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In this paper, we embed the minimization scheme of an automatic 3D non-rigid regis-
tration method in a multiscale framework. The initial model formulation was expressed
as a robust multiresolution and multigrid minimization scheme. At the finest level of
the multiresolution pyramid, we introduce a focusing strategy from coarse-to-fine scales
which leads to an improvement in the accuracy of the registration process. A focusing
strategy has been tested for a linear and a non-linear scale-space. Results on real 3D
ultrasound images are discussed.
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1. Introduction

Many image-guided operation systems are developed for minimally invasive surgery
especially in the field of neurosurgery. However, they may not accurately depict the
position of the specific anatomical structures due to the intraoperative movements
of the brain, so-called the brain shift. This shift is caused by a variety of surgical
factors including Cerebrospinal Fluid (CSF) drainage, tumor resection, hyperventi-
lation, edema and hemorrhage. This phenomenon may change the geometry of brain
structures and it may become a serious problem since preoperative images, like CT
and MR, cannot be used anymore as a reference. The registration of preoperative
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MRI to intraoperative 3D ultrasound is the main motivation of the presented work.
Intraoperative 3D ultrasound imaging can provide real-time images of the brain
during surgery and enables us to determine the extent of the intraoperative struc-
ture shift between the stage prior to and during surgery. For this purpose, several
US acquisitions are necessary and particularly, one has to be done before the open-
ing of the dura which will provide us an imaging of the same topology of structures
that can be identified in the preoperative MRI. For the sake of clarity, at this point
we have to mention that in this work we have not dealt with the problem of MR
and US registration. The construction and use of such an intraoperative ultrasound
set-up has also been reported by other authors.1,2,3

The problem of registration in ultrasound images has been treated by different
researchers. Morcy and Von Ramm4 investigated the implementation of a correla-
tion search scheme to estimate the 3D motion vectors and they have demonstrated
the advantages over 2D correlation search using the Sum Absolute Difference (SAD)
as a similarity measure. Strintzis and Kokkinidis5 introduced a maximum likelihood
block matching technique which correspond to an accurate statistical description of
ultrasound images. In the work of Yeung et al.6 a multi-level motion model-based
approach to ultrasonic speckle tracking has been developed that addresses the in-
herent trade-offs associated with traditional single-level block matching methods.
Furthermore, an adaptive mesh has been proposed for non-rigid tissue motion es-
timation from ultrasound image sequences.7 A deformable blocking matching algo-
rithm has been developed which takes into consideration both similarity measures
and strain energy caused by mesh deformation. Pennec et al.8 disseminated results
regarding 3D ultrasound registration using the demon’s algorithm and a straight-
forward minimization of the sum of square of intensity differences criterion. This
registration approach along with an exploitation of the temporal continuity of the
deformation led to a suggestion for a tracking algorithm.9 Arbel et al.10 followed a
strategy based on cross-correlation measurements to register preoperative US to in-
traoperative US. The preoperative data are “pseudo-ultrasound” images that were
based on preoperative segmented MRI and were constructed using the predicted
appearance of neuroanatomical structures in ultrasound. As an extension to the
standard Bayesian image analysis paradigm, King et al.11 proposed a new tech-
nique that incorporates a multiscale approach. This new technique is demonstrated
by applying it to the problem of compensating for soft tissue deformation of pre-
segmented surfaces for imageguided surgery using 3D ultrasound. The solution is
regularized using the knowledge of the mean and Gaussian curvatures of the surface
estimate. Accurate estimates of the deformed surfaces were successfully computed
using the algorithm, based on prior probabilities defined using a minimal amount
of human intervention.

Non-rigid registration can be considered as a motion estimation problem which
can be solved by minimizing an objective function. This function is the energy which
usually consists of two terms. The first term represents the interaction between
the unknown variables and the data while the second one explores some kind of
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prior information. Within this context, Mémin and Pérez12 proposed a motion
estimator which makes use of the optical flow constraint along with an associated
smoothness regularizing prior. Both terms have been constructed with an outlier
rejection mechanism, originated from robust statistics. For the minimization of their
function they used a multiresolution and multigrid scheme. The multiresolution part
is dedicated to grasp large displacements while the multigrid approach is invoked
for accelerating the estimation. The extension of this work to treat 3D data has
been done by Hellier et al.13

