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Abstract—MVDR beamformer is one of the well-known adaptive
beamforming techniques that offers the ability to resolve signals that
are separated by a fraction of an antenna beamwidth. In an ideal
scenario, the MVDR beamformer can not only minimize the array
output power but also maintain a distortionless mainlobe response
toward the desired signal. Unfortunately, the MVDR beamformer
may have unacceptably low nulling level, which may lead to significant
performance degradation in the case of unexpected interfering signals.
A new robust MVDR beamforming is presented to control the nulling
level of adaptive antenna array. In this proposed approach, the
beamforming optimization problem is formulated as a multi-parametric
quadratic programming (mp-QP) problem such that the optimal
weight vector can be easily obtained by real-valued computation. The
presented method can guarantee that the nulling level are strictly below
the prescribed threshold. Simulation results are presented to verify the
efficiency of the proposed method.
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1. INTRODUCTION

Adaptive beamforming is a technique for receiving the signal of
interest from specific directions while suppressing the interfering
signals adaptively other directions using an array of sensors. This
technique is able to automatically optimize the array pattern by
adjusting the elemental control weights until a prescribed objective
function is satisfied. That is, it provides a means for separating
a desired signal from interfering signals. It has found numerous
applications to radar, sonar, wireless communications, seismology, and
microphone arrays.

One of the most popular approaches to adaptive beamforming is
proposed by Capon [1]. His algorithm leads to an adaptive beamformer
with a minimum-variance distortionless response (MVDR). Since some
constraints, such as, the antenna gain maintained constant in the
desired look direction, are used to ensure that the desired signals
are not filtered out along with the unwanted signals. The MVDR
beamformer can not only minimize the array output power but also
maintain a distortionless mainlobe response toward the desired signal.
Unfortunately, the MVDR beamformer may have unacceptably low
nulling level, which may lead to significant performance degradation in
the case of unexpected interfering signals. Specially, the performance
of MVDR degrades in rapidly moving jammer environments. This
degradation occurs due to the jammer motion that may bring the
jammers out of the sharp notches of the adapted pattern. In order
to achieve high interference suppression and signal-of-interest (SOI)
enhancement, an adaptive array must introduce deep and widened
nulls in the directions of arrival (DOAs) of strong interferences, while
keeping the desired signal distortionless. Thus, the issue of nulling
level control is especially important for both deterministic and adaptive
arrays. A large number of approaches [2–11] have been presented in
the array processing literature in order to widen nulls in the DOAs
of interference signal sources. For example, the covariance matrix
tapers and derivative constraints in the directions of jammers are
proposed for broadening the null in adaptive processing [2, 3]. An
important class of adapted pattern modification techniques are realized
by the application of a conformal matrix “pater” to the original
sample covariance matrix. From the Schur product theorem and
Kolmogorv’s existence theorem, this method established that CMT’s
are, in fact, the solution to a minimum variance optimum beamformer
associated with an auxiliary stochastic process that is related to the
original by a Hadamard product. Reference [4] utilizes the space-time
averaging techniques and rotation techniques of the steering vectors
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to improve the nulling level control performances. This method can
provide increased robustness against the mismatch problem as well as
control over the sidelobe level. When the antenna platform vibrates
or interference moves quickly, it is possible that the mismatching
occurs between adaptive weight and data due to the perturbation of
the interference location. To solve these problems above, a robust
beamforming control method based on semidefinite programming is
presented to widen nulls of adaptive antenna array [5]. The presented
method can provide an improved robustness against the interference
angle shaking and suppress the interference signals and make the mean
output array signal-to-interference-and-noise ratio (SINR). In [6], the
beamforming optimization problem is formulated as a second-order
cone programming problem. This method can guarantee that the
sidelobes are strictly below some given (prescribed) threshold. The
advantage of the proposed method is that it can not only guarantee
that the sidelobes are strictly below some given (prescribed) threshold
value but also improve the robustness of the supergain beamformer
agianst random errors such as amplitude and phase errors in sensor
chanels and imprecise positioning of sensors. In the reference [7],
a zero-space based transmitting beamforming algorithm suitable for
combining with MIMO techniques is proposed to widen the nulls.
An adaptive beamforming null widening technology is presented by
utilizing the numerical method to correlated variance matrix via the
rotation of the steering vector [8, 9]. Reference [10] gives a new method
based on amplitude-only perturbations for the pattern synthesis of
linear antenna array with prescribed nulls. Reference [11] gives an
efficient synthesis technique for the conformal phased array antennas.

