allows an efficient global solution even

in complex situations. The approach operates on the entire video

sequence and requires the detections for all frames as input. This

precludes its online application to long sequences. In contrast, our

approach works online and simultaneously optimizes detection

and trajectory estimation for multiple interacting objects and over

long time windows. For this, we build upon the hypothesize-

and-test model selection framework from [31], [32] and extend it

through the integration of stereo depth and visual odometry.

III. OVERVIEW

Our system is based on mobile platforms equipped with a

pair of forward-looking cameras, as shown in Fig. 1. Under

the predominantly occurring forward motion, the stereo setup

is a better choice for self-localization than a monocular system

because of the latter’s weak geometric configuration [23]. Fur-

thermore, generating depth maps has been well-studied for such

setups [45], and dense depth information is of great help for

constraining object detection and thus improving tracking and

egomotion estimation.
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Fig. 2 gives a schematic overview of the proposed vision

system. This figure can be seen as the engineering view of the

holistic graphical model we introduce in Section IV. As inference

would be infeasible in a model of this size, we adopt a two-stage

approach, as detailed below.

For each frame, the blocks are executed as indicated: first,

a depth map is calculated and the new frame’s camera pose is

predicted. Then objects are detected. This step also encompasses

the first stage of our graphical model that performs single-

frame reasoning based on basic detector input, depth, and scene

geometry. One of the novelties of this paper is to use the obtained

information for stabilizing visual odometry, which then updates

the pose estimate for the platform and the detections. Next, as

second stage of our graphical model, the tracker is run on these

updated detections.

The whole system is held entirely causal, i.e. at any point in

time, we only use information from the past and present frame

pairs. The following subsections detail the three main components

of the system.

A. Object Detection

The graphical model we propose for tracking-by-detection is

independent of a particular detector choice. In our experiments,

we use three state-of-the-art detectors as basic input [10], [16],

[30]. To obtain maximally possible recall, these detectors are

applied with a low threshold. While this introduces a number

of false positives, such errors are typically corrected by our

integrated approach, as it considers scene geometry and introduces

temporal dependencies.

B. Graphical Model for Tracking-by-Detection

This is the central part of our system. Designed as a holistic

graphical model, it aims at combining the raw, independent

detections from the image sequence to robust 3D trajectories with

consistent identities. Due to the complexity of the represented

interactions, the model is solved in a two-stage process. In a first

stage, input from the basic detector is set in context with the

rest of the scene using depth maps and assuming a ground plane.

The effect of this is a set of reliable detections that adhere to the

scene geometry and that can be placed in 3D camera coordinates.

Camera position estimates from visual odometry are then used to

transfer these detections into a common world coordinate frame,

where the second stage of the graphical model combines tracking

and occlusion reasoning based on a global optimization strategy.

As the final step, the knowledge about tracked object locations in

the image is used to improve visual odometry calculation for the

next frame.

The most important effects of this are automatic track initial-

ization (usually, after about 5 detections), as well as the ability to

recover temporarily lost tracks, thus enabling the system to track

through occlusions. Obviously, such a tracking system critically

depends on an accurate and smooth egomotion estimate.

C. Visual Odometry

To allow reasoning about object trajectories in the world

coordinate system, the camera position P for each frame is

estimated using visual odometry. The employed system builds on

previous work by [38]. In short, each incoming image is divided

into a grid of 10×10 bins and an approximately uniform number

Fig. 3. Object detection and tracking give semantic meaning to the image and
can be used to restrict localization efforts to image regions that are believed
to contain static structures. (The algorithm for this step is described in detail
in Section VI-B).

of points is detected in each bin using a Harris corner detector

with locally adaptive thresholds. The binning encourages a feature

distribution suitable for stable localization. In the initial frame,

stereo matching and triangulation provide a first estimate of the

3D structure. In subsequent frames, we use 3D-2D matching to

get correspondences, followed by camera resection (3-point pose)

with RANSAC [37]. Bundle adjustment is run on a sliding window

of nb = 18 past frames to polish the raw camera estimates. Older

frames are discarded, along with points that are only supported

by these removed frames.

Important details for reliable performance are the use of 3D-2D

matching to bridge temporally short occlusions of feature points

and to filter out independently moving objects at an early stage,

as well as a Kalman filter to predict the next camera position

for feature detection (leading to a feature detection strategy

similar to the “active search” paradigm in SLAM, e.g. [12]).

Scene points are directly associated with a viewpoint-invariant

SURF descriptor [3] that is adapted over time. In each frame,

the 3D-2D correspondence search is then constrained by the

predicted camera position. As mentioned above, only scene points

without support in the past nb frames are discarded. This allows

one to bridge temporally short occlusions (e.g. from a person

passing through the image) by re-detecting 3D points that carry

information from multiple viewpoints and are therefore already

reliably reconstructed.

For improved robustness, we introduce two measures: first,

cognitive feedback from the tracker is used to constrain corner

detection for visual odometry: the predictions delivered by the

tracker identify image regions that are with a high probability

occupied by moving objects (pedestrians), as shown in Fig. 3. No

corners are extracted in these regions, which considerably reduces

the number of incorrect matches (see Section VI-B). Second, we

introduce an explicit failure detection mechanism, as described

in [14]. In case of failure, the Kalman filter prediction is used

instead of the measurement, all scene points are cleared, and the

visual odometry is restarted from scratch. This allows us to keep

the tracker running without resetting it. While such a procedure

may introduce a small drift, a locally smooth trajectory is more

important for our application.1

IV. GRAPHICAL MODEL

Fig. 4 shows the graphical model we assume for solving

pedestrian detection and tracking from a mobile platform, an

1In fact, driftless global localization using only a moving camera rig is
inherently impossible (except in retrospect in the case of loop closure). We
believe that this capability, if needed, is best achieved by integrating other
sensors, such as GPS and INS, as also argued e.g. in [61].
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Fig. 4. The graphical model of our integrated system. See text for details.

