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Robust Multivariate Regression

Peter J. Rousseeuw, Stefan Van Aelst, Katrien Van Driessen
and Jose Agulló

September 17, 2003

Abstract

We introduce a robust method for multivariate regression, based on robust estima-
tion of the joint location and scatter matrix of the explanatory and response variables.
As robust estimator of location and scatter we use the minimum covariance determi-
nant (MCD) estimator of Rousseeuw (1984). Based on simulations we investigate the
finite-sample performance and robustness of the estimator. To increase the efficiency
we propose a reweighted estimator, which was selected from several possible reweight-
ing schemes. The resulting multivariate regression does not need much computation
time and is applied to real datasets. We shown that the multivariate regression esti-
mator has the appropriate equivariance properties, has a bounded influence function,
and inherits the breakdown value of the MCD estimator. These theoretical robustness
properties confirm the good finite-sample results obtained from the simulations.

Key words: Breakdown value; Diagnostic plot; Influence function; Minimum covariance
determinant; Reweighting.
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1 Introduction

Suppose we have a p-variate predictor x = (x1, . . . , xp)
t and a q-variate response y =

(y1, . . . , yq)
t. The multivariate regression model is given by y = Btx + α + ε where B is the

(p× q) slope matrix, α is the q-dimensional intercept vector, and the errors ε = (ε1, . . . , εq)
t

are i.i.d. with zero mean and with Cov(ε) = Σε a positive definite matrix of size q. Let us de-
note the location of the joint (x, y) variables by µ and their scatter matrix by Σ. Partitioning
µ and Σ yields the notation

µ =





µx

µy



 and Σ =





Σxx Σxy

Σyx Σyy



 .

Traditionally, µ is often estimated by the empirical mean µ̂ and Σ by the empirical covariance
matrix Σ̂. It turns out that the least squares estimator of B, α and Σε can be written as a
function of the components of µ̂ and Σ̂, namely

B̂ = Σ̂−1
xx Σ̂xy (1)

α̂ = µ̂y − B̂tµ̂x (2)

Σ̂ε = Σ̂yy − B̂tΣ̂xxB̂ (3)

(see e.g. Johnson and Wichern 1998, page 440). Multivariate regression has applications
in chemometrics, engineering, econometrics, psychometrics, and other fields. Recent work
on multivariate regression includes Barret and Ling (1992), Breiman and Friedman (1997),
Cook and Setodji (2003), Davis and McKean (1993), Gleser (1992), Koenker and Portnoy
(1990) and Ollila et al. (2002, 2003).

It is well known that classical multiple regression is extremely sensitive to outliers in the
data. This problem also holds in the case of multivariate regression as can be seen from the
following example.

Example 1. We consider a dataset (Lee 1992) which contains measurements of properties
of pulp fibres and the paper made from them. The aim is to investigate relations between
pulp fibre properties and the resulting paper properties. The dataset contains n = 62

measurements of the following four pulp fibre characteristics: arithmetic fibre length, long
fibre fraction, fines fibre fraction, and zero span tensile. The four paper properties that have
been measured are breaking length, elastic modulus, stress at failure, and burst strength.
The dataset is available at http://win-www.uia.ac.be/u/statis/datasets/pulpfibre.html.
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Our goal is to predict the q = 4 paper properties from the p = 4 fibre characteristics.
For this purpose, we first applied classical multivariate regression to the data.

Figure 1 represents the result of the classical analysis. It plots the Mahalanobis distances
of the residuals ri = yi − B̂txi − α̂ as given by

d(ri) :=

√

rti(Σ̂ε)−1ri

versus the Mahalanobis distances of the carriers:

d(xi) :=

√

(xi − µx)t(Σ̂xx)−1(xi − µx).

This diagnostic plot combines the information on regression outliers and leverage points,
and is much more useful than either distance separately. The horizontal and vertical lines
are the usual cutoff values

√

χ2
p,0.975 and

√

χ2
q,0.975 which both equal 3.34 since p = q = 4 in

this example. From this plot we see that observations 51, 52, and 56 are detected as vertical
outliers. On the other hand, some observations are identified as leverage points (observations
60 and 61 are the largest) but they are not considered to be regression outliers because they
have small residual distance.
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Figure 1: Plot of Mahalanobis distances of LS residuals versus Mahalanobis distances of the
carriers for the pulp fibre data.
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To check the result obtained by classical multivariate regression we start by applying
univariate robust regression with the same regressors but for each of the responses separately.
Here we use the least trimmed squares (LTS) estimator of Rousseeuw (1984) which can be
computed quickly with the FAST-LTS algorithm of Rousseeuw and Van Driessen (2000). To
obtain reliable outlier identification we use the reweighted LTS with finite-sample correction
factor as proposed by Pison et al. (2002).

Figure 2 shows the standardized residuals resulting from LTS regression with the first
response (breaking length). From this plot we immediately see that observations 51, 52, 56

and 61 are detected as outliers. Similarly, outliers can be identified from standardized
LTS residuals corresponding to the other three responses. Table 1 summarizes the outliers
detected by applying LTS for each of the four responses. From Table 1 we see that the
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Figure 2: Plot of the standardized LTS residuals corresponding to the first response (breaking
length) versus the case number.

univariate LTS regressions identify observations 51, 52, 56 and 61 as outliers. This already
shows that the classical multivariate regression based on least squares in Figure 1 has been
influenced by outliers since it did not detect observation 61 as a regression outlier. Hence,
clearly the least squares multivariate regression has been influenced by this leverage point.
This analysis shows that we need robust estimators to investigate these data. However,
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response outliers
y1 51,52,56,61
y2 61
y3 52,56,61
y4 51,52,56

Table 1: List of observations in the pulp fibre data that are detected as outliers by applying
LTS regression to each of the four responses separately.

applying univariate LTS regressions to each of the response variables separately does not
yield a solution which is equivariant under affine transformations of the response variables.
Moreover, this approach only allows us to detect outliers in the coordinate directions of the
responses but does not detect outliers that are masked in these directions. Therefore, we aim
to construct a robust method for multivariate regression which allows us to detect all the
outliers and is also reasonably efficient in both the statistical and the computational sense.
After developing such a robust method we will analyze these data further in Section 5.

In the next section we introduce a robust method for multivariate regression based on
the minimum covariance determinant estimate of the joint (x, y) variables. We study the
performance of the estimator by simulations. In section 3 we investigate several reweighted
versions of the estimator which improve the performance of the initial estimator, and se-
lect the reweighting scheme that works best. The finite-sample robustness of the optimal
estimator is studied in Section 4. In Section 5 we continue the analysis of the previous
example, and describe an application to chemical engineering. Section 6 shows that the
robust estimator has the equivariance properties that we expect from a multivariate regres-
sion method. In Section 7 we discuss the robustness properties of the estimator and derive
studentized residual distances. Section 8 summarizes our conclusions. All proofs are given
in the Appendix.