In this paper, we develop a new beamforming control method
to widen nulls of adaptive antenna array. The beamforming control
problem is formulated as a multi-parametric quadratic programming
(mp-QP) problem. The optimal weight vector can be obtained by
real-valued computation. At the same time, the presented method
can guarantee that the nulling level are strictly below the prescribed
threshold. This paper is organized as follows. Section 2 briefly
introduces the signal model and presents the MVDR solution. The
proposed method based on mp-QP is addressed in Section 3. In
Section 4, simulation results are presented to verify the performance
of the proposed approach. Section 5 concludes the paper.

2. BACKGROUND

Consider a uniform linear array (ULA), which consists of M elements.
The output of a narrowband beamformer composed by the ULA is
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given by
y(k) = wHx(k) (1)

where k is the time index, x(k) = [x1(k), . . . , xM (k)]T is the complex
vector of array observations, w = [w1, . . . , wM ]T is the complex
vector of beamformer weights, and the superscripts (·)T and (·)H

denote transpose and conjugate transpose, respectively. Regarding the
notation of this paper, lower and upper boldface letters are used for
vectors and matrices, respectively. The observation (snapshot) vector
at time instant k is given by

x(k) = s(k) + i(k) + n(k) = s(k)a(θ0) +
q∑

j=1

ij(k)a(θj) + n(k) (2)

where q is the number of interference signals. Here, s(k) and ij(k) are
the signal and interference symbol samples. The signal and interference
DOAs are θ0 and θj , j = 1, . . . , q, respectively, with corresponding
steering vectors a(θ0) and a(θj).

Let R denote the M × M theoretical covariance matrix of the
array snapshot vector. Assume that R is a positive definite matrix
with the following form:

R = σ2
0a(θ0)aH(θ0) +

q∑

j=1

σ2
ja(θj)aH(θj) + σ2

nIM (3)

where σ2
0, σ2

j (j = 1, . . . , q), and σ2
n are the powers of the uncorrelated

impinging signals s(k), ij(k), and noise, respectively. IM is the M×M
identity matrix.

The common formulation of the beamforming problem that leads
to the MVDR beamformer is as follows.

Determine the M×1 vector wo that is the solution to the following
linearly constrained quadratic problem:

min
w

wHRw subject to wHa(θ0) = 1 (4)

The solution of (4) for this particular case is

wMVDR =
R−1a(θ0)

aH(θ0)R−1a(θ0)
(5)

In practice, the exact covariance matrix is not available and is
replaced by the sample covariance matrix R̂

R̂ =
1
N

N∑

k=1

x(k)xH(k). (6)
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3. ADAPTIVE BEAMFORMING WITH NULLING
LEVEL CONTROL

Assume that the interference signal arrivals the receive array from the
angle of incident θj (j = 1, . . . , J). When the interference moves
quickly, it is possible that the mismatch occurs for adaptive weight
and data due to the perturbation of the interference location.

Let 4θ denote the angle spread for the interference signal which
come from θ. Let θk ∈ [θ −4θ, θ +4θ] (k = 1, . . . , K) be chosen grid
that approximates the angle spread area. To control the null level for
the the angle spread area [θ−4θ, θ+4θ], we use the following multiple
quadratic inequality constraints inside the the angle spread area:

|wHa(θk)|2 ≤ ξ2, k = 1, . . . , K (7)

where ξ2 is the prescribed nulling level.
Adding the constraints (7) to the MVDR beamforming prob-

lem (4), we obtain the following modified MVDR problem:

min
w

wHRw subject to wHa(θ0) = 1,

|wHa(θk)|2 ≤ ξ2 (k = 1, . . . ,K) (8)

This problem has quadratic objective function. There is a single linear
equality constraint and multiple quadratic inequality constraints. In
the above Eq. (8), a set of K constrains is used to guarantee the
beamformer can make the null fall into the whole interference angle
spreading areas. That is, multiple constraints can widen nulls of
the beamformer so that the interference can still be suppressed well
even in the situation where the interference direction and the data
mismatch. On the contrary, if only one constrain corresponding to the
null position is used, the resulting width of the null is very narrow.
Furthermore, the beamforming performance will deteriorate greatly
in the real electromagnetic environments, such as rapidly moving
jammer environments, etc. Additionally, notice that |wHa(θk)|2
can directly determine the output power of antenna array at the
interference direction θk (refer to Eq. (21)), thus, it can be viewed
as the “directional gain” of the antenna array. To sum up, multiple
quadratic constrains taken is justified.