Variable Meaning

Input

I Images of camera pair
D Depth maps of camera pair
O Occlusion maps inferred from depth maps
πD Ground-plane cue inferred from depth maps
x 2D Harris corners (VO)

Output / Hidden

oi Object hypotheses
di Flag indicating validity of depth per object
H Trajectory hypotheses
π Ground plane
X 3D points (VO)
P Camera pose (VO)

Component Model Solution

Raw detector Various ISM, HOG, part-based

Reduced model for Bayesian network Belief propagation
object detection

Reduced model for Minimum description Multi-branch ascent
tracking length (MDL)

Visual odometry Projective geometry Structure from motion

TABLE I

TOP: VARIABLES USED THROUGHOUT THIS PAPER AND THEIR MEANING.

BOTTOM: MATHEMATICAL MODELS ASSOCIATED WITH THE

COMPONENTS.

overview of the employed variables, as well as mathematical

models for the single components is given in Tab. I. The input

consists of the sequence of images I from the stereo camera

pair, together with their corresponding depth maps D and an

occlusion map O specifying where the calculated depth can be

trusted. From the same stereo depth information, we also calculate

ground plane measurements πD . Together, this information is

used to infer object hypotheses oi, object depth di, and the ground

plane π. Following standard graphical model notation [6], the

plate indicates repetition of the contained parts for the number of

objects n. In parallel, structure-from-motion (SfM) extracts 2D

Harris corners x, matches them to 3D points X, and infers the

camera pose P. Together with the camera calibration from SfM

and the estimated ground plane, detected objects are localized in

πt−1

P

O

D

I

d

D

# detections

o

π π

Fig. 5. The reduced graphical model for single-frame detection with
additional information from past frames and depth maps.

3D and grouped into trajectories H , which in turn exert a spatial

prior on object locations oi. Information about past detections

oi,t0:t−1, trajectories Hj,t0:t−1, 3D point locations Xt−1, and

the previous ground plane estimate πt−1 is propagated from past

frames.

To make inference tractable, we opt for a hybrid solution, where

only part of the model is solved through probabilistic inference

and where a global optimization stage is then used to select the

best explanation for each frame. Thus, for each frame a reduced

Bayesian network remains, which can be solved efficiently with

Belief Propagation (blue arrows in Fig. 4). For each frame, object

detections and the ground plane are estimated simultaneously in

the reduced Bayesian network, taking advantage of appearance,

depth, and trajectory information. The output, along with pre-

dictions from the tracker, helps stabilize visual odometry, which

updates the pose estimate for the platform and the detections (red

arrows in Fig. 4), before the tracker is run on these updated

detections (green arrows in Fig. 4). The whole system is held

entirely causal, i.e. at any point in time it only uses information

from the past and present. In the following, we first describe the

reduced Bayesian network for per-frame inference before putting

it into context with the entire model.

A. Reduced Model for Object Detection

Fig. 5 shows the reduced Bayesian network we use for per-

frame inference over object hypotheses oi, object depth di, and the

ground plane π. Inference in this model is performed as follows:

P (π, oi, di, E , πt−1) ∝ P (πD|π)P (π|πt−1)Q

Q =
Y

i

P (oi|π)P (oi|di)P (di)P (I|oi)P (D|di)P (O|di) , (1)

where E = {I,D,O, πD,P} is the evidence observed in the

current frame and πt−1 indicates the ground plane from the

previous time step. An object’s probability depends both on its

geometric world features (distance, size) P (oi|π) and its corre-

spondence with the depth map (distance, assumption of uniform

depth) P (oi|di). P (I|oi) is the object probability estimated by

the pedestrian detector (the time index t for the current frame

was omitted for brevity — all variables without time index refer

to time step t). Finally, we propagate the state of the ground plane

in the previous frame as a prior P (π|πt−1) = Z((1− α)P (π) +

αP (πt−1)), which augments the per-frame information from the

depth map P (πD|π). Z is an appropriately chosen normalization

constant.

In the following, the components of this Bayesian network are

described in detail. All 3D calculations are executed in camera
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coordinates, i.e. the projection matrix is P = [K|0]. This not only

simplifies calculations and parameterizations, but it also keeps the

set of possible ground planes in a range that can be trained in a

meaningful way. For the subsequent tracking stage, the results

are easily transferred into world coordinates with the camera

orientation provided by visual odometry (Section III-C).

Ground Plane. As shown in previous publications [19], [24],

[29], the ground plane helps substantially in constraining object

detection to meaningful locations. It is defined in the current cam-

era frame as π =(n, π(4)), with the normal vector parameterized

by spherical coordinates, n(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ).

The ground plane parameters π are inferred from a combination

of a prior from the previous frame, object bounding boxes, and

the depth map evidence πD , so that the system does not critically

depend on any one individual cue. While accurate ground planes

can be estimated directly from clean depth maps (see below), such

methods break down in outlier-ridden scenarios. Thus, πD will

just act as an additional cue in our Bayesian Network. Specifically,

we consider the depth-weighted median residual between π and

D:

r(π,D)2 = medx∈D (n⊤x − π
(4))⊤Σ−1

D (n⊤x − π
(4)). (2)

Here x∈D denotes the set of 3D points inferred from D, pruned

according to the vehicle’s maximally expected tilt angle and

restricted to the lower part of the image for increased robustness

to outliers. ΣD accounts for the 3D point’s uncertainty in the

plane-to-point measurement. Given this robust estimate, we set2

P (πD|π) ∝ e
−r(π,D)2

. (3)

The prior P (π) is also learned from a training set, as described

in Section V.

Object Hypotheses. Object hypotheses oi ={vi, ci}, (i=1 . . . n)

are created from the output of a pedestrian detector3 for each

frame (typically, on the order of 10–100 detection hypotheses are

used at each time step). They consist of a validity flag vi ∈ {0, 1}
and a 2D center point with scale ci = {x, y, s}. Given a specific

c and a standard object size (w, h) at scale s=1, a bounding box

can be constructed. From the box base point in homogeneous

image coordinates g = (x, y + sh
2 , 1), its counterpart in world

coordinates is found as

G = −
π(4)

K
−1g

n⊤K−1g
. (4)

The object’s depth is thus z(oi) = ‖Gi‖. The box height Gh
i is

obtained in a similar fashion. Because of the large localization

uncertainty of appearance-based detection, the detector outputs

for center and scale are only considered as estimates, denoted x̃i,

ỹi, and s̃i. Taking these directly may yield misaligned bounding

boxes, which can in turn result in wrong estimates for distance and

size. We therefore try to compensate for detection inaccuracies by

considering a set of possible bounding boxes b
{k,ℓ}
i for each oi.