2 MCD regression

We propose to use robust estimators for the center µ and scatter matrix Σ in expressions (1)
to (3) to construct a robust multivariate regression method. This robust method will have
the equivariance properties required for a multivariate regression estimator. Many robust es-
timators of multivariate location and scatter have been investigated in the literature, such as
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M-estimators (Maronna 1976), the minimum volume ellipsoid and minimum covariance de-
terminant (MCD) estimator (Rousseeuw 1984, 1985), S-estimators (Davies 1987, Rousseeuw
and Leroy 1987, Lopuhaä 1989), CM-estimators (Kent and Tyler 1996), and τ -estimators
(Lopuhaä 1991). More recently, also depth based location and scatter estimators have been
introduced (Zuo et al. 2001, Zuo and Cui 2002). Robust estimators of location and scatter
in high dimensions have been investigated by Woodruff and Rocke (1994), Rocke (1996),
and Rocke and Woodruff (1996). In the multiple regression case Maronna and Morgenthaler
(1986) used multivariate M-estimators in (1)–(3), but their method inherits the low break-
down value of M-estimators. A multivariate regression method of M-type was proposed by
Koenker and Portnoy (1990), who noted that their method lacks affine equivariance.

We will use the MCD to estimate the center and scatter matrix of the joint (x, y) variables
because the MCD is a robust estimator with high breakdown value and bounded influence
function (Croux and Haesbroeck 1999). Moreover, the MCD estimator is asymptotically
normal (Butler, Davies, and Jhun 1993). The resulting robust multivariate regression method
will be called MCD regression.

Consider a dataset Zn = {zi; i = 1, . . . , n} ∈ IRp+q. The MCD looks for the sub-
set {zi1 , . . . , zih} of size h whose covariance matrix has the smallest determinant, where
⌈n/2⌉ ≤ h ≤ n. We will denote γ = (n − h)/n so 0 ≤ γ ≤ 0.5. The estimate for the
center is then defined as the mean tn = 1

h

∑h
j=1 zij and the covariance estimate is given

by Cn = cn cγ
1
h

∑h
j=1(zij − tn)(zij − tn)

t where cγ is a consistency factor and cn is a small
sample correction factor (see Pison et al. 2002). The MCD estimator has breakdown value
approximately equal to γ. Two common choices for h are h = [(n + p + q + 1)/2] ≈ n/2 so
γ ≈ 0.5 which yields the highest possible breakdown value, and h ≈ 3n/4 (i.e. γ ≈ 0.25)
which gives a better compromise between efficiency and breakdown. Recently, Rousseeuw
and Van Driessen (1999) constructed a fast algorithm to compute the MCD. This FAST-
MCD algorithm made the MCD very useful for analyzing large datasets, e.g. with n in the
hundred thousands. Other robust methods to analyze large datasets have been developed
and used by Knorr et al. (2001), Alqallaf et al. (2002), and Maronna and Zamar (2002).

Since computation of the MCD regression estimates consists of computation of the MCD
of the joint (x, y) variables followed by standard matrix operations, we obtain a computa-
tionally efficient method. Moreover, from (1) to (3) we immediately see that regressions of
all possible splits in x and y variables can be carried out once the MCD of the joint (x, y)

variables has been computed. It has been shown that observations which lie far from the
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center can have only a small effect on the MCD estimates. Therefore, both leverage points
(which have a large x-distance) and regression outliers (which are deviating in y-space) can
have only a small effect on the MCD regression estimates. However, it has been noted that
the MCD can have a low efficiency (Croux and Haesbroeck 1999).

To investigate the efficiency of the MCD regression we performed the following simulation
study. For various sample sizes n, and for different choices of p and q, we generated m

datasets of size n from the multivariate standard Gaussian distribution N(0, Ip+q), which
corresponds to putting B = 0 and α = 0. For each dataset Z(l), l = 1, . . . ,m we carried
out MCD regression yielding the (p × q) slope matrix estimate B̂(l), the intercept vector
α̂(l) ∈ IRq, and the (q × q) covariance matrix estimate Σ̂

(l)
ε of the errors.

The Monte Carlo variance of a slope coefficient B̂jk is measured as

Var(B̂jk) = n var
l
(B̂

(l)
jk ) for j = 1, . . . , p and k = 1, . . . , q. (4)

The overall variance of the estimated matrix B̂ is defined as Var(B̂) = avej,k(VarB̂jk). The
corresponding finite-sample efficiency of the slope is then given by 1/Var(B̂). Analogously
we compute the finite-sample efficiency of the intercept vector. To measure the accuracy
of the error scatter matrix, we use the standardized variance (Bickel and Lehmann 1976) of
the elements of the error covariance matrix, defined as

Stvar((Σ̂ε)jk) =
n var

l
((Σ̂

(l)
ε )jk)

[ave
l

ave
j
((Σ̂

(l)
ε )jj)]2

for j = 1, . . . , q and k = 1, . . . , q. (5)

The overall finite-sample efficiency of the off-diagonal elements is then given by
1/ave

j ̸=k
(Stvar((Σ̂ε)jk)). For the diagonal elements the finite-sample efficiency is given by

2/avej(Stvar((Σ̂ε)jj)) since the Fisher information equals 2 in this case.
The top panel of Table 2 shows the simulation results for p = 4 and q = 4, but the results

were similar for many other choices of p and q. The table contains sample sizes between
50 and 500. All simulations were done with m = 1000 replications. The cells contain the
finite-sample efficiencies of B̂, α̂, the diagonal elements of Σ̂ε and the off-diagonal elements
of Σ̂ε. We see that the finite-sample efficiencies are very low for γ = 0.5 and are somewhat
better for γ = 0.25. In the next section we propose the use of reweighted estimators to
improve these efficiencies.
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n = 50 n = 100 n = 300 n = 500 n = ∞

MCD regression: B̂, α̂, Σ̂ε

γ = 0.50 slope 0.176 0.167 0.166 0.169 0.166
intercept 0.268 0.290 0.300 0.298 0.307
Σdiag 0.211 0.205 0.196 0.190 0.182
Σoffdiag 0.194 0.183 0.166 0.172 0.166

γ = 0.25 slope 0.371 0.387 0.401 0.410 0.403
intercept 0.506 0.545 0.568 0.543 0.578
Σdiag 0.401 0.431 0.439 0.432 0.430
Σoffdiag 0.387 0.415 0.393 0.401 0.403

MCD regression with reweighted location: B̂L, α̂L, Σ̂L
ε

γ = 0.50 slope 0.200 0.354 0.662 0.762 0.851
intercept 0.303 0.525 0.811 0.838 0.934
Σdiag 0.245 0.391 0.677 0.727 0.794
Σoffdiag 0.222 0.384 0.664 0.735 0.851

γ = 0.25 slope 0.403 0.598 0.772 0.830 0.864
intercept 0.545 0.747 0.883 0.877 0.936
Σdiag 0.434 0.613 0.793 0.798 0.812
Σoffdiag 0.427 0.629 0.782 0.813 0.864