In this paper, we embed the above mentioned minimization scheme in a multi-
scale framework aiming to improve the estimates by making them less sensitive to
the noise of acquisition. In the same spirit, Weber and Malik14 proposed a model
for multiscale motion estimation. They convolved an image sequence with a set of
linear, separable spatiotemporal filter kernels and applied a robust version of the
total least squares on the filtered responses in a two step method. In the first step,
every scale group individually form an estimate for the velocity. Checking of the
validity of the estimate is performed and all the remaining valid estimates are com-
bined into a second total least squares formulation. This approach cannot guarantee
the computation of a dense deformation field due to production of holes (lack of
estimates) in the case that different spatial scales overlap regions of different mo-
tions due to a motion boundary. Niessen et al.15 reported a reconciliation of optical
flow and scale-space theory. They computed both zeroth and first order optic flow
at multiple spatial and temporal scales and they applied a scale selection criterion
which attributes in each pixel the optic flow at the chosen scale. In this work, the
proposed model was centralized on the data-derived information without suggesting
the incorporation of any explicit physical knowledge. Alvarez et al.16 proposed a
method that is much related to the method that we introduce. They have presented
an interpretation of a classic optical flow method by Nagel and Enkelmann17 as a
tensor-driven anisotropic diffusion approach. They avoided convergence to irrele-
vant local minima by embedding their method into a linear scale-space framework.
However, they cannot cope with possible modifications of structures’ topology.

Non-rigid registration of 3D ultrasound images poses a significant challenge due
to the following shortcomings: (i) Low SNR of ultrasound images which are charac-
terized by Rayleigh-governed speckle noise and corrupted by Gaussian-distributed
electronic noise. (ii) Motion ambiguities which arise when there is insuffcient repre-
sentation of spatial information. This holds in regions of image saturation or spec-
ular reflection and in homogeneous regions of weak acoustic scatters. (iii) Speckle
decorrelation. Since speckle patterns result from the constructive and destructive in-
terference of ultrasonic echoes from numerous subresolvable elements, non-uniform
movement of these scatters in the tissue volume can cause temporal decorrelation
of the speckle patterns. The algorithm which is presented in this paper is designed
to overcome the above shortcomings and they lead to an accurate registration.

The paper is organized as follows. In Sec. 2 we present in detail the multi-
resolution and multigrid optimization scheme. Section 3 describes the multiscale
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framework that the optimization scheme is embedded. Section 4 is dedicated to the
experimental results and conclusions are drawn in Sec. 5.

2. Primary Registration Method

2.1. Formulation of the registration problem

In this section, we present the primary registration method that has been pro-
posed by Hellier et al.13 In this work, the registration problem is considered as a
motion estimation problem. The optical flow hypothesis, introduced by Horn and
Schunck,18 leads then to the minimization of the following cost function:

U(w; f) =
∑

s∈S

[∇f(s, t) · ws + ft(s, t)]2 + α
∑

〈s,r〉∈C
‖ws − wr‖2 , (1)

where s is a voxel of the volume, t is the temporal index of the volumes, f is
the luminance function, w is the expected 3D displacement field, S is the voxel
lattice, C is the set of neighboring pairs and α controls the balance between the two
energy terms. The first term is the first order Taylor-expansion of the luminance
conservation equation and it represents the interaction between the field and the
data, whereas the second term expresses the smoothness constraint.

Shortcomings of this formulation are well-known:

(a) The optical flow constraint (OFC) is not valid in cases of large displacements
because of the linearization.

(b) The OFC might not be valid everywhere, because of the noise, the intensity
non-uniformity, and occlusions.

(c) The “real” field probably contains discontinuities that might not be preserved.

To cope with the (b) and (c) limitations, the quadratic cost has been replaced by
robust functions. To face the problem (a), a multiresolution and multigrid strategy
has been designed.