These boxes are constructed from a set of possible real centers

ci ={yi, si} (fixing xi = x̃i due to its negligible influence), which

are obtained by sampling around the detection, yi = ỹi + kσy s̃i,

2Note that since r(π,D) is obtained as a median, P (πD|π) should more
appropriately be modeled as a Laplacian density. This made no difference in
our experiments. We thank the unknown reviewer for pointing this out.

3Any standard detector can be plugged into our framework. In our experi-
ments, we use three different publicly available methods [10], [16], [30].

si = s̃i + ℓσss̃i. The number of samples, i.e. the range of {k, ℓ},

is the same for every object. In the following, we omit the

superscripts for readability. The object term is decomposed as

P (oi|π) = P (vi|ci, π)P (ci|π) . (5)

By means of Eq. (4), P (ci|π) ∝ P (Gh
i )P (z(oi)) is expressed

as the product of a distance prior P (z(oi)) and of a size prior

P (Gh
i ) for the corresponding real-world object. We formulate

the probability for a hypothesis’ validity based on this, P (vi =

1|ci, π) = maxk,l P (ci|π).

Depth Map. The depth map D is a valuable asset for scene

understanding that is readily available in a multi-camera system.

However, stereo algorithms frequently fail, especially in untex-

tured regions. For all our calculations, we therefore consider

an additional occlusion map O, which models the trust in each

depth estimate based on a left-right check. This check computes

the likelihood of an occlusion by comparing the color when

remapping a pixel, as well as disparity estimates from the left and

right camera. The intution behind the latter is that if a disparity

estimate results from the estimator’s smoothing, the left and right

estimate will in most cases diverge. Using this consistency check,

we integrate depth into our framework in a robust manner: each

object hypothesis is augmented with a depth flag di ∈ {0, 1},

indicating whether the depth map for its bounding box is reliable

(di =1) or not. As explained above, the depth term is decomposed

into two parts:

P (oi|di) = P (vi|ci, di)P (ci|di). (6)

First, we evaluate the stereo depth measured inside bi and its

consistency with the ground plane depth z(oi) as an indicator

for P (ci|di = 1). Second, we test the depth variation inside the

box and define P (vi =1|ci, di =1) to reflect our expectation that

the depth is largely uniform when a pedestrian is present. The

measurements are defined as follows: the median depth inside

a bounding box, z(D,bi) = medpixel p∈bi
D(p), yields a robust

estimate of the corresponding object’s depth. Assuming additive

white noise with covariance C2D on pixel measurements, we find

the variance σ2
(z),i of z(D,bi) using error backpropagation,

Ci =
“

F
(1)⊤
i C

−1
2DF

(1)
i + F

(2)⊤
i C

−1
2DF

(2)
i

”−1
, (7)

where F
(j)
i are the Jacobians of a projection using camera matrix

j, thus σ2
(z),i = C

(3,3)
i . This yields

P(z),i(x) ∝ N (x; z(D,bi), σ
2
(z),i) . (8)

P(z),i(x) thus models the probability that a given depth mea-

surement x corresponds to the robustly estimated depth of the

bounding box. For reasoning about depth uniformity, we consider

the depth variation for all pixels p within bi, V = {D(p)−
z(D,bi)|p ∈ bi}. To be robust against outliers, the estimate is

restricted to the interquartile range [LQ(V ),UQ(V )], and depth

uniformity is measured by the normalized count of pixels that fall

within the confidence interval ±σ(z),i,

qi =
|{x ∈ [LQ ,UQ ]

˛

˛x2 < σ2
(z)i}|

UQ − LQ
. (9)

This robust “depth inlier fraction” serves as basis for learning

P (vi|ci, di = 1), as will be described in Section V-A. The

probability P (oi|di =0) is assumed uniform, since an inaccurate

depth map gives no information about the object’s presence.
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Fig. 6. Graphical model for trajectory estimation and detection prior.

We learn P (di) from a training set based on the data from the

occlusion map.

B. Reduced Model for Tracking

The aim of the tracking stage is to group detections into

meaningful and physically plausible trajectories. In earlier work,

we have introduced a hypothesize-and-test framework which uses

model selection to jointly optimize object detection and trajectory

estimation [31], [32]. Here, we follow this basic framework and

adopt it for our application. Tracking is performed in world

coordinates on the ground plane, so the aim of this step is to fit

smooth trajectories to the detected object locations x = [x, z, t]⊤

in a 3D spacetime volume. Fig. 6 shows the reduced graphical

model for this step. This model contains two main types of

interactions. On the one side, trajectory hypotheses {Hj,t0:t+1}
are created from the set of stored detections of past frames

{oi}t0:t in combination with new detection hypotheses from the

current frame {oi,t+1}. On the other side, trajectory hypotheses

from past frames Ht0:t exert a spatial prior on certain object

locations oi,t+1, which raises the chance of finding detections

there above a uniform background level U . We model this prior

as a Gaussian around the predicted object position using the

trajectory’s dynamic model M. Thus,

p(oi,t+1|{Hj,t0:t}) ∝ max[U , max
j

[P (xj,t+1)]], (10)

where P (xj,t+1) is the normal distribution obtained from

applying M to a hypothesis Hj,t0:t.

A detection is specified by its position on the ground plane xi

and its color histogram ai, thus oi = {xi,ai}. The probability

that a detection oi belongs to a given trajectory Hj depends on

how well it fits the trajectory’s dynamic motion model M and

color model A. In both cases, we use very simple models. For M,

we assume holonomic motion on the ground plane: a pedestrian

is assumed to move with speed v = |xt − xt−1| and direction

θ = arctan
zt−zt−1

xt−xt−1
, and the uncertainty of the predicted position

is modeled with an anisotropic Gaussian:

M :

8

>

<

>

:

xt+1 = xt + v[cos θ, sin θ]⊤

P (xt+1) ∝ N
`

xt+1, Γθ

"

σ2
v 0

0 σ2
θ

#

Γ⊤
θ

´ , (11)

with Γθ the rotation matrix and {σv, σθ} constant parameters of

the model. As color model A, we use the 8 × 8 × 8 bin RGB

histogram ai of a detection (computed over an ellipse fitted inside

the detected bounding box). The color model for a trajectory is

the mean color histogram a over all its detections.