MCD regression with reweighted regression: B̂R, α̂R, Σ̂R
ε

γ = 0.50 slope 0.245 0.465 0.812 0.902 0.957
intercept 0.338 0.582 0.862 0.875 0.959
Σdiag 0.251 0.387 0.685 0.735 0.858
Σoffdiag 0.232 0.399 0.684 0.763 0.880

γ = 0.25 slope 0.538 0.758 0.895 0.948 0.960
intercept 0.622 0.804 0.927 0.906 0.961
Σdiag 0.463 0.627 0.820 0.815 0.874
Σoffdiag 0.462 0.665 0.812 0.841 0.892

MCD regression with reweighted location and regression: B̂LR, α̂LR, Σ̂LR
ε

γ = 0.50 slope 0.233 0.628 0.906 0.955 0.961
intercept 0.332 0.721 0.928 0.920 0.962
Σdiag 0.252 0.501 0.826 0.829 0.881
Σoffdiag 0.233 0.542 0.824 0.860 0.900

γ = 0.25 slope 0.508 0.801 0.913 0.959 0.961
intercept 0.614 0.849 0.942 0.924 0.962
Σdiag 0.458 0.680 0.864 0.839 0.881
Σoffdiag 0.459 0.728 0.854 0.872 0.900

Table 2: Finite-sample efficiencies of the slope matrix, intercept vector and error covariance
matrix of the four types of MCD regression, for p = 4 and q = 4. The number of replications
was m = 1000.
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3 Reweighted multivariate regression

To increase the efficiencies obtained in the previous section, we now consider reweighted
versions of our estimator. These reweighted estimators inherit the robustness properties of
the initial estimator, while attaining a higher efficiency. We will consider three versions,
based on reweighting the location estimator, reweighting the regression estimator, and both.

3.1 Reweighting the location estimator

To increase the efficiency of the location and scatter estimators it is customary to compute
one-step reweighted versions (Rousseeuw and Leroy 1987, Lopuhaä 1999, Zuo et al. 2001,
Zuo and Cui 2002). The one-step reweighted MCD estimates with nominal trimming portion
δl are defined as

t1n =

∑n
i=1 w(d

2(zi))zi
∑n

i=1 w(d
2(zi))

and C1
n = dδl

∑n
i=1 w(d

2(zi))(zi − t1n)(zi − t1n)
t

∑n
i=1 w(d

2(zi))
(6)

where dδl is a consistency factor. The weights are computed as w(d2(zi)) = I(d2(zi) ≤

qδl) where qδl = χ2
p+q,1−δl

and d(zi) = ((zi − tn)
tC−1

n (zi − tn))
1/2 is the robust distance of

observation zi based on the initial MCD estimates (tn, Cn). It is customary to take δl = 0.025

(Rousseeuw and Van Driessen 1999). The robustness properties of the one-step reweighted
MCD estimators are similar to those of the initial MCD (Lopuhaä and Rousseeuw 1991,
Lopuhaä 1999). Other methods to increase the efficiency of the MCD location and scatter
include one-step M-estimators and cross-checking (He and Wang 1996).

We can now compute the multivariate regression estimates (1), (2), and (3) based on
the reweighted location and scatter (t1n, C

1
n). We denote the resulting regression by B̂L, α̂L,

and Σ̂L
ε where the “L” indicates that the reweighting was done in the Location stage. The

simulation results for the reweighted location estimators are shown in the second panel of
Table 2. We see that multivariate regression estimates based on the reweighted MCD have
a much higher efficiency than the estimates based on the initial unweighted MCD.

3.2 Reweighting the regression

In a regression analysis it is natural to use weights based on the residuals corresponding to
the initial fit (Rousseeuw and Leroy 1987). Denote the residual of the observation zi by
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ri = yi − B̂txi − α̂. We now define the reweighted regression estimators

TR
n = (

n
∑

i=1

w(d2(ri))uiu
t
i)

−1

n
∑

i=1

w(d2(ri))yiui (7)

Σ̂R
ε = dδr

∑n
i=1 w(d

2(ri))(r
R)i(r

R)ti
∑n

i=1 w(d
2(ri))

(8)

where TR
n = ((B̂R)t, α̂R)t, ui = (xt

i, 1)
t, (rR)i = yi− (B̂R)txi− α̂R, δr is the trimming portion,

and dδr is a consistency factor. Following Rousseeuw and Leroy (1987) we take δr = 0.01 as
our default. The superscript R says that the weights were based on the initial Regression. In
particular, the weights are computed as w(d2(ri)) = I(d2(ri) ≤ qδr) where qδr = χ2

q,1−δr
and

d(ri) = (rti(Σ̂ε)
−1ri)

1/2 is the robust distance of the ith residual. The robustness properties
of these reweighted regression estimators follow from the properties of the initial regression
estimators. Note that the weights now depend only on the size of the residual distance
w(d2(ri)) so in contrast with the initial estimates, good leverage points (which have large
distance in x-space but small residual distance and thus are not outliers for the regression
model) are not downweighted anymore.

The third panel of Table 2 shows the simulation results for the reweighted regression
estimators. We see that the reweighted multivariate regression estimates have a much higher
efficiency than the initial estimates based on MCD. Moreover, the efficiency of the reweighted
regression estimates is also higher than the efficiency of the estimates based on the reweighted
MCD.

3.3 Reweighting both location and regression

A further possibility is to use the robust distances d(rLi ) = ((rLi )
t(Σ̂L

ε )
−1rLi )

1/2 in (7) and (8),
where rLi = yi − (B̂L)txi − α̂L. This yields a weighted regression estimator with weights
based on the residuals of the method in 3.1. We denote the resulting estimators by TLR

n =

((B̂LR)t, α̂LR)t and Σ̂LR
ε . Also here, good leverage points are not downweighted anymore.

The simulation results for the reweighted location estimators are shown in the last panel
of Table 2. From this table we see that the efficiency of LR-weighting is comparable for
small samples (n = 50) and clearly better for larger samples than the efficiency of the
other reweighting schemes. Overall, we also see that γ = 0.25 consistently outperformed
γ = 0.50, the difference being larger at small samples. Hence, from the efficiency viewpoint,
LR-weighted MCD regression with γ = 0.25 comes out best. It will be shown in Section 6
that the breakdown value of MCD regression is approximately equal to γ, so Table 2 shows
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that there is a trade-off between efficiency and breakdown. In practice, data with more than
20% of outliers rarely occur, so we recommend using the LR-weighted MCD regression with
γ = 0.25 as the default to obtain a better efficiency. Only if the data are of very low quality
such that a higher level of outliers can be expected, using LR-weighted MCD regression with
γ = 0.50 is more appropriate.

4 Finite-sample robustness

To study the finite-sample robustness, we carried out simulations with datasets contaminated
by different types of outliers: A point (xi, yi) which does not follow the linear pattern of
the majority of the data but whose xi is not outlying is called a vertical outlier. A point
(xi, yi) whose xi is outlying is called a leverage point. We say that such an (xi, yi) is a bad
leverage point when it does not follow the pattern of the majority, otherwise it is called a
good leverage point (which does not harm the fit).