2.2. Robust estimators

Cost function (1) does not make any difference between relevant data and
inconsistent data, and it is sensitive to noise. Therefore, robust M-estimators have
been introduced in the formulation.19 An M-estimator is a function ρ that is in-
creasing on R

+, such that (i) φ(u) �= ρ(
√
u) is strictly concave on R

+ and (ii)
limx→∞ ρ′(x) <∞. The main benefit of robust M-estimators is the semi-quadratic
formulation that can be deduced from (i):

∃ψ ∈ C1([0,M ],R) : ∀u, ρ(u) = min
z∈[0,M ]

(zu2 + ψ(z)) . (2)

Two robust estimators have therefore been introduced: the first one on the data
term (ρ1) and the second one on the regularization term (ρ2). According to Eq. (2),
the minimization of the cost function (1) is equivalent to the minimization of the

augmented function, noted
	

U :
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U (w, δ, β; f) =
∑

s∈S

{δs(∇f(s, t) · ws + ft(s, t))2 + ψ1(δs)}

+α
∑

〈s,r〉∈C

{βsr(‖ws − wr‖)2 + ψ2(βsr)} , (3)

where δs and βsr are auxiliary variables acting as “weights”. This cost function has
the advantage to be quadratic with respect to w. Furthermore, when the adequation
of data with the model is not correct, its contribution gets lower as the associated
weight δs decreases (δs = φ′1([∇f(s, t) · ws + ft]2), and function φ′ decreases as
well, making this formulation more robust.

2.3. Multiresolution and multigrid minimization

In order to cope with large displacements, a classical incremental multiresolution
procedure has been developed. A pyramid of volumes {fk} is constructed by succes-
sive Gaussian smoothing and subsampling. At the coarsest level, the linearization of
the conservation equation can be hopefully used. For the next resolution levels, only
an increment dwk is estimated to refine estimate ŵk, obtained from the previous
level (Eq. (4)).

	

Uk (dwk, δk, βk; fk, ŵk) =
∑

s∈Sk

{δk
s (∇fk(s+ ŵk

s , t2) · dwk
s + fk(s+ ŵk

s , t2)

− fk(s, t1))2 + ψ1(δk
s )}+ α

∑

〈s,r〉∈Ck

{βk
sr(‖(ŵk

s + dwk
s)

− (ŵk
r + dwk

r )‖)2 + ψ2(βk
sr)} . (4)

Furthermore, at each level of resolution, a multigrid minimization based on
successive partitions of the initial volume is achieved (see Fig. 1). For each cube of a
given grid level � (partition of cubes), a 12-parametric increment field is estimated.
The result over the grid level is a rough estimate of the desired solution, and it
is used to initialize the next grid level. This hierarchical minimization strategy
improves the quality and the convergence rate.

The partition at the coarsest grid level is initialized with a binary segmentation
mask of the structure of interest (template). The octree partition which is thus
defined is anatomically relevant. When we change the grid level, each cube is divided
adaptively. The criterion of subdivision may be either the measure of the way that
model fits the data, or a prior knowledge such as the presence of an important
anatomical structure where the estimation must be accurate. Consequently, we can
distinguish between the regions of interest where the estimation must be precise
and the other regions where computation efforts are useless.
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Fig. 1. Example of multiresolution/multigrid minimization. For each resolution level (on the
left), a multigrid strategy (on the right) is performed. For clarity reasons, this is a 2D illustration
of our 3D algorithm.

3. Embedded Multiscale Framework

The multigrid scheme which has already been described is bound to a good initial-
ization of the flow. To improve the quality of the initial estimates we propose to
incorporate the scale of image measurements by exploring the scale-space of the
data-derived information. This improvement is expected to come due to the ma-
nipulation of data in different scales with reduced speckle noise that is inherent to
the echographic data. Specifically, since we deal with the optical flow constraint we
experiment with two scale-spaces which are characterized by the luminance conserv-
ing principle. These are the linear scale-space20 and the one which is constructed
by the regularized version21 of the Perona–Malik algorithm.22 Let f0

τ be the lumi-
nance of a voxel at the finest spatial resolution which has been diffused at the scale
quantization level τ . Then, a linear scale-space is denoted as:

fτ = fo ∗Gσ , (5)

where ∗ denotes convolution, fo is the original image and Gσ is the Gaussian kernel
of standard deviation σ.

If no scale is preferred, the natural way to travel through a linear multiscale
can be realized via a sampling which should follow a linear and dimensionless scale
parameter δλ which is related to σ by :

στ = eλ0+τδλ , (6)

where τ denotes the quantization levels.
The regularized Perona–Malik scale-space in its discretized form is denoted as:

fτ = fτ−1 + λ
∑

i

ci(Gσ ∗∆if) , (7)

where i ∈ {N,S,E,W,F,B} and N,S,E,W,F,B denote Northern, Southern,
Eastern, Western, Forward and Backward neighbor, respectively.

ci = g‖Gσ ∗∆if‖ , (8)
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where ci is a decreasing function of the image gradient that has been determined
at a scale σ to compensate for noise and to assure well-posedness of the diffusion
equation.