We treat the dynamics and the appearance as independent: the

probability that a given detection oi at time (t + 1) belongs to a

(partial) trajectory Ht0:t is given by

P (oi,t+1|Ht0:t) = p(oi,t+1|A(Ht0:t))p(oi,t+1|M(Ht0:t)). (12)

Tracking now consists of fitting a set of object trajecto-

ries {Hj} with maximal joint probability P ({Hj}|{oi}) ∝
P ({oi}|{Hj})P ({Hj}). Direct fitting is difficult due to the fact

that the trajectories are not independent. The physical exclusion

constraint demands that two trajectories shall not intersect in

space-time (“no two people can occupy the same 3D space at

the same time”). Moreover, following the principle of Occam’s

razor we prefer the simplest possible explanation for the observed

detections, resulting in a prior P ({Hj}) which favors a smaller

number of trajectories.

We incorporate both of those constraints by formulating the

tracking problem in a hypothesize-and-test model selection frame-

work [31]. Such an approach presupposes that we can sample a

large set of potential candidates from the space of trajectories.

Using Eq. (12), this can be done in the following way:

• Initialize the trajectory at an arbitrary detection and make a

prediction (both forward and backward in time);

• Find detections at the new time step which support the

trajectory by evaluating Eq. (12);

• Update {v, θ, a}, and iterate for the adjoining time steps.

In Section V-B, we will use this procedure to find a large number

of candidate trajectories (in practice, even exhaustive sampling

with only mild pruning is feasible), and we will select the jointly

optimal subset with quadratic pseudo-boolean optimization.

V. TRAINING AND INFERENCE

In this section, we describe how we perform training and

inference in the described model. The system’s parameters have

been trained on a sequence (Seq. #1, see Section VII) with 490

frames, containing 1,578 annotations 4. For learning the ground

plane prior, we considered an additional 1,600 frames from a few

selected environments with hardly any moving objects.

A. Object Detection

Belief Propagation. The graph of Fig. 5 is constructed per-frame,

with all variables modeled as discrete entities and their condi-

tional probability tables defined as described above. Inference is

conducted using Pearl’s Belief Propagation [42]. For efficiency

reasons, the set of possible ground planes is pruned to the 20%

most promising ones (according to prior and depth information).

Ground Plane. In input images with few objects, D can be used

to directly infer the ground plane using Least-Median-of-Squares

(LMedS) by means of Eq. (2),

π = min
πi

r(πi,D). (13)

Related but less general methods include e.g. the v-disparity

analysis [27]. All such methods break down if less than 50%

of the pixels in D support π. For training, we use the estimate

from Eq. (13), with bad estimates discarded manually.

For tractability, the ground plane parameters (θ, φ, π(4)) are

discretized into a 6× 6× 20 grid, with bounds inferred from

the training sequences. The discretization is chosen such that

4We have used data recorded at a resolution of 640×480 pixels (bayered)
at 13-14 fps, with a camera baseline of 0.4 meters, respectively 0.6 meters
for the car platform.



7

phi

th
e
ta

1 2 3 4 5 6

1

2

3

4

5

6

860 880 900 920 940 960 980 1000 1020 1040
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

π
4

P
(π
4
)

Fig. 7. Learned priors for (θ, φ) (left) and π(4) (right), projected onto π(4)

and (θ, φ), respectively.

quantization errors are below 0.01 for θ and φ, resulting in

component-wise abberations of maximally 5 · 10−7 from the

original n. In our tests, the errors ensuing from the discretization

of π were below 0.05 meters in depth for a pedestrian 15 meters

away. Note that other choices of spherical coordinates for the

normal vector would be better suited to the variability of the

tilt angle. However, the described parametrization is sufficient,

and alternative choices for discretization turn out to be more

cumbersome because of switches from −180◦ to 180◦. The

training sequences also serve to construct the prior distribution

P (π). Fig. 7 visualizes P (π) in two projections onto π(4) and

(θ, φ).

Object Hypotheses. Object detections can be generated with any

state-of-the-art pedestrian detector, parametrized in a conservative

way so as to avoid false negatives as much as possible.

As the original detected locations x̃, ỹ, s̃, and hence the bound-

ing boxes, may not always be sufficiently accurate for reliable

depth estimation, we model the offset between real and detected

object centers by Gaussians (see [15] for details).

The object size distribution is chosen as in [24], P (Gh) ∼
N (1.7, 0.0852) [m], though we consider different standard devi-

ations σh in a first systematic experiment in Section VII. This is

mainly to account for children and for the remaining discretization

errors due to the sampling of ci. The depth distribution P (z(oi))

is assumed uniform in the system’s operating range of 0.5–30 m.

Depth Cues. The depth map D for each frame is obtained with

a publicly available belief-propagation-based disparity estimation

software [17]. See Fig. 8 for two example depth maps. The

true distribution of P (ci|di = 1) given the object’s depth z(oi)

and the depth map estimate z(D,bi) is very intricate to find.

It involves many factors: first, the uncertainty of the object’s

center propagated to its distance. Due to the sampling of ci, we

can neglect this factor. Second, it depends on P(z),i as defined

in Eq. (8). Finally, using a fixed set of disparities introduces a

quantization error, which is only to some extent covered by P(z),i.

In Section VII, we compare two ways for modeling

P (ci|di = 1). The first option uses a non-parametric distribution

P (vi|z(oi) − z(D,bi)), learned from the training sequence. The

second option models it using the dominating factor P(z),i(z(oi))

only.