Because regression estimators often break down in the presence of vertical outliers or bad
leverage points, we generated datasets with both types of outliers. For sample sizes between
n = 50 and n = 500, and with p = 4 and q = 4 we generated m = 1000 datasets from
the multivariate standard Gaussian distribution N(0, Ip+q). (This is the same situation as
described in Section 2.) We then replaced 10% of the data as follows. The xi are kept, but
the q response variables are distributed as N(2

√

χ2
p+q,.99, 0.1). This yields vertical outliers,

because only their responses are outlying. We also replaced 10% of the data with bad leverage
points for which the p independent variables are generated according to N(2

√

χ2
p,.99, 0.1) and

the q dependent variables are generated from N(2
√

χ2
q,.99, 0.1).

As in the previous simulations, for each dataset Z(l), l = 1, . . . ,m we computed the (p×q)

slope matrix B̂(l), the intercept vector α̂(l) ∈ IRq and the (q × q) covariance matrix Σ̂
(l)
ε of

the errors. To measure robustness, we use the bias and the MSE. As commonly defined, the
bias and MSE of a univariate component T are given by

bias(T ) = ave
l
(T (l) − θ)

MSE(T ) = n ave
l
(T (l) − θ)2

11



with θ the true value of the parameter. The bias and MSE of the slope are defined as

bias(B̂) =

√

ave
j,k

(bias(B̂jk)2)

MSE(B̂) = ave
j,k

(MSE(B̂jk))

and similarly for the intercept α̂ and for the diagonal and off-diagonal elements of Σ̂ε.
Table 3 shows the simulation results when the estimates of the slope matrix, intercept

vector and error covariance matrix were obtained from the LR-weighted method with γ =

0.25, and from the classical multivariate least squares regression. Simulations for other
sample sizes n and different dimensions p and q gave similar results. In Table 3 we see
that in the presence of vertical outliers and bad leverage points, both the bias and MSE
obtained from the LR-weighted MCD regression are much lower than those obtained from
least squares regression. The low bias and MSE values of the LR-weighted method are in
line with the asymptotic robustness properties in Section 6.

n=50 n=100 n=500
bias MSE bias MSE bias MSE

LR-weighted MCD regression (γ = 0.25)
slope 0.0066 1.637 0.0038 1.462 0.0013 1.307
intercept 0.0104 1.501 0.0036 1.415 0.0021 1.336
Σdiag 0.1349 3.326 0.0704 3.240 0.0104 2.845
Σoffdiag 0.0050 1.245 0.0049 1.319 0.0021 1.369
LS regression
slope 0.2068 10.883 0.2071 12.233 0.2064 28.806
intercept 1.0225 54.275 1.0214 105.876 1.0243 525.924
Σdiag 6.5387 2156.323 6.8122 4655.881 7.0394 24788.392
Σoffdiag 6.8076 2332.350 7.0464 4977.298 7.2440 26246.846

Table 3: Bias and MSE of the slope matrix, intercept vector and error covariance matrix
obtained by the LR-weighted MCD regression with γ = 0.25 and multivariate least squares
regression. The data contained 20% of outliers. The number of replications was m = 1000.

To compare the MCD regression with the univariate robust regressions approach used in
Section 1, we used the simulation setup above but we now generated correlated multivariate
Gaussian responses with correlation rjk = 0.5, (j ̸= k). Thus, we obtain a regression model
with correlated errors. We generated 10% of vertical outliers and 10% of bad leverage points
as before.
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The results for the LR-weighted MCD regression (γ = 0.25) in Table 4 are comparable to
the results in Table 3, as expected from the equivariance of the estimator. Table 4 shows that
the LR-weighted MCD regression in general outperforms the coordinatewise LTS regressions
both in bias and MSE. The differences are largest for the slope estimates. Note that Table 4
does not contain results for the off-diagonal elements of the error covariance matrix because
these elements are not estimated in the univariate LTS approach. Hence, another advantage
of the multivariate MCD regression method is that it gives a robust estimate of the full error
covariance matrix.

n=50 n=100 n=500
bias MSE bias MSE bias MSE

LR-weighted MCD regression (γ = 0.25)
slope 0.0044 1.644 0.0043 1.483 0.0017 1.319
intercept 0.0069 1.512 0.0017 1.364 0.0021 1.313
Σdiag 0.1316 3.357 0.0676 3.200 0.0097 2.900
Combination of univariate LTS regressions
slope 0.2360 4.630 0.2403 7.270 0.2406 30.214
intercept 0.0264 2.144 0.0342 1.880 0.0331 2.272
Σdiag 0.0976 4.166 0.0868 6.158 0.1004 9.044

Table 4: Bias and MSE of the slope matrix, intercept vector and error variances obtained by
the LR-weighted MCD regression with γ = 0.25 and univariate LTS regressions. The data
contained 20% of outliers. The number of replications was m = 1000.

Based on the performance results in the previous section and the robustness results here,
we recommend the LR-weighted method with γ = 0.25 in practice to identify all outliers
and robustly estimate the full error covariance matrix.

5 Examples

Example 1 (continued). We now continue the analysis of example 1 in Section 1 by applying
the LR weighted robust multivariate regression method with γ = 0.25 to these data. Figure 3
shows the diagnostic plot corresponding to the robust analysis. This plot is a generalization of
the diagnostic plot for multiple regression due to Rousseeuw and van Zomeren (1990). In this
display the robust distances of the q-dimensional residuals d(rLRi ) = ((rLRi )t(Σ̂LR

ε )−1rLRi )1/2

are plotted versus the robust distances of the p-dimensional xi given by d(xi) = ((xi −
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(t1n)x)
t((C1

n)xx)
−1(xi − (t1n)x))

1/2. The plot enables us to classify the data points into regular
observations, vertical outliers, good leverage points, and bad leverage points. Moreover, one
can see whether a point is an extreme outlier or merely a borderline case. Being a graphical
tool, this plot also allows us to discover unexpected structure in the data. Note that all the
estimates on which the plot is based are byproducts of the robust multivariate regression
algorithm, so the plot requires very little computation time.

From Figure 3 we see that thirteen observations have residuals with robust distance above
the horizontal cutoff line at

√

χ2
4,0.975 = 3.34 and thus are detected as regression outliers.

Eight of these points also have a large x-distance and therefore are bad leverage points. Note
that classical multivariate regression only detected three of these outliers (51, 52, and 56)
and considered four of the outliers (46, 58, 60 and 61) to be good leverage points. Moreover,
by applying LTS for each of the responses separately we only detected one additional outlier
(61) but nine other outliers remained hidden, among which the bad leverage points 59, 60
and 62 are the most severe.
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Figure 3: Plot of robust distances of residuals versus robust distances of the carriers for the
pulp fibre data.

