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Abstract. This paper tackles the problem of fitting multiple instances
of a model to data corrupted by noise and outliers. The proposed solution
is based on random sampling and conceptual data representation. Each
point is represented with the characteristic function of the set of random
models that fit the point. A tailored agglomerative clustering, called
J-linkage, is used to group points belonging to the same model. The
method does not require prior specification of the number of models, nor
it necessitate parameters tuning. Experimental results demonstrate the
superior performances of the algorithm.

1 Introduction

A widespread problem in Computer Vision is fitting a model to noisy data: The
RANSAC algorithm is the common practice for that task. It works reliably when
data contains measurements from a single structure corrupted by gross outliers.

When multiple instances of the same structure are present in the data, the
problem becomes tough, as the robust estimator must tolerate both gross outliers
and pseudo-outliers. The latter are defined in [1] as “outliers to the structure of
interest but inliers to a different structure”. The difficulty arise because robust
estimators, including RANSAC, are designed to extract a single model. Sequen-
tial RANSAC – sequentially apply RANSAC and remove the inliers from the
data set as each model instance is detected – has been proposed as a solution,
but [2] argued that the approach is non optimal, and introduced the multi-
RANSAC algorithm. The method is effective (provided that the models do not
intersect each other), but the number of models is user specified, and this is not
acceptable in some applications.

Another popular method based on random sampling and voting is the Ran-
domized Hough Transform (RHT) [3]. It builds an histogram over the parame-
ter space. A minimal sample set is randomly selected and the parameters of
the unique model that it defines are recorded in the histogram. Peaks in the
histogram correspond to the sought model. Its extension to multiple models is
straightforward: they are revealed as multiple peaks in the parameter space.
Hence, RHT does not need to know the number of models beforehand. However,
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RHT suffers from the typical shortcomings of Hough Transform methods, such
as limited accuracy and low computational efficiency. Ultimately, the choice and
the discretization of the parameter space turn out to be crucial.

RHT can be seen as an instance of a more general approach consisting of
finding modes in parameter space (see e.g. [4]). Instead of quantize the para-
meter space and accumulate votes, one can map data into the parameter space
through random sampling and then seek the modes of the distribution with
mean-shift [5]. This, however, is not an intrinsically robust technique, even if it
can be robustified with outliers rejection heuristics. Moreover, the choice of the
parametrization is critical, as in RHT.

In summary, RANSAC is very robust, but it is not suited to deal with multiple
structures. Mode finding in parameter space (and RHT), on the contrary, copes
naturally with multiple structures, but cannot deal with high percentage of gross
outliers, especially as the number of models grows and the distribution of inliers
per model is uneven. Also the algebraic technique presented in [6] is effective in
estimating multiple models, but it is not robust to gross outliers.

Recently [7] proposed a novel method for estimating multiple structures based
on the analysis of the distribution of residuals of individual data points with
respect to the hypotheses, generated by a RANSAC-like sampling process. It
turns out that the modes of the residuals distribution reflects the model in-
stances. With respect to RANSAC and other robust methods (such as LMeds,
for example) this entails a change of perspective: “studying the distribution of
the residuals for each data point instead of studying the distribution of residuals
per each hypothesis” [7].

Residuals for each data point have peaks corresponding to the true models
because hypotheses generated with random sampling tend to cluster around the
true model, a fact that is also at the basis of RHT. The method, in principle,
can discover the number of models automatically as in RHT and is effective
as RANSAC. However, finding modes ends up to be cumbersome, as proved in
our experiments. One reason is that the peak corresponding to a given model
becomes less localized as the point-model distance increases. As a result, the
rightmost modes in the histogram are usually drowned in the noise.