For learning P (vi|ci, di = 1), we find the percentage qi of

pixels that can be considered uniform in depth for correct and

incorrect bounding boxes using Eq. (9). As can be seen in Fig. 9,

qi is a good indicator of an object’s presence. Using logistic

regression, we fit a sigmoid to arrive at P (vi|ci, di = 1). In

Section VII, we also test the use of P (vi = 1|ci, di = 1) =

maxk,l P (ci|di = 1). With the same training set as above, we

Fig. 8. Example depth maps. Most of the time, useful cues can be inferred
(left), but robust measures have to account for faulty depth maps, e.g. missing
ground plane (right).
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Fig. 9. Distribution of depth inliers for correct (left) and incorrect (right)
detections, learned from 1,578 annotations and 1,478 negative examples.
Based on those distributions, we learn a classifier using logistic regression.

found P (di = 1) ≈ 0.96.

Non-Maximum Suppression. In previous work [15], we have

shown that it is possible to directly resolve the ambiguities from

overlapping detections in the graphical model by a following

Quadratic Binary Optimization stage. This procedure gave su-

perior results for the ISM detector. Here, we adopt a simpler

approach of just applying non-maximum suppression (NMS), so

that the resulting framework can be readily combined with a wide

variety of pedestrian detectors.

B. Tracking

For tracking, we employ a slightly adapted version of the multi-

object tracking-by-detection framework from [31]. This approach

applies model selection in order to find the set of trajectories

that provides the best explanation for the observed evidence

from past and present detections. This step is carried out by

sampling a large, redundant set of candidate trajectories and

pruning that set to an optimal subset. The candidate trajectories

are not independent because of the twin constraints that two

pedestrians cannot occupy the same location on the ground plane

at the same time and that each object detection can only belong

to a single pedestrian trajectory.

In our system, we generate the set of candidate trajectories by

running the bi-directional trajectory-following method described

in Section IV-B, starting from all detections within a large

temporal window (for computational efficiency, the candidates

from previous frames are cached and extended, and only those

starting from new detections are generated from scratch). Each

filter generates a candidate trajectory which obeys the physical

motion constraints of a walking person and bridges short temporal

gaps due to occlusion or detection failure. Note that candidates do

not only originate from the accepted tracks of the last frame (like

in classical trackers built on a first-order Markov assumption).

To select the jointly optimal subset of trajectories, we express

the support (or utility) S of a trajectory Ht0:t by the evidence
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collected over its lifetime (the likelihood of the supporting detec-

tions) [31]:

S(Ht0:t|It0:t) =
X

i

S(Ht0:t|oi,ti
)P (oi,ti

|Iti) ,

∝ P (Ht0:t)
X

i

S(oi,ti
|Ht0:t)P (oi,ti

|Iti) ,
(14)

S(oi,ti
|Ht0:t) = e

−λ(t−ti)P (oi,ti
|Ati(Ht0:t))P (oi,ti

|Mti(Ht0:t)).

(15)

Choosing the best subset {Hj} is now a model selection task and

amounts to solving the quadratic binary problem

max
m

h

m
⊤
Qm

i

, m ∈ {0, 1}N
, (16)

where m is an index vector, which specifies which candidates

to use (mi = 1) and which to discard (mi = 0). The diago-

nal elements qii contain the individual likelihoods of candidate

trajectory Hi, reduced by the “model penalty”, a prior which

favors solutions with few trajectories. The off-diagonal elements

qij model the interaction between candidates i and j and contain

the correction for double-counting detections consistent with both

candidates, as well as a penalty proportional to the overlap of the

two trajectories’ footprints on the ground plane:

qii = −ǫ1G(Hi,t0:t)+

+
X

ok,tk
∈Hi

`

(1−ǫ2)+ǫ2(S(ok,tk
|Itk

)+log P (ok,tk
|Hi))

´

qij = −
1

2
ǫ3O(Hi, Hj)−

−
1

2

X

ok,tk
∈Hi∩Hj

`

(1−ǫ2)+ǫ2(S(ok,tk
|Itk

)+log P (ok,tk
|Hℓ))

´

,

(17)

where Hℓ ∈ {Hi, Hj} denotes the weaker of the two trajectory

hypotheses; G(Ht0:t) is a model cost that penalizes holes in the

trajectory; O(Hi, Hj) measures the physical overlap between the

footprints of Hi and Hj given average object dimensions; and

ǫ1, ǫ2, ǫ3 are model parameters.

The maximization Eq. (16) is NP-hard, but there are several

methods which find strong local maxima, e.g. the multi-branch

method of [46], or QBPO-I [44]. The solution is an improved

set of pedestrians for the current frame: most false detections

are weeded out, since they usually do not have a supporting

trajectory in the past (this is the main source of improvement),

whereas missed detections are filled in by extrapolating those

trajectories which have strong enough support in the previous

frames. Typically, this step keeps between 25% and 35% of the

candidate trajectories. In extreme cases, this figure extends to

8% and 100%, respectively. The ratio is strongly dependent on

the complexity of the scene: the closer together the pedestrians

move, the more candidates will be created. These are also the

cases where a greedy maximization of Eq. (16) fails. When using

the optimization method of [46], we however did not notice any

problems with false local maxima. The selected tracks provide

important information about the observed pedestrians and their

motion through the scene.

Note that in theory, a better approximation can be achieved

by iterating between tracking and object detection. In practice,

this procedure converges after one additional iteration, without

any effect on the final output, mostly due to the rather small

differences between consecutive video frames.

VI. IMPROVING ROBUSTNESS

A. Failure detection

For systems to be deployed in real-life scenarios, failure detec-

tion is an often overlooked, but critical component. In our case,

ignoring odometry failures can lead to erratic tracking behavior,

since tracking relies on correct 3D world coordinates. As tracking

is in turn used to constrain visual odometry, errors are potentially

amplified further. Similarly, the feedback from object tracking as a

spatial prior to detection can potentially lead to resonance effects

if false detections are integrated into an increasing number of

incorrect tracks. Finally, reliance on the ground plane to constrain

object detection may lead to incorrect or missed detections if the

ground plane is wrongly estimated. The proposed system relies

on the close interplay between all components, so each of these

failure modes could in the worst case lead to system instability

and must be addressed.