By exploring the origin of the collected data we found out that all but the last four pulp
samples (observations 59-62) were produced from fir wood. Moreover, most of the outlying
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samples were obtained using different pulping processes. For example, observation 62 is the
only sample from a chemi-thermomechanical pulping process, observations 60 and 61 are the
only samples from a solvent pulping process, and observations 51, 52 and 56 are obtained
from a kraft pulping process. Finally, the smaller outliers (22, 46-48 and 58) all were Douglas
fir samples.

Example 2. This example describes an actual dataset obtained from Shell’s polymer
laboratory in Ottignies, Belgium by courtesy of dr. Christian Ritter. For reasons of
confidentiality, all variables have been standardized and their exact meanings are not given.
The dataset consists of n = 217 observations with p = 4 predictor variables and q = 3

response variables. The predictor variables describe the chemical characteristics of a piece of
foam, whereas the response variables measure its physical properties such as tensile strength.
Foam product specifications are expressed in terms of its physical properties. Production
units around the world have to meet the prescribed physical requirements. The physical prop-
erties are determined by the chemical composition used in the production process. However,
different chemical compositions will lead to foams meeting all required specifications. More-
over, depending on the location of the production unit there is a strong variation in the price
of the necessary chemicals. Therefore, the goal is to establish a relationship between the
chemical inputs and the resulting physical properties which can then be used to determine
the cheapest chemical composition resulting in foams meeting all physical requirements. We
use multivariate regression to determine the relationship between the chemical inputs and
the physical properties. A few cases with missing values had been omitted in advance. After
an initial exploratory study of the seven variables, including their Q-Q plots, we have ap-
plied Box-Cox transformations to them. We then ran a robust multivariate regression using
the LR-weighted method with γ = 0.25. This computation took only 43 seconds on a Sun
SparcStation 20/514.

Figure 4 shows the diagnostic plot of the Shell foam data (robust distances of the residuals
rLRi versus the robust distances of the xi). Observations 215 and 110 lie far from both the
horizontal cutoff line at

√

χ2
3,0.975 = 3.06 and the vertical cutoff line at

√

χ2
4,0.975 = 3.34.

These two observations can thus be classified as bad leverage points. Several observations
lie substantially above the horizontal cutoff but not to the right of the vertical cutoff, which
means that they are vertical outliers (their residuals are outlying but their x-values are not).

When this list of special points was presented to the scientists who had made the measure-
ments, we learned that 8 observations in Figure 4 were produced with a different production
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Figure 4: Diagnostic plot of robust residuals versus robust distances of the carriers for the
foam data.

technique and hence belong to a different population with other characteristics. These in-
clude the observations 210, 212 and 215. We therefore remove these 8 observations from the
data, and retain only observations from the intended population.

Running the method again yields the diagnostic plot in Figure 5. Observation 110 is still
a bad leverage point, and also several of the vertical outliers remained. No chemical/physical
mechanism was found to explain why these points are outliers, leaving open the possibility
of some large measurement errors. But the detection of these substantial outliers at least
provides us with the option to choose whether or not to allow them to affect the final result.

6 Equivariance and robustness properties

The theorems in this section show that the proposed LR weighted method based on MCD
(1) has the natural equivariance properties of multivariate regression estimators, and (2) is
robust. These generalize the regression, scale, and affine equivariance (see Rousseeuw and
Leroy 1987, page 116) and robustness of multiple regression estimators. All proofs are given
in the Appendix.
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Figure 5: Diagnostic plot of robust residuals versus robust distances for the corrected foam
data.

Denote Tn(X, Y ) = (B̂t, α̂)t where the matrix X is (n×p) and Y is (n×q). The estimator
Tn is called regression equivariant if

Tn(X, Y +XD + 1nw
t) = Tn(X, Y ) + (Dt, w)t (9)

where D is any (p × q) matrix, w is any (q × 1) vector, and 1n = (1, 1, . . . , 1)t ∈ IRn.
Regression equivariance means that if we add a linear function of the explanatory variables
to the responses, then the coefficients of this linear function are also added to the estimator.

The estimator Tn is said to be y-affine equivariant if

Tn(X, Y C + 1nd
t) = Tn(X, Y )C + (Ot

pq, d)
t (10)

where C is any nonsingular (q × q) matrix, d is any (q × 1) vector and Opq is the (p × q)

matrix consisting of zeroes. If the response variables are transformed linearly then y-affine
equivariance implies that the estimator T transforms accordingly.

We say that the estimator Tn is x-affine equivariant if

Tn(XAt + 1nv
t, Y ) = (B̂tA−1, α̂− B̂tA−1v)t (11)
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for any nonsingular (p × p) matrix A and any column vector v ∈ IRp×1. If the explanatory
variables are transformed linearly then x-affine equivariance says that the estimator Tn

transforms correctly.

Theorem 1. The LR weighted multivariate MCD-regression estimator Tn = ((B̂LR)t, α̂LR)t

is regression, y-affine, and x-affine equivariant.

We also study the theoretical robustness properties of the estimator in terms of its break-
down value and its influence function which also yields its asymptotic variance. These the-
oretical properties will confirm the finite-sample results obtained in Sections 3.3 and 4.

The finite-sample breakdown value (Donoho and Huber 1983) of a regression estimator
Tn at a dataset Zn = (X, Y ) ∈ IRn×(p+q) is defined as the smallest fraction of observations
of Zn that need to be replaced to carry Tn beyond all bounds. Formally,

ε∗n(Tn, Zn) = min
1≤m≤n

{
m
n : sup

Z′

n

∥Tn(Zn)− Tn(Z
′
n)∥ = ∞}, (12)

where the supremum is over all possible collections Z ′
n that differ from Zn in at most m

points. The following theorem shows that the LR weighted MCD regression estimator
Tn = ((B̂LR

n )t, α̂LR
n )t inherits the breakdown value of the initial MCD location and scat-

ter estimators applied to the (p + q)-dimensional dataset Zn. Note that the breakdown
value of a covariance estimator is the smallest fraction of outliers that can make the largest
eigenvalue arbitrarily large or the smallest eigenvalue arbitrarily small.

Theorem 2. Let Zn be a set of n ≥ p + q + 1 observations and t1n, C1
n the reweighted

MCD estimators of location and scatter with min{ε∗n(t
1
n, Zn), ε

∗
n(C

1
n, Zn)} = ⌈nγ⌉/n where

γ = (n − h)/n ≤ (n − (p + q))/(2n). Then the multivariate regression estimator Tn =

((B̂LR
n )t, α̂LR

n )t also satisfies ε∗n(Tn, Zn) = ⌈nγ⌉/n.