∆if = fi − f	 where f	 denotes the central pixel in a 6-neighbor, 3-dimensional
mask:

g‖∆if‖ = e−(
∆if2

k ) , (9)

g‖∆if‖ = 1

(1 + ∆if2

k )
, (10)

where k is a contrast parameter and can be interpreted as a threshold, which
determines whether a gradient is significant or not.

For non-linear diffusion schemes there is no global scale parameter because they
adapt the diffusion locally. However, we may synchronize their scale parameter with
the one of linear diffusion. This holds due to the fact that the scalar diffusivity ci in
Eq. (8) is constructed such that ‖c‖ ≤ 1. Therefore, an upper bound is derived for
the nonlinear schemes which permits us to recall the relation between the evolution
parameter and the standard deviation of the Gaussian τn = (1/2)σ2

n for the creation
of the regularized Perona–Malik scale quantization space.23

The construction of any of the above scale-spaces leads to a stack of volumes
{f0

τ } which is the source of the data measurements for every successive quantiza-
tion scale during a coarse-to-fine parameter estimation. This can be explained by
Eq. (11).

	

U0
τ (dw

0, δ0, β0; f0
τ , ŵ

0) =
∑

s∈S0

{δ0s(∇f0
τ (s+ ŵ0

s, t2) · dw0
s + f0

τ (s+ ŵ0
s, t2)

− f0
τ (s, t1))

2 + ψ1(δ0s)}+ α
∑

〈s,r〉∈C0

{β0
sr(‖(ŵ0

s + dw0
s)

− (ŵ0
r + dw0

r)‖)2 + ψ2(β0
sr)} , (11)

f0
τ denotes the data measurement at the finest pyramid resolution and the τ scale
quantization level.

Our goal is the estimation of parameter ŵ0 which is refined at each quantization
scale by only an increment of dw0

s. Minimization remains in the same multigrid
fashion.

4. Experimental Results

4.1. Artificially deformed US3D volumetric data

In this work, our efforts were motivated by the application of tissue deformation
tracking which can result in brain shift correction. In view of this, we have conducted
a number of experiments using an original 3D ultrasound image (256× 256× 128)
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of the brain of an 8-month old baby (Fig. 2) and its deformed counterpart (Fig. 3).
In the ideal case, the accuracy of our algorithm in registering volumes should be
tested in a situation that the actual motion should be known. Due to the diffculty
in producing known non-rigid motion fields in biological tissues we have chosen

Fig. 2. Preoperative 3D ultrasound.

Fig. 3. Simulated intraoperative (deformed) 3D ultrasound.
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to simulate this phenomenon. We have created an artificially deformed volume by
using a Thin Plate Spline deformation.24 Although this approach produces a global
smooth deformation, we were very careful in the distribution of the point landmarks
over the whole volume to cope with local deformations. The deformed volume and
the produced velocity field can be seen in Figs. 3 and 4, respectively.

Fig. 4. The artificial deformation field.

Fig. 5. Difference between the original and the deformed volume.
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Fig. 6. Difference between the original and the reconstructed volume.

In our experimental work we strived towards an overall comparison between the
primary non-rigid registration model of Sec. 2 and the model with an embedded
scale-space framework of Sec. 3. Both qualitative and quantitative evaluation have
been conducted. As a qualitative measure we have chosen to use the difference
image between the original volume and the reconstructed one. All of the registra-
tion models produced difference images without significant differences, implying a
visually correct registration (Fig. 6). For the sake of comparison we provide the
difference image between the original volume and the deformed one in Fig. 5. The
difference image in Fig. 6 has appeared after the application of the algorithm which
uses the embedded regularized P&M scale-space.

For a quantitative evaluation we have considered the following measures: (i)
Mean Squared Error (MSE), where the error is expressed as the difference between
the original and the reconstructed volume; (ii) the average angular error between
the correct

→
vc and the estimated

→
ve velocity: ψ = arccos(

→
vc · →

ve) along with (iii) its
standard deviation.

Table 1 demonstrates the improvement in velocity estimation which has been
achieved for the all the three above measures in the case of the embedded scale-
space framework for both the linear and the regularized P&M case. The latter one
has a slightly better behavior than the linear one.