Visual Odometry. To detect visual odometry failures, we

consider two measures: firstly the deviation of the calculated

camera position from the Kalman filter estimate and secondly the

uncertainty (covariance) of the camera position. Thresholds can

be set for both values according to the physical properties of the

moving platform, i.e. its maximum speed and turn rate. Note that

an evaluation of the covariance is only meaningful if based on

rigid structures. Moving bodies with well distributed points could

yield an equally small covariance, but for an incorrect position.

When dynamic objects are disregarded, the covariance gives a

reliable quality estimate for the feature distribution.

Object Tracking. The employed tracking method by construc-

tion accommodates failure detection and correction. Instead of

taking a final decision at each time step and propagating only

that decision to the next step, the approach builds upon a model

selection framework to optimize tracks over a large temporal

window. At each time instant, the tracking module explores a large

number of concurrent track hypotheses in parallel and selects the

most promising subset. This means that it can compensate for

tracking errors and recover temporarily lost tracks.5

Object Detection and Ground Plane Estimation. These two

components are kept stable by the continuous use of additional

information from stereo depth. Depth measurements are employed

both to support the ground plane estimate and to verify object

detections. Thus, false predictions from the tracking system are

corrected. Additionally, environments in which moving platforms

can safely travel allow for a strong temporal prior P (πt−1) to

smooth measurement noise.

B. Cognitive Feedback from Tracking to Visual Odometry

Besides failure detection, a key component for a robust system

is the close interplay between the different modules. For detection

and tracking, the graphical model provides a principled approach

that by design implements cognitive loops between the two

components. Even though the visual odometry is not directly part

of this model, it can be integrated into this loop. In the following,

we propose a feedback channel from detection-by-tracking to the

5The robustness comes at a cost: in hindsight, the optimal set of trajectories
for a given time may change in the light of new evidence, similar to the MAP
estimate of a particle filter. We therefore employ the method proposed in [31]
in order to keep track of people identities.
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Fig. 10. Trajectory estimation of our system with and without cognitive feedback. (Top) A few frames of a difficult sequence. (Bottom) (Left) Recall/false
positives for single detections with standard VO and VO using feedback. (Right) Trajectory estimates. As can be seen, the proposed feedback greatly stabilizes
the egomotion estimation and leads to improved tracking performance. (Figure best viewed in color)

visual odometry system that increases the latter’s robustness by

introducing semantic information from the scene.

Standard algorithms for visual odometry (VO) assume a pre-

dominantly static scene, treating moving objects just the same as

incorrect correspondences. Most systems use robust hypothesize-

and-test frameworks such as RANSAC or Least-Median-of-

Squares for removing such outliers. Recently, some multi-body

Structure-from-Motion systems have been demonstrated on re-

alistic video scenes [34]. However, those remain constrained to

rigidly moving bodies such as cars and require a sufficient number

of interest points for each model. We show that the use of basic

scene understanding can effectively stabilize visual odometry by

constraining localization efforts on regions that are likely to be

part of the rigid scene.

In order to underline the importance of the proposed integra-

tion, consider the scene shown in Fig. 10, taken from one of

our recordings. Here, our mobile platform arrives at a pedestrian

crossing and waits for oncoming traffic to pass. Several other

people are standing still in its field of view, allowing standard

VO to lock onto features on their bodies. When the traffic

light turns green, everybody starts to move at the same time,

resulting in extreme clutter and blotting out most of the static

background. Since most of the scene motion is consistent, VO

fails catastrophically (as shown in the red curve). This is of course

a worst-case scenario, but it is by no means an exotic case —

on the contrary, situations like this will often occur in practical

outdoor applications (we present another example in the results

section).

Spatial binning for feature selection (as promoted in [38],

[61]) improves the result in two respects: firstly, spatially better

distributed features per se improve geometry estimation. Sec-

ondly, binning ensures that points are also sampled from less

dominant background regions not covered by pedestrians. Still,

the resulting path (shown in blue) contains several physically

impossible jumps. Note here that a spike in the trajectory does

not necessarily have to stem from that very frame. If many

features on moving objects survive tracking (e.g. on a person’s

torso), RANSAC can easily be misled by those a few frames

later. Failure detection using the Kalman filter and covariance

analysis (in green) reduces spiking further, but is missing the

semantic information that can prevent VO from attaching itself to

moving bodies. Finally, the magenta line shows the result using

our complete system, which succeeds in recovering a smooth

trajectory. Detection performance improves as well (bottom row,

left): when measuring recall over false positives per image (FPPI)

on single detections, recall increases by 6% at 0.5 FPPI when

using the cognitive feedback.

The intuition behind our proposed feedback procedure is to

remove features on pedestrians using the output of the object

tracker. For each tracked person, we mask out her/his projection

in the image. If a detection is available for the person in the

current frame, we use the confidence region returned by the object

detector. If this region contains too large holes or if the person is

not detected, we substitute an axis-aligned ellipse at the person’s

predicted position (this procedure is also employed for detectors

that do not provide confidence maps). A few example masks are

shown in Fig. 3. Note that this ellipse is not the same as the

elliptical prior used for the temporal consistency in tracking: the

one used here is directly fed back to the visual odometry in image

coordinates, whereas in tracking, we use an elliptical prior in

ground-plane world coordinates directly in the graphical model.

Given these object masks for a frame, the sampling of corners

is adapted: thresholds are adapted to ensure a constant number of

features, and corners lying on masked pixels are discarded. Even

with imperfect segmentations, this approach improves localization

by sampling the same number of feature points from regions

where one is more likely to find rigid structure.

While this pedestrian crossing example represents a worst-case

scenario for VO, the beneficial effect of the proposed cognitive

feedback can also be seen in less extreme cases. For instance, for

Seq. #2 (see Table II), estimated walking speed before Kalman

filtering only spikes 15 instead of 39 times (in 1,200 frames)

above a practical upper limit of 3 meters/second when using

cognitive feedback. This means that the fallback options are

used less frequently, and in turn that dead reckoning and hence

introduction of drift are reduced. By optimizing the sampling
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Fig. 11. Typical raw detections obtained by applying the detectors of Felzenszwalb et al. [16] (top row) and Dalal & Triggs [10] (bottom row) on Seq. #2
and Seq. #4. The detectors are applied out-of-the-box with a low confidence threshold on images that were rescaled to twice their original size in order to
account for the detectors’ rather large minimum scale.