In Section 4, we will convert this problem (8) to a multi-parametric
quadratic programming problem such that the optimal weight vector
is estimated by the real-value computation.
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4. ALGORITHM FORMULATION

4.1. mp-QP MVDR

In this section, we present the multi-parametric programming problem
for MVDR beamformor, named as mp-QP MVDR. As seen in (8), the
data are in general complex valued. However, for convenience, we will
work with real-valued data. To do so, a preprocessing path is taken
prior to the beamforming operation.

Let
R1 = Real{R}, R2 = Imag{R}
w1 = Real{w}, w2 = Imag{w}
a01(θ0) = Real{a(θ0)}, a02(θ0) = Imag{a(θ0)}
ak1(θk) = Real{a(θk)}, ak2(θk) = Imag{a(θk)}∀k ∈ (1, . . . ,K)

where, Real{·} and Imag{·} stand for the real and imaginary part of a
complex matrix or vector.

By simple algebra, the cost function wHRw can be rewritten as
wHRw = Real{wHRw}+ jImag{wHRw}

=
(

w1

w2

)T (
R1 −R2

R2 R1

)(
w1

w2

)

+j

(
w1

w2

)T (
R2 R1

−R1 R2

)(
w1

w2

)

It is easy to know that Imag{wHRw} = 0 since
(
wHRw

)H
=

wHRw ∈ R for ∀w ∈ CM . Thus, the modified MVDR problem (8)
can by algebraic manipulation be reformulated as the following mp-QP
problem

min
z

1
2
zTHz subject to Gz ≤ b (9)

where the matrices and vectors in (9) have the following forms:

z = [wT
1 ,wT

2 ]T ∈ R2M

H =
(

R1 −R2

R2 R1

)
∈ R2M×2M

G = [GT
0 ,GT

1 , . . . ,GT
K ]T

Gk = [BT
k ,−BT

k ]T (k = 0, 1, . . . , K)

Bk =
[

aT
k1(θk) aT

k2(θk)
aT

k2(θk) −aT
k1(θk)

]
(k = 0, 1, . . . , K)

b = [bT
0 ,bT

1 , . . . ,bT
K ]T
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b0 = [1, 0,−1, 0]T

bk = [
√

λξξ,
√

1− λξξ,−
√

λξξ,−
√

1− λξξ]T λξ ∈ [0, 1]

Then, we have the following Theorem 1.
Theorem 1. Suppose that there are q uncorrelated signals

sk(t) (k = 1, . . . , q) with distinct DOAs arriving an ULA with M
isotropic sensors. Assume that the additive noise of kth sensor
nk(t) (k = 1, . . . , M) is a complex Gaussian random process with zero-
mean and equal variance σ2

n and the noise nk(t) is uncorrelated with
sk(t) (k = 1, . . . , q). Then the matrix H (which is defined in (9)) is a
positive definite matrix.

Proof. Let (λ, e) be an eigenpair for the matrix R, where
e = e1 + je2 with ek ∈ RM (k = 1, 2), R = R1 + jR2 with
Rk ∈ RM×M (k = 1, 2). It is clear that the eigenvalue λ is a real
number since R is a hermitian matrix. Thus, we have the following
expression:

R(e1 + je2) = (R1 + jR2)(e1 + je2) = λ(e1 + je2) (10)

From Eq. (10), we have the following equation

H×
[

e1

e2

]
=

[
R1 −R2

R2 R1

]
×

[
e1

e2

]
= λ

[
e1

e2

]
(11)

Starting from the eigenvalue decomposition of the covariance
matrix R, R can be expressed as

R = EΓEH (12)

where E = [e1, . . . , eM ] with ek is the orthonormal eigenvector of
the matrix R. Γ = diag{λ1, . . . , λM} with λ1 ≥ λ2 ≥ . . . ≥ λq >
λq+1 = . . . = λM = σ2

n > 0, namely, every eigenvalue λk > 0 for
∀k ∈ [1, . . . , M ].