In the same spirit of RHT and [7] we exploit clustering of the hypotheses.
However we do not work in the parameter space, which is at the root of the
shortcoming of Hough Transform, nor in the residual space, which leads to the
difficulties of modes estimation [7]. We adopt instead a conceptual representa-

tion: each data point is represented with the characteristic function of the set
of models preferred by that point1. Multiple models are revealed as clusters in
the conceptual space. Experimental comparison with sequential RANSAC, mul-
tiRANSAC, residual histogram analysis [7] and mean-shift is favorable to our
algorithm.

1 According to [8] the posterior probabilities of an object x given C classes form a
similarity conceptual representation: [P (x| class 1) · · · P (x| class C)].
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2 Method

The method starts with random sampling: M model hypothesis are generated
by drawing M minimal sets of data points necessary to estimate the model,
called minimal sample sets (MSS). Then the consensus set (CS) of each model
is computed, as in RANSAC. The CS of a model is the set of points such that
their distance from the model is less than a threshold ε.

Imagine to build a N × M matrix where entry (i, j) is 1 if point i belongs to
the CS of model j, 0 otherwise. Each column of that matrix is the characteristic
function of the CS of a model hypothesis. Each row indicates which models a
points has given consensus to, i.e., which models it prefers. We call this the
preference set (PS) of a point. Figure 1 shows an example of such a matrix in a
concrete case.
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Fig. 1. Right: the data consist of 250 points on five segments forming a star. Left:
Preference matrix. The rows are points (ordered by cluster), the columns are models
(ordered by cluster size).

The characteristic function of the preference set of a point can be regarded as a
conceptual representation of that point. Points belonging to the same structure
will have similar conceptual representations, in other words, they will cluster
in the conceptual space {0, 1}M . This is, again, a consequence of the fact that
models generated with random sampling cluster in the hypothesis space around
the true models.

2.1 Random Sampling

Minimal sample sets are constructed in a way that neighbouring points are se-
lected with higher probability, as suggested in [9,2]. Namely, if a point xi has
already been selected, then xj has the following probability of being drawn:

P (xj |xi) =

{

1
Z

exp −
||xj−xi||

2

σ2 if xj �= xi

0 if xj = xi

(1)

where Z is a normalization constant and σ is chosen heuristically.
Then for each points its preference set is computed, as the set of models such

that the distance from the point is less than the inlier threshold ε (same as
RANSAC).
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The number M of MSS to be drawn is related to the percentage of outlier
and must be large enough so that a certain number (at least) of outlier-free MSS
are obtained with a given probability for all the models. Please note that if this
condition is verified for the model with less inliers, it is automatically verified
for all the other models.

Let S be the number of inliers for a given model and N be the total number
of points. The probability of drawing a MSS of cardinality d composed only of
inliers is given by:

p = P (E1)P (E2|E1) . . . P (Ed|E1, E2 . . . Ed−i) (2)

where Ei is the event “extract an inlier at the i-th drawing”. In the case of
uniform sampling P (Ei|E1, E2 . . . Ei−1) = S−i+1

N−i+1 . In our case, the first point
is sampled with uniform probability, hence P (E1) = S/N , while the others
are sampled with the probability function (1), therefore, after expanding the
normalization constant Z, the conditional probability can be approximated as

P (Ei|E1, E2 . . . Ei−1) =
(S−i+1) exp−α2

σ2

(N−S−i+1) exp−ω2

σ2 + (S−i+1) exp −α2

σ2

i = 2 . . . d

(3)
where α is the average inlier-inlier distance, and ω is the average inlier-outlier
distance. If S ≫ d then

p ≃ δ

(

δ exp −α2

σ2

(1−δ) exp −ω2

σ2 + δ exp −α2

σ2

)d−1

. (4)

where δ = S/N is the inlier fraction for a given model. Therefore, assuming that
ω is larger than α, the sampling strategy increases the probability of extracting
an outlier-free MSS, as the intuition would also suggests.