VO Inliers
Seq. # Frames Dist Standard w/ Feedback
#1 220 12m 30% 40%
#2 1,208 120m 27% 33%
#3 999 110m 39% 41%
#5 950 82m 40% 45%
#6 840 43m 12% 32%

TABLE II

OVERVIEW OF USED TEST SEQUENCES (FRAMES, APPROX. TRAVELLED

DISTANCE), ALONG WITH AVERAGE PERCENTAGE OF VO INLIERS. THE

COGNITIVE FEEDBACK CONSISTENTLY IMPROVES THE INLIER RATIO,

ESPECIALLY IN HIGHLY DYNAMIC SCENES (#1,#6).

locations, the feedback generally improves the feature distribution

and thus also the number of inliers. This can be seen in Table II

for several test sequences (the other sequences will be introduced

below).

VII. EXPERIMENTS

In order to evaluate our mobile vision system, we applied it

to five additional sequences, showing strolls or drives through

busy pedestrian zones. In total, those sequences contain 5,017

frames, corresponding to more than 6 minutes. All sequences were

acquired with the platforms seen in Fig. 2 and consist of two

synchronized video streams recorded at 13–14 fps.6

The first test sequence (“Seq. #2”) extends over 1,208 frames.

We manually annotated all visible pedestrians > 60 pixels in

every fourth frame, resulting in 1,894 annotations. The second

sequence (“Seq. #3”) contains 5,193 annotations in 999 frames

and considerably worse contrast. Both of those sequences were

recorded with the child stroller setups shown in Fig. 1(left and

middle). The third test sequence (“Seq. #4”) has 800 frames and

was recorded from a car passing through a crowded area, where it

had to stop a few times to let people pass. The viewpoint is quite

different, and faster scene changes result in fewer data points from

which to estimate trajectories. Again, we annotated pedestrians

in every fourth frame, resulting in 960 annotations. Finally, as

a demonstration of the breaking points of our system, we show

6All test sequences, including annotations, are available from http://

vision.ee.ethz.ch/˜aess/. We also provide all result videos at http://

vision.ee.ethz.ch/˜aess/pami08.
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Fig. 12. Left: Influence of center/scale sampling and σh on performance. In
all future experiments, we use 3×3 sampling and σh =0.12. Right: Influence of
depth term choice on performance, a parametric distribution performs better.
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Fig. 13. Left: entropy of message from objects to ground plane as a function
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plane as a function of the image area covered by objects (and thus obstructing
view on the ground plane).

two very challenging sequences with fast turns (“Seq. #5”) and

an extreme number of moving pedestrians (“Seq. #6”).

We consider three different detectors in our experiments: the

ISM detector by Leibe et al. [30], the HOG detector by Dalal &

Triggs [10], and the recently proposed part-based HOG detector

by Felzenszwalb et al. [16]. Since the latter two are constrained by

their rather large minimum scale (96 pixels for [10]), we rescaled

the input images to twice their original size for testing. Note,

however, that this gives them a certain advantage over ISM in

terms of performance. A few sample detections can be seen in

Fig. 11.

For testing, all system parameters are kept the same throughout

all sequences, except for setup-specific parameters such as camera

calibration and height. Another exception is the ground plane prior

for the car platform, which we assume to be Gaussian around the

measured camera height. We measure performance by comparing
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Fig. 14. (Left) Detection performance for the different detectors and system stages on Seq. #2, #3, and #4. (Right) Quantitative tracking results for part of
Seq. #2. (See text for details. This figure is best viewed in color.)

Fig. 15. Exemplary subsequences from Seq.#2. Note the long trajectories and the tracker’s ability to handle temporary occlusions in complex scenarios.

Fig. 16. Tracking results for Seq. #4. This sequence was recorded from a car driving through a crowded city center.
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Fig. 17. Example tracking results for Seqs. #1, #3, and #6 showing strolls through busy pedestrian zones.

generated and annotated bounding boxes and plotting recall over

false positives per image.

A. Validating the Model Parameters

The experiments in this section are performed on the training

sequence using the ISM detector. They are used to determine the

remaining parameters of the graphical model before it is applied

to the test sequences.

First, we consider the standard deviation σh of the size prior,

along with the sampling range {k, ℓ} in which the graphical model

can shift the object center location ci. We consider no sampling,

3×3 (k, ℓ ∈ {−1, 0, 1}), and 5×5 (k, ℓ ∈ {−1,−0.5, 0, 0.5, 1})

sampling. Fig. 12(left) shows the resulting detection performance.

As expected, a higher σh yields better precision at first, but

recall grows too slowly. Due to the increased number of choices

in Belief Propagation, the use of 5×5 sampling steps has also

a negative effect on the performance. By just fixing the object

center, recall is limited, as the algorithm cannot compensate for

misaligned bounding boxes. A 3×3 sampling with σh = 0.12 thus

seems a good compromise.

Second, we experimentally establish how to integrate the depth

cues into our system. For P (ci|di = 1), we consider either

the learned non-parametric distribution P (vi|z(oi) − z(D,bi))

(“npar”) or a normal distribution inferred from Eq. (7) (“par”).

As can be seen from the result plot (Fig. 12(right)), the non-

parametric distribution for P (ci|di = 1) performs worse. This is

mostly due to a relatively small number of samples (especially

at larger depths) for creating the necessary tables, as well as to a

bias introduced by annotations and the training ground plane.

Our probabilistic approach to ground plane estimation was

motivated by the idea that stereo depth based ground plane

estimation and object detection can compensate for each other’s

weaknesses. In order to verify if this is indeed the case, we

present the following experiment. In Fig. 13(left), we measure

the entropy of the incoming messages from the objects to the

ground plane node. As can be seen, the larger the number of

objects, the lower the entropy, i.e., the presence of many objects

constrains the ground plane in a meaningful way. On the other

hand, when there are hardly any objects, most of the depth map

will contain evidence for the ground plane and will thus constrain

it well. This is reflected in Fig. 13(right): the more image area

is covered by objects, the less is covered by the ground plane.