From Eq. (10)∼ (12), it’s not difficult to prove the matrix H
has the same eigenvalues (λ1, λ1, . . . , λM , λM , namely, each eigenvalue
repeats twice) as R. So, all eigenvalues of H are positive. Finally,
observe that H is a real-symmetric matrix since R is a hermitian matrix
which implies that RT

1 = R1 and RT
2 = −R2. Therefore, the matrix

H is a positive definite matrix.
This concludes the proof. ¥

4.2. The Optimal Solution

As shown in [12, 13], the multi-parametric quadratic programming
(mp-QP) problem (9) can be solved by applying the Karush-Kuhn-
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Tucker (KKT) conditions

Hz + GT λ = 0, λ ∈ R4(K+1) (13)
λiGiz− bi = 0, i = 1, . . . , 4(K + 1) (14)
λ ≥ 0 (15)
Gz− b ≤ 0. (16)

In the sequel, let the superscript index denote a subset of the rows
of a matrix or vector. Theorem 1 shows that H has full rank, (13) gives

z = −H−1GT λ (17)

Definition 1 Let z∗ be the optimal solution to (9). We define
active constraints the constraints with Giz∗ − bi = 0, and inactive
constraints the constraints with Giz∗−bi < 0. The optimal active set
A∗ = {i|Giz∗ = bi}.

Definition 2 For an active set, we say that the linear
independence constraint qualification (LICQ) holds if the set of active
constraint gradients are linearly independent, i.e., GA has full row
rank.

Assuming that LICQ holds, (14) and (17) lead to

λA = −
(
GAH−1

(
GA)T

)−1
bA (18)

Equation (18) can now be substituted into (17) to obtain

z = H−1
(
GA)T

(
GAH−1

(
GA)T

)−1
bA (19)

Partition, now, the vector z into z1, z2 ∈ RM , by z = [ z1

z2
], and define

wo as follows.
wo = z1 + jz2 ∈ CM (20)

It is clear that the optimal solution of (8) for this particular case is wo.
Remarks. Similar to the array synthesis technique based on the

support vector regression [14] (for convenience, this method is named
as SVR-AS), the proposed mp-QP MVDR method need also find an
optimal weight vector for an antenna array. However, the differences
of the two methodologies are as follows:

(1) The proposed mp-QP MVDR gives the optimal weight vector of
an antenna array for the optimal problem of the receiving beam.
While, the SVR-AS gives the weight vector of an antenna array
for the radiation pattern problem.

(2) The SVR-AS needs the pairs voltages/radiation pattern as the
train data. The mp-QP MVDR doesn’t need the train data.
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The benefits of the proposed approach are as follows:

(1) It can widen the nulling extent.
(2) It can guarantee that the nulling level in the specified areas are

strictly below the prescribed threshold.
(3) It can provide not only an improved robustness against the

interference angle shaking but also a better array gain.

4.3. Array Gain

To investigate the performance of the proposed method, this section
gives the definition of array gain for an adaptive antenna array system.
From Eq. (1), the mean square power output of the beamformer can
be expressed as

P = E{|y(k)|2} = E{|wHx(k)|2} = σ2
0|wHa(θ0)|2 + wHRj+nw

= σ2
0|wHa(θ0)|2 +

q∑

j=1

σ2
j |wHa(θj)|2 + σ2

nw
Hρnw (21)

where E{·} denotes the statistical expectation. The M × M
interference-plus-noise covariance matrix Rj+n = E{(∑q

j=1 ij(k)a(θj)+
n(k))(

∑q
j=1 ij(k)a(θj) + n(k))H} =

∑q
j=1 σ2

ja(θj)aH(θj) + σ2
nρn, σ2

0 is
the desired signal power, σ2

j (j = 1, . . . , q) and σ2
n are the interfering

signal power and noise power, respectively. ρn is the Hermitian cross-
spectral density matrix of the noise normalized to have its trace equals
to M .

The array gain is defined as follows.
Definition 3 For an adaptive antenna array system, the array

gain is defined as the output signal-to-interference-and-noise ratio
(SINR) divided by the input SINR and is given by

G =
σ2

0|wHa(θ0)|2/(wHRj+nw)
σ2

0/(
∑q

j=1 σ2
j + σ2

n)
. (22)

To calculate the output due to the desired signal, a distortionless
constraint is imposed on w that wHa(θ0) = 1. Consider the special
case of spatial white noise and identical noise spectra at each sensor, the
noise cross-spectral density matrix ρn reduces to an identity matrix.
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Thus the array gain for white noise is given by

G =

∑q
j=1 σ2

j + σ2
n

wHRj+nw

=

∑q
j=1 σ2

j + σ2
n∑q

j=1 σ2
j |wHa(θj)|2 + σ2

nwHw

=

∑q
j=1 σ2

j /σ2
n + 1∑q

j=1 σ2
j /σ2

n‖wHa(θj)‖2 + ‖w‖2
(23)

where ‖ · ‖ stands for the Euclidean norm.
From Eq. (23), the array gain of the mp-QP MDVR beamformer

and pure MVDR beamformer are given as follows.