Finally, the probability of drawing at least K outlier-free MSS out of M , for
a given model, is given by [7]:

ρ = 1 −

K−1
∑

k=0

(

M

k

)

pk(1 − p)M−k. (5)

This equation is used to compute the required number of samples M for a given
confidence ρ and a given K. The value of δ in (4) must be set to the smallest
inliers fraction among all the models. Values of ρ vs M are shown in Fig. 2.

2.2 J-Linkage Clustering

Models are extracted by agglomerative clustering of data points in the conceptual
space, where each point is represented by (the characteristic function of) its
preference set.

The general agglomerative clustering algorithm proceeds in a bottom-up man-
ner: Starting from all singletons, each sweep of the algorithm merges the two
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Fig. 2. Plot of ρ vs M for different values of δ with K = 25, α2 = 0.5σ2β2 = 3.0σ2

clusters with the smallest distance. The way the distance between clusters is
computed produces different flavours of the algorithm, namely the simple link-
age, complete linkage and average linkage [10].

We propose a variation that fits very well to our problem, called J-linkage (see
Algorithm 1). First the preference set of a cluster is computed as the intersection

of the preference sets of its points. Then the distance between two elements (point
or cluster) is computed as the Jaccard distance between the respective preference
sets.

Definition 1 (Jaccard distance). Given two sets A and B, the Jaccard dis-

tance is

dJ(A, B) =
|A ∪ B| − |A ∩ B|

|A ∪ B|
.

The Jaccard distance measures the degree of overlap of the two sets and ranges
from 0 (identical sets) to 1 (disjoint sets).

The cut-off value is set to 1, which means that the algorithm will only link
together elements whose preference sets overlap. Please note that the cut-off dis-
tance is not data dependent, but defines a qualitative behaviour of the J-linkage
algorithm. Indeed, as a result, clusters of points have the following properties:

– for each cluster there exist at least one models that is in the PS of all the
points (i.e., a model that fits all the points of the cluster)

– one model cannot be in the PS of all the points of two distinct clusters
(otherwise they would have been linked).

Each cluster of points defines (at least) one model. If more models fit all the
points of a cluster they must be very similar. The final model for each cluster of
points is estimated by least squares fitting.

Outliers emerge as small clusters. Depending on the application, one may set
different rejection thresholds. If the percentage of outliers is known or can be
estimated (as it is assumed in RANSAC), one may reject all the smallest clusters
up to the number of outliers.
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Algorithm 1. J-linkage

Input: the set of data points, each point represented by its preference set (PS)
Output: clusters of points belonging to the same model

1. Put each point in its own cluster.
2. Define the PS of a cluster as the intersection of the PSs of its points.
3. Among all current clusters, pick the two clusters with the smallest Jaccard

distance between the respective PSs.
4. Replace these two clusters with the union of the two original ones.
5. Repeat from step 3 while the smallest Jaccard distance is lower than 1.

3 Experiments

We performed comparative experiments with sequential RANSAC, multi
RANSAC, residual histogram analysis [7] (henceforth RHA) and mean-shift
(MS). In all the experiments each model consists of 50 inliers, corrupted by
variable Gaussian noise and variable outliers percentage. The data sets consist
of segments in several configuration: star (star5 and star11 ), circles (circle5 ),
and horizontal (stair4 ). The latter was used also in [2].

All the methods being compared are based on random sampling, hence we
used the same sampling strategy (Eq. 1) and number of samples (5000) in all
the experiments. The scale parameter σ in the sampling strategy is 0.2 in all
the experiments but stair4, where it has been set to 0.05. The inlier threshold
ε – variable with the noise level – was the same for sequential RANSAC, multi-
RANSAC and our method. The parameters needed by MS (bandwidth) and by
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Fig. 3. star5 set perturbed with Gaussian noise (σn = 0.0075) and no outliers
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Fig. 4. star5 set perturbed with Gaussian noise (σn = 0.0075) and 50% outliers
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Fig. 5. star11 set perturbed with Gaussian noise (σn = 0.0075) and 50% outliers

RHA have been tuned manually to optimize performances. The best outcome
out of several trials have been recorded. As multiRANSAC requires prior spec-
ification of the number n of models, for the sake of fairness we used the same
information also with the other algorithms: only the best or strongest n models
among the ones produced by the algorithm were considered. For example, with
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J-linkage we retained the n largest clusters, and the same for MS. In RHA we
sought the n strongest modes.