The influence function of an estimator T at a distribution H measures the effect on T

of an infinitesimal contamination at a single point (Hampel et al. 1986). If we denote the
point mass at z = (xt, yt)t by ∆z and write Hε = (1− ε)H + ε∆z then the influence function
is given by

IF (z, T,H) = lim
ε↓0

T (Hε)− T (H)

ε
=

∂

∂ε
T (Hε)|ε=0. (13)

The following theorem gives the influence functions of the LR weighted MCD regression
estimators at the standard Gaussian distribution. The influence function at general Gaussian
distributions then follows from the equivariance properties in Section 6.
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Theorem 3. The influence functions of B̂LR, α̂LR and Σ̂LR
ε at the standard Gaussian dis-

tribution H = N(0, Ip+q) are given by

IF (z, B̂LR
jk , H) = [c1 I(∥z∥

2 ≤ qγ) + c2 I(∥z∥
2 ≤ qδl) + c3 I(∥y∥

2 ≤ qδr)]xjyk

IF (z, α̂LR
j , H) = [c4 I(∥z∥

2 ≤ qγ) + c5 I(∥z∥
2 ≤ qδl) + c3 I(∥y∥

2 ≤ qδr)]yj

IF (z, (Σ̂LR
ε )jk, H) = [c6 I(∥z∥

2 ≤ qγ) + c7 I(∥z∥
2 ≤ qδl) + c3 I(∥y∥

2 ≤ qδr)]yjyk

IF (z, (Σ̂LR
ε )jj , H) = [c8 I(∥z∥

2 ≤ qγ) + c9 I(∥z∥
2 ≤ qδl) + c3 I(∥y∥

2 ≤ qδr)]y
2
j +

g1(∥z∥, ∥y∥)I(∥z∥
2 ≤ qγ) + g2(∥y∥)I(∥z∥

2 ≤ qδl) + c10I(∥y∥
2 ≤ qδr) + c11

Here qγ = χ2
p+q,1−γ. The constants c1, . . . , c11 and the functions g1 and g2 can be found in the

appendix. Note that the influence functions of the slope and intercept become zero as soon
as ∥y∥ becomes large, so vertical outliers as well as bad leverage points have no effect on
the regression estimates. For the covariance of the errors, the influence on the off-diagonal
elements becomes zero, and the influence on the diagonal elements becomes constant for
observations with large ∥y∥ so the effect of outliers and leverage points is bounded. On
the other hand, good leverage points (which have large ∥x∥ but small ∥y∥ and thus are not
outliers for the regression model) are not downweighted.

Figure 6 shows the influence functions of the LR weighted MCD regression estimators
with γ = 0.25 at the bivariate Gaussian distribution H = N2(0, I) (p = q = 1). The influence
functions of the slope β̂LR = B̂LR and the intercept α̂LR are shown in Figures 6a and 6b.
The influence function of the error scale (σ̂LR)2 = Σ̂LR

ε is shown in Figure 6c.
From the influence function we can compute the asymptotic variance of the elements of

the slope matrix B̂LR at the standard Gaussian distribution as

ASV (B̂LR
ij , H) = EH [IF (z, B̂LR

jk , H)2] (14)

(see Hampel et al. 1986), and similarly for α̂ and Σ̂ε. It can easily be shown that the
asymptotic variances of the slope and intercept elements of the least squares estimator equal
1. For the least squares estimator of the error covariance it holds that the asymptotic variance
equals 1 for the off-diagonal elements and equals 2 for the diagonal elements. Therefore, the
asymptotic relative efficiency (ARE) of the slope B̂LR relative to the least squares slope B̂LS

is given by
ARE(B̂LR, H) = 1/ASV (B̂LR

ij , H) (15)

and similarly for the intercept α̂LR and off-diagonal elements of Σ̂LR
ε . The ARE of the
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Figure 6: Influence functions at the bivariate Gaussian distribution of (a) slope, (b) intercept,
and (c) error scale of LR weighted MCD regression.

diagonal elements of Σ̂LR
ε equals

ARE((Σ̂ε)
LR)jj, H) = 2/ASV ((Σ̂LR

ε )jj). (16)

For p = 4, q = 4, the ARE of slope, intercept and diagonal and off-diagonal elements of the
error covariance are given in Table 2 under n = ∞. For the initial MCD regression and the
L and R weighted methods the efficiencies can be obtained from additional results in the
Appendix. It is reassuring to note that the finite-sample efficiencies correspond quite well
to the asymptotic efficiencies. The difference is often negligible already for n = 500.

To obtain outlier diagnostics that take into account the residual error and the loca-
tion of the observation in x-space, we now introduce studentized robust residual distances.
These studentized residual distances generalize the studentized residuals for univariate ro-
bust regression (McKean et al. 1990, 1993) to multivariate regression. They also extend
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the studentized residual distances for multivariate least squares regression (Caroni 1987) to
robust multivariate regression.

Consider the asymptotic representation of the estimator given by the influence function:

Tn = θ +
1

n

n
∑

j=1

IF (zj, Tn, G) + o(n−1/2)

where θ = (Bt, α)t and G is the joint distribution of z = (xt, yt)t. We then obtain the
following first order approximation for the residuals

ri
.
= εi −

1

n

n
∑

j=1

[IF (zj, B̂
LR, G)txi + IF (zj, α̂

LR, G)] (17)

from which the covariance matrix cov(ri) can be derived as outlined in the appendix. Stu-
dentized residual distances are now defined as

sdi =

√

rti(ĉov(ri))
−1ri.

Here, ĉov(ri) is the estimated covariance matrix for residual ri obtained by replacing the
unknown error covariance matrix Σε with an estimate Σ̂ε. If the estimate Σ̂ε is derived from
the fitted model based on all data points, then we obtain internally studentized residual
distances. If Σ̂ε comes from the model using all data points except zi when computing sdi,
then we obtain externally studentized residual distances. For large outlying points, there will
be little difference between internally and externally studentized residual distances because
large outliers have only small influence on the LR-weighted MCD regression estimates, but for
intermediate points externally studentized residuals will be larger than internally studentized
residuals. To identify outliers we compare the squared studentized residuals with quantiles
of the χ2

q distribution. Figure 7 shows the externally studentized residuals for the pulp fibre
and foam datasets analyzed before. The horizontal line in both plots is the square root of the
97.5% quantile of the corresponding Chisquare distribution. The labeled points in Figure 7
even lie above the 99.5% quantile of the Chisquare distribution. These outliers have also
been labeled in the diagnostic plots (Figures 3 and 4) in Section 5.

7 Conclusions

Least squares multivariate regression is sensitive to outliers in the dataset. Therefore, alter-
native methods that can detect and resist outliers are needed so that reliable results can be
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Figure 7: Externally studentized robust residuals for (a) the pulp fibre data and (b) the
foam data. The horizontal line is the 97.5% quantile of the χ2

q distribution.

obtained also in the presence of outliers. Substantial work has been done to develop influ-
ence measures for multivariate regression (Hossain and Naik 1989, Barrett and Ling 1992,
Hadi et al. 1995, Kim 1995, Seaver et al. 1998). Much less has been done so far to develop
robust estimators with bounded influence and/or high breakdown value. Singer and Sen
(1985) and Koenker and Portnoy (1990) proposed robust methods based on M-estimators.
Methods based on affine equivariant sign and ranks have been recently proposed by Ollila
et al. (2002, 2003). However these methods still have zero breakdown value.