Thus, the entropy of the message from depth map to ground plane

gets higher, as almost all ground planes become equally likely (in

this case, a uniform distribution corresponds to an entropy of 5.3,

indicated by the red dotted line in the plots).
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B. Experimental Evaluation

Fig. 14 compares the single-frame performance for Seqs. #2,

#3, and #4. For all 3 detectors, we plot their raw output (“raw”),

the intermediate result obtained using the reduced graphical model

(“GM”), as well as the final tracker output (“tracker”). In general,

the HOG detector [10] gives the best results in terms of raw

detections, with the part-based model of Felzenszwalb [16] a

close second. ISM detection performance is slightly worse, mostly

due to the fact that is was not run on the double image size

and to its preference for side-views, which are rather rare in

these sequences. As expected, the output of the graphical model

considerably reduces the number of false positives by introducing

scene knowledge, regardless of the raw detection input. Max-

imally reachable recall is hardly affected, i.e. the model only

seldomly discards correct detections. The complete system also

consistently ranks higher than the raw detector output. However,

compared to the intermediate stage, its performance depends on

the scene content. This is due to the nature of the tracker, which

needs a few frames before initializing a track (losing recall) and

which also reports currently occluded hypotheses (increasing false

positives). Thus, depending on the complexity of the original

scene (number of occlusions), the annotator (what is considered

an occlusion?), and the number of missed detections on the basic

level (the only case where the tracker can make up for in recall),

the performance varies. A bounding-box level comparison is thus

not favorable for the tracker.

We therefore also evaluated tracking performance manually in

450 frames of Seq. #2 using similar criteria as described in [57]

(Tab. 14). We consider the number of pedestrians, the number

of trajectories (if a pedestrian is occluded for > 10 frames, we

count a new trajectory), the number of mostly hit trajectories

(>80% covered), mostly missed trajectories (<20% covered), the

number of false alarms, and the number of ID switches (meaning

the tracker drifts from one person to another). On average, 75%

of a trajectory are covered by the tracker. The missed trajectories

belong mostly to pedestrians at smaller scales and to two children

that do not fit the size prior.

For Seq. #3, the authors of [60] report 70% recall at 1 FPPI,

again with a bounding-box level evaluation. While they do not

use stereo data, their approach is a batch process (requiring the

detections of the entire video sequence) and explicitly handles

occlusion. Using the HOG detector, our system performs compa-

rably with 74.4% recall at 1 FPPI.

Example tracking results for Seq. #2 are shown in the first two

rows of Fig. 15. Our system’s ability to track through occlusion is

demonstrated in the top row: please note how the woman entering

from the left temporarily occludes almost every part of the image.

Still, the tracker manages to pick up the trajectory of the woman

on the right again (in red). Results for Seq. #4 can be seen in

Fig. 16. This sequence is considerably harder, as the different

heights for sidewalk and street violate the flatness assumption for

the ground plane. Furthermore, the higher viewpoint brings more

people into view. As can be seen, the system manages to reliably

track people both under fast egomotion and through considerable

occlusions when standing at pedestrian crossings.

Finally, Fig. 17 shows additional tracking results for Seqs.#1,

#3, and #6. Again, our system manages to produce long and stable

tracks in complex scenarios with a considerable degree of occlu-

sion. In the second row, a pedestrian gets successfully tracked

on his way around a few standing people, and two pedestrians

Fig. 18. Typical false negatives (large scale) and false positives (reflections,
trees).

are detected at far distances. The third row again demonstrates

tracking through major occlusion. Finally, the bottom row shows

an example scenario from Seq. #6 with many pedestrians blocking

the camera’s field-of-view. As mentioned above, scenes of this

complexity are at the limit of what is currently possible with our

system.

C. Runtime Performance

Apart from the detectors, the entire system is integrated

in C/C++, with several procedures taking advantage of GPU

processing. By substituting the Belief Propagation based stereo

depth estimation by a fast GPU approximation, we can achieve

processing times of around 300 ms per frame on an Intel Core2

CPU 6700, 2.66GHz, nVidia GeForce 8800 at essentially the same

system accuracy. While the current bottleneck is the detector

stage (all of the tested detectors were run offline and needed

about 30 seconds per image), we want to point out that for the

HOG detector, GPU implementations exist [56], which have the

potential to remove this bottleneck.

VIII. CONCLUSION

In this paper, we have presented an integrated system for multi-

person tracking from a mobile platform. The different modules

(here, appearance-based object detection, depth estimation, track-

ing, and visual odometry) were integrated in a graphical model

and exchanged information using a set of feedback channels.

This close coupling proved to be a key factor in improving

system performance. We showed that special care has to be taken

to prevent system instabilities caused by erroneous feedback.

Therefore, a set of failure prevention, detection, and recovery

mechanisms was proposed. In future work, we plan to investigate

whether it is feasible to apply a control-theoretic approach in

order to handle those components in a unifying framework. This

will however require modeling the non-linearities of third-party

components and catering for the different platforms.

As our experimental evaluation shows, the resulting system

can handle very challenging scenes and track many interacting

pedestrians simultaneously and over long time frames. Finally,

we demonstrated that the entire system can be efficiently im-

plemented. As not all speedup possibilities are explored yet, the

current runtime of 300 ms per frame raises hopes that practical

online experiments in real vehicles will not be too far away

anymore.

In future work, we will try to improve the individual com-

ponents further, both with respect to speed and performance.

For instance, very close pedestrians, for which only part of the

torso is visible, are often missed by the pedestrian detector, as

shown in Fig. 18. A graceful degradation in form of image-

based tracking might be a possibility to prevent system breakdown
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in such cases. Further work is also required to address typical

detection failures, such as false positives on trees or reflections

and missing detections at too large or small scales. In addition,

we plan to take advantage of depth information in order to detect

other kinds of (static and dynamic) obstacles in the vehicle’s path.

Finally, further combinations with other modules, such as world

knowledge inferred e.g. from map services, provide other exciting

feedback possibilities that we plan to investigate in the future.
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