The results on synthetic data are reported in Figures 3, 4, 5, 6, 7. In summary,
we see that MS on the star5 data set always produces the correct result, whereas
all the other methods break when the outlier percentage grows to 50%. If the
number of models increases (star11 data set), however, only J-linkage produces
the correct result, at the same level of noise and outliers. Also on the circle5 data
set, with random noise and 50% outliers, J-linkage is the only one that works
correctly. On the stair4 data set with and 60% outliers both multiRANSAC and
J-linkage yield the correct result.
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Fig. 6. circle5 set perturbed with Gaussian noise (σn = 0.0075) and 50% outliers

We noted that multiRANSAC systematically fails when the models intersect
each other (the problem is more evident when the models are cyclically intersect-
ing). The reason is that the greedy approach adopted by multiRANSAC tries to
maximize the number of total inliers, implicitly assuming non intersecting models.

As an example of a real case, Fig. 8 shows the results of fitting planes to a
cloud of 3D points. They were produced by a Structure and Motion pipeline
[11] fed with a set of images of the church of Pozzoveggiani (Italy). Despite the
fact that gross outliers are absent, pseudo-outliers and the uneven distribution
of points among the models (ranging from 9 to 1692) challenges any model
fitting algorithm. Indeed, our method is the only one that produces the correct
result. To appraise further the result of J-linkage, Fig. 8 show two images of
Pozzoveggiani church with points marked according to the plane they belong to.

The MATLAB code is available for download from the web2.

2 http://profs.sci.univr.it/˜fusiello/demo/jlk/
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Fig. 7. stair4 set perturbed with Gaussian noise (σn = 0.0075) and 60% outliers
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Fig. 8. “Pozzoveggiani” dataset. 3D planes extracted by J-linkage and other algorithms
viewed from the zenith.
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Fig. 9. Two images of the “Pozzoveggiani” dataset. Points belonging to different planes
according to J-linkage are plotted with different markers.

4 Discussion

The experiments showed that J-linkage compares favorably with other state-of-
the-art methods. Our insight about the reason for this is that it derives the best
features from the competing algorithms. Like RANSAC it is robust because only
the points below the outlier threshold matters. Compared to RHA, it consider
only the the first bin of the residuals histogram, while RHA takes the whole the
histogram into account, which is corrupted by outliers. Like RHA, however, our
conceptual representation casts the problem from the perspective of the data
point, which is a strength of RHA.

The discovery of multiple models is devolved to clustering, thereby gaining a
global view of the problem, whereas sequential RANSAC and multiRANSAC are
forced to make local, greedy choices. Clustering, however, is not an intrinsically
robust technique, in general. J-linkage, instead, is inherently robust, because it
is based on the intersection of preference sets, hence it favours the growing of
clusters made up of inliers only. On the contrary, modes of the residual histogram
or of the parameters distribution are difficult to locate, especially when the
number of gross outliers and pseudo-outliers grows, and the fraction of outlier-
free sets generated by the random sampling decreases accordingly.
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5 Conclusions

We described a novel method for fitting multiple instances of a model to data
corrupted by noise and outliers. Each point is represented with the characteristic
function of its preference set and multiple models are revealed as clusters in this
conceptual space. A new agglomerative clustering algorithm, called J-linkage,
have been specifically devised. The method does not require prior specification of
the number of models, nor it necessitate manual parameters tuning. The only free
parameter is the consensus threshold, as in RANSAC. Our method demonstrated
its effectiveness in comparison with state-of-the-art competing algorithms.
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