Gmp-Qp =

∑q
j=1 σ2

j /σ2
n + 1∑q

j=1 σ2
j /σ2

n‖wH
mp-Qpa(θj)‖2 + ‖wmp-Qp‖2

(24)

GMVDR =

∑q
j=1 σ2

j /σ2
n + 1∑q

j=1 σ2
j /σ2

n‖wH
MVDRa(θj)‖2 + ‖wMVDR‖2

(25)

where wmp-Qp and wMVDR are the weight vectors given by (5) and
(20), respectively.

5. SIMULATION RESULTS

In this section, we conduct some simulations to validate the proposed
approach. Assume that the uniform linear array (ULA) consists of
ten isotropic sensors (M = 10) equispaced by half-wavelength. The
number of snapshots at each sensor is taken to N = 256.

Case 1: Consider that an ideal scenario without the angle spread
for the interference signal. Assume that the desired signal and two
interference signals are plane waves impinging on the ULA from the
directions 0◦, − 40◦, and 40◦, respectively. In this simulation, the
signal-to-noise-ratio (SNR) is set to 0 dB, 2 dB and 5 dB, for the desired
signal and the two interferer signals, respectively. It is assume that
ξ2 = 10−7, i.e., we require the beampattern nulling level below −70 dB.

For Case 1, the complex vectors of beamformer weights calculated
by the aforementioned two methods are presented in Table 1, while
the beampatterns that they generate are also plotted in Fig. 1. From
Fig. 1, we observe that, all the beampatterns have nulls at the DOAs
of the interference signals and maintain a distorionless response for the
SOI. However, the mp-QP MVDR places deep nulls (its nulling level is
equal to −80 dB) at the DOAs of two interference signal sources. The
MVDR response presents lower nulling levels compared to the mp-QP
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Table 1. Weighting values calculated for Case 1.

Sensor ] MVDR mp-QP MVDR

1 0.1097 + 0.0473j 0.1077 + 0.0469j

2 0.1275 + 0.0076j 0.1269 + 0.0072j

3 0.0780 + 0.0256j 0.0808 + 0.0264j

4 0.0463− 0.0005j 0.0441− 0.0007j

5 0.1117− 0.0180j 0.1106− 0.0188j

6 0.1008− 0.0204j 0.1043− 0.0196j

7 0.1021− 0.0274j 0.1015− 0.0267j

8 0.0861 + 0.0002j 0.0846− 0.0012j

9 0.1268 + 0.0068j 0.1293 + 0.0069j

10 0.1110− 0.0212j 0.1102− 0.0204j
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Figure 1. The beamforming performances without angle spread
scenario.

MMVDR method. This can result in deep degradations in case of
unexpected interferences or increase in the noise power.

Figure 2 gives the array gain curves (which are computed by (24)
and (25), respectively) of the aforementioned beamformers for the ideal
scenario without the angle spread, with SNRs ranging from −5 dB to
20 dB. It can be seen that the mp-QP MVDR shows better array gain.
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Figure 2. Array gain versus SNR for various beamformers without
angle spread scenario.

Case 2: Consider that an angle spread scenario for the
interference signal. Assume that the desired signal and two interference
signals are plane waves impinging on the ULA from the directions
0◦, − 40◦, and 40◦ respectively. Assume that the interference angle
spreads from 35◦ to 50◦. In this simulation, the SNR is set to 0 dB,
2 dB and 5 dB, for the desired signal and the two interferer signals,
respectively. It is assume that ξ2 = 10−3.8, i.e., we require the
beampattern nulling level below −38 dB.

For Case 2, the complex vectors of beamformer weights calculated
by the aforementioned two methods are presented in Table 2, while
the beampatterns that they generate are also plotted in Fig. 3. Fig. 3
gives the nulling performance of MVDR and mp-QP MVDR, with
interference angle spreading. From Fig. 3