We have shown that substituting robust estimates of location and scatter in the classical
expressions for the slope, intercept and error scale yields a robust multivariate regression
method. By inserting the MCD estimator of location and scatter we obtain a positive-
breakdown and bounded-influence method, albeit with a rather low efficiency. To improve
the efficiency we have studied several types of reweighting schemes. We found that the best
result is obtained by using the MCD-based robust distances to form a reweighted estimator
of location and scatter, which then yields the initial regression. The robust residuals from
this initial regression then give us the weights for the final regression. We call this the LR-
weighted MCD regression. This approach gave the best finite-sample performance in our
simulations and also yielded the highest asymptotic efficiency. Moreover, simulations with
contaminated datasets indicated that its robustness properties also hold at finite samples.
These simulations also showed that the LR-weighted MCD regression clearly outperforms
classical least squares regression as well as univariate LTS regression applied to each of the
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responses separately. The proposed method was illustrated on two real data applications,
where a new diagnostic plot turned out to be a very useful graphical tool to detect spe-
cial points. Formal outlier diagnostics have been constructed based on studentized robust
residual distances. MCD regression also is an essential part of robust principal component
regression (Hubert and Verboven 2003) and robust partial least squares regression (Hubert
and Vanden Branden 2003) procedures that are used to analyze high-dimensional data from
spectra with several responses.

Appendix

To prove Theorem 1 we first show the following lemma.

Lemma 1. From the affine equivariance of the reweighted MCD location and scatter esti-
mators (t1n, C

1
n) it follows that the L weighted MCD regression estimator TL

n = ((B̂L)t, α̂L)t

is regression, y-affine, and x-affine equivariant.

Proof of Lemma 1: Affine equivariance of (t1n, C1
n) means that for any nonsingular (p+ q)×

(p+ q) matrix M and any vector a ∈ IRp+q it holds that t1n(ZM t + 1na
t) = Mt1n(Z) + a and

C1
n(ZM

t + 1na
t) = MC1

nM
t. To prove regression equivariance we take

M =





Ip 0

Dt Iq



 and a =





0

w



 .

Then ZM t + 1na
t = (X, Y )M t + 1na

t = (X, Y +XD + 1nw
t) and

(t1n)x(ZM
t + 1na

t) = (t1n)x(Z)

(t1n)y(ZM
t + 1na

t) = (t1n)y(Z) +Dt(t1n)x(Z) + w

(C1
n)xx(ZM

t + 1na
t) = (C1

n)xx(Z)

(C1
n)xy(ZM

t + 1na
t) = (C1

n)xx(Z)D + (C1
n)xy(Z).

Therefore, we obtain

B̂L(ZM t + 1na
t) = (C1

n)
−1
xx (ZM

t + 1na
t)(C1

n)xy(ZM
t + 1na

t)

= D + (C1
n)

−1
xx (Z)(C

1
n)xy(Z)

= D + B̂L(Z)
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and

α̂L(ZM t + 1na
t) = (t1n)y(ZM

t + 1na
t)− B̂L(ZM t + 1na

t)(t1n)x(ZM
t + 1na

t)

= (t1n)y(Z) +Dt(t1n)x(Z) + w − (D + B̂L(Z)t(t1n)x(Z)

= (t1n)y(Z)− B̂L(Z)t(t1n)x(Z) + w

= α̂L(Z) + w

which is the desired result. To prove y- affine equivariance, we put

M =





Ip 0

0 Ct



 and a =





0

d



 .

Finally, to prove x-affine equivariance we put

M =





A 0

0 Iq



 and a =





v

0



 .

Proof of Theorem 1. From Lemma 1 we already have that the equivariance properties
hold for the regression estimator based on reweighted MCD. It immediately follows that the
reweighted regression estimator is also regression, x-affine, and y- affine equivariant because
the weights d(rLi ) are invariant under these transformations which can be proved similarly
as in Lemma 1.

Lemma 2. Let Zn be a set of n ≥ p + q + 1 observations and t1n, C1
n the reweighted

MCD estimators of location and scatter with min{ε∗n(t
1
n, Zn), ε

∗
n(C

1
n, Zn)} = ⌈nγ⌉/n where

γ = (n − h)/n ≤ (n − (p + q))/(2n). Then the estimator TL
n = ((B̂L

n )
t, α̂L

n)
t also satisfies

ε∗n(T
L
n , Zn) = ⌈nr⌉/n.

Proof of Lemma 2: Since the estimator TL
n is regression, y-affine, and x-affine equivari-

ant (Lemma 1), we may assume without loss of generality that t1n(Zn) = 0. Let Z̃n be a
dataset obtained by replacing m < ⌈nγ⌉/n points from the original dataset Zn by arbi-
trary values. We first show that the slope B̂L(Z̃n) remains bounded. Denote the eigen-
values of (C1

n)xx(Z̃n) by λ1((C
1
n)xx(Z̃n)) ≤ · · · ≤ λp((C

1
n)xx(Z̃n)). Note that ∥B̂L(Z̃n)∥ =

∥(C1
n)

−1
xx (Z̃n)(C

1
n)xy(Z̃n)∥ ≤ ∥(C1

n)
−1
xx (Z̃n)∥ ∥(C

1
n)xy(Z̃n)∥. Now we have that

∥(C1
n)

−1
xx (Z̃n)∥ = sup

∥x∥≠0

∥(C1
n)

−1
xx (Z̃n)x∥

∥x∥
=

(

inf
∥x∥≠0

∥(C1
n)xx(Z̃n)x∥

∥x∥

)−1

=
1

λ1((C1
n)xx(Z̃n))
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which is bounded because the covariance matrix C1
n(Z̃n) does not break down for m <

⌈nγ⌉/n. Denote λ1(Z̃n) ≤ · · · ≤ λp+q(Z̃n) the eigenvalues of C1
n(Z̃n), then we have that

∥(C1
n)xy(Z̃n)∥ ≤ ∥C1

n(Z̃n)∥ ≤ λp+q(Z̃n) which is also bounded for m < ⌈nγ⌉/n. For the
intercept it clearly holds that ∥α̂L(Z̃n)∥ = ∥(tn)y(Z̃n)−(B̂L)t(Z̃n)(tn)x(Z̃n)∥ ≤ ∥(tn)y(Z̃n)∥+

∥(B̂L)t(Z̃n)∥∥(tn)x(Z̃n)∥ is bounded for m < ⌈nγ⌉/n since ∥(B̂)L(Z̃n)∥ and ∥tn(Z̃n)∥ are
bounded.

Proof of Theorem 2. Lemma 2 shows that the L weighted MCD regression estimator
TL
n inherits the breakdown value of the reweighted MCD estimators. It now easily follows

that (under certain regularity conditions of the design matrix) the reweighted regression
estimator TLR

n inherits the breakdown value of the initial regression estimator TL
n .