Our basic argumentation for the advantageous use of a multiscale framework
was that it can lead to an improvement in the quality of the initial estimates at
the multigrid optimization scheme which subsequently will improve the quality
of the final estimates. For the sake of clarity, Fig. 7 shows in terms of MSE the
improvement that occurs during successive multigrid levels at the finest spatial
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Table 1. Quantitative comparison measures.

Scale-space Framework MSE Mean Angular Error Std Deviation

Without multiscale 10.2772 14.112656◦ 24.254787◦

Embedded linear 9.73472 13.878700◦ 23.987515◦

Embedded regularized P&M 9.6945 13.791579◦ 23.959972◦

123456

Multigrid levels

M
S

E

9

10

11

12

13

14

15

16

without multi-scale

Linear scale-space

Regul. P-M scale-space

Fig. 7. MSE improvement with respect to multigrid levels at the finest spatial resolution
(artificially deformed volumetric data).

resolution for all the three examined cases. We may observe that in the case of the
absence of a multiscale framework we get an initial estimate with an MSE that
equals to 15.1756 while in the case of linear scale-space we get an initial estimate
with an MSE that equals to 11.9146 and in the case of regularized P&M scale-space
we get an initial estimate with an MSE that equals to 12.1082. The higher quality of
the initial estimates was preserved till the final stage at the multigrid optimization
scheme.

4.2. US3D volumetric data with real deformations

To validate the proposed method in the case of real deformations we conducted
experiments with US3D volumetric datasets that have been produced out of a pig
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brain at a postlethal status. Deformation has been invoked by inflating a balloon
catheter that caused a volume increase by 0.25 cm3. An instance of the acquired
volumetric data (100× 100× 80) can be seen in Figs. 8 and 9. Similar to Sec. 4.1,
we examine the quality of the registration, both qualitatively and quantitatively.

Fig. 8. Original 3D ultrasound data.

Fig. 9. Deformed 3D ultrasound data.
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Qualitatively, a visual inspection shows that our registration is successful (Fig. 11).
The real deformation field as it has been reconstructed by the proposed method
is depicted in Fig. 10. Furthermore, the produced differences between the original
volume and the reconstructed one are essentially diminished as it can be seen in

Fig. 10. The deformation field.

Fig. 11. The reconstructed 3D ultrasound data.
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Fig. 13, compared to the differences produced between the original volume and its
deformed counterpart (Fig. 12). For the sake of clarity, the values of differences
have been augmented by 64 in both Figs. 12 and 13. In the case of a quantitative
comparison, we consider the MSE measure (the error is expressed as the difference

Fig. 12. Difference between the original and the deformed volume.

Fig. 13. Difference between the original and the reconstructed volume.
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123456
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90 without multi-scale

Linear scale-space

Regul. P-M scale-space

Fig. 14. MSE improvement with respect to multigrid levels at the finest spatial resolution
(volumetric data with real deformations).

between the original and the reconstructed volume) as the indicator of our reg-
istration validity. Furthermore, we demonstrate the improvement of the velocity
estimation in terms of MSE during the complete multigrid level set at the spatial
resolution for all the three examined cases. In agreement to our experiments with
artificial deformations in Sec. 4.1 the initial higher quality of the estimates was
preserved till the final stage of the multigrid optimization scheme (Fig. 14).

5. Conclusions and Perspectives

In this paper, we propose a methodology which embeds a multiscale framework in
a multiresolution and multigrid optimization scheme that can lead to a success-
ful non-rigid registration of 3D ultrasound images. It grasps its power from three
fundamental features which operate as the remedy in the basic shortcomings of ul-
trasound images. Its multigrid nature responds to motion ambiguities in the case of
insuffcient representation of spatial information, its estimate smoothness functional
term can fight the speckle decorrelation which characterizes ultrasound while low
SNR can be less disastrous for the estimates in the case of embedding a multiscale
framework.

The embedded multiscale framework has demonstrated a superior performance
compared to the primary registration method (Sec. 2) for both an isotropic and
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an non-isotropic scale-space. Between the two scale-spaces, we have expected that
the regularized P&M framework will be by far more robust and may even perform
better. Our current experiments have shown that the regularized P&M performs
slightly better but more experimental studies should be conducted to show agree-
ment or not to the performance assumptions (on precision and robustness).
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