Lemma 3. Denote t, C the functionals corresponding to the reweighted MCD location and
scatter estimators, then the influence functions of B̂L, α̂L, and Σ̂L

ε satisfy

IF (z, B̂L, H) = IF (z, C1
xy, H) (18)

IF (z, α̂L, H) = IF (z, t1y, H). (19)

IF (z, Σ̂L
ε , H) = IF (z, C1

yy, H)). (20)

Proof of Lemma 3: First we derive the influence function of the slope B̂L. Since B̂L(Hε) =

(C1
xx)

−1(Hε)C
1
xy(Hε) we obtain that

IF (z, B̂L, H) =
∂

∂ε
((C1

xx)
−1(Hε)C

1
xy(Hε))|ε=0

= IF (z, (C1
xx)

−1, H)C1
xy(H) + (C1

xx)
−1(H)IF (z, C1

xy, H)

= IF (z, C1
xy, H)

since consistency of C1 yields C1(H) = Ip+q. Similarly, with α̂L(Hε) = t1y(Hε)−(B̂L)t(Hε)t
1
x(Hε)

we have that

IF (z, α̂L, H) =
∂

∂ε
(t1y(Hε)− (B̂L)t(Hε)t

1
x(Hε))|ε=0

= IF (z, t1y, H)− IF (z, B̂L, H)tt1x(H)− (B̂L)t(H)IF (z, t1x, H)

= IF (z, t1y, H)

since t1(H) = 0 and B̂L(H) = 0. Finally, Σ̂L
ε (Hε) = C1

yy(Hε) − (B̂L)t(Hε)C
1
xx(Hε)(B̂

L)(Hε)
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yields

IF (z, Σ̂L
ε , H) =

∂

∂ε
(C1

yy(Hε)− (B̂L)t(Hε)C
1
xx(Hε)B̂

L(Hε))|ε=0

= IF (z, C1
yy, H)− IF (z, B̂L, H)tC1

xx(H)B̂L(H)− (B̂L)t(H)IF (z, C1
xx, H)B̂L(H)

−(B̂L)t(H)C1
xx(H)IF (z, B̂L, H)

= IF (z, C1
yy, H)

since B̂L(H) = 0.

Proof of Theorem 3. Combining Lemma 3 with the results of Croux and Haesbroeck
(1999) we obtain that the influence functions of B̂L, α̂L and Σ̂L

ε equal

IF (z, B̂L
jk, H) = [

a2

c2
I(∥z∥2 ≤ qγ) +

1

d1
I(∥z∥2 ≤ qδl)]xjyk

IF (z, (α̂L)j , H) = [(1−
d1

1− δl
)
1

c1
I(∥z∥2 ≤ qγ) +

1

1− δl
I(∥z∥2 ≤ qδl)]yj

IF (z, (Σ̂L
ε )jk, H) = [

a2

c2
I(∥z∥2 ≤ qγ) +

1

d1
I(∥z∥2 ≤ qδl)]yjyk

IF (z, (Σ̂L
ε )jj , H) = [

a2

c2
I(∥z∥2 ≤ qγ) +

1

d1
I(∥z∥2 ≤ qδl)]y

2
j +

a2

2c2
∥y∥2I(∥z∥2 ≤ qγ)− 1 +

p+ q + 2

2

a2

c2[a3 − (p+ q)a4]
[a4∥z∥

2 I(∥z∥2 ≤ qγ) +
a3

p+ q
qγ(1− γ − I(∥z∥2 ≤ qγ))− 1].

Denote the incomplete gamma function by Γ(u; v) = Γ(u)−1
∫ v

0
tu−1e−t dt. Then the con-

stants a1, a2, a3, a4 are given by a1 = 1/d1, a2 = (d1 − d2)/d1, a3 = c2/c1 and a4 =

1
2
− 1

2c1
[c2−

qγ
p+q

(c1+γ−1)] where c1 = Γ(p+q
2

+1; qγ
2
), c2 = Γ(p+q

2
+2; qγ

2
), d1 = Γ(p+q

2
+1;

qδl
2
)

and d2 = Γ(p+q
2

+ 2;
qδl
2
).

It can easily be shown that the influence functions of reweighted regression estimators
defined by (7) and (8) are connected to the influence functions of the initial regression
estimators B̂L, α̂L, and Σ̂L

ε through

IF (z, B̂LR, H) = (1−
dR1

1− δr
)IF (z, B̂L, H) +

I(∥y∥2 ≤ qδr)

1− δr
xyt

IF (z, α̂LR, H) = (1−
dR1

1− δr
)IF (z, α̂L, H) +

I(∥y∥2 ≤ qδr)

1− δr
y

IF (z, Σ̂LR
ε , H) =

dR1 − dR2
dR1

(IF (z, (Σ̂L
ε ), H) +

1

2
tr(IF (z, Σ̂L

ε , H))Iq) +
I(∥y∥2 ≤ qδr)

dR1
yyt − Iq.

The constants dR1 and dR2 are given by dR1 = Γ( q
2
+1;

qδr
2
) and dR2 = Γ( q

2
+2;

qδr
2
). Note that the

above results extend the expressions for the influence functions of reweighted multivariate
location and scatter functionals given by (Lopuhaä 1999).
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Studentized residual distances. First note that for any (xt, yt)t such that

x = Σ1/2
xx u+ µx

y = Btx+ α + Σ1/2
ε ε

with (ut, εt)t ∼ H, i.e. the standard Gaussian distribution. Then it follows from Theorem 3
and the equivariance properties in Theorem 1 that the influence function of B̂LR and α̂LR at
the joint distribution G of (xt, yt)t can be written as

IF (z, B̂LR, G) =

(

(1−
dR1

1− δr
)[
a2

c2
I(d2(z) ≤ qγ) +

1

d1
I(d2(z) ≤ qδl)] +

I(d2(r) ≤ qδr)

1− δr

)

Σ−1
xx (x− µx)r

t

IF (z, α̂LR, G) =

(

(1−
dR1

1− δr
)[(1−

d1

1− δl
)
1

c1
I(d2(z) ≤ qγ) +

1

1− δl
I(d2(z) ≤ qδl)] +

I(d2(r) ≤ qδr)

1− δr

)

r

−IF (z, B̂LR, G)tµx

where d2(z) and d2(r) are the squared robust distances of the point z and its corresponding
residual. By substituting the above expressions for the influence functions in the right hand
side of (17) the following approximation for the covariance matrix of residual ri can be
obtained

cov(ri)
.
=

(

1−
2

n
[fi(zi) +

dR1
1− δr

(d2(xi) + 1)]

+
1

n2

n
∑

j=1

[f 2
i (zj)

dR1
(1− δr)2

(dji + 1)2 +
2dR1
1− δr

fi(zj)(dji + 1)]

)

Σε

where dji = (xj − µx)
tΣ−1

xx (xi − µx) and fi(zj) = (1 −
dR
1

1−δr
)[a2

c2
I(d2(z) ≤ qγ) +

1
d1
I(d2(z) ≤

qδl)]dji + (1−
dR
1

1−δr
)[(1− d1

1−δl
) 1
c1
I(d2(z) ≤ qγ) +

1
1−δl

I(d2(z) ≤ qδl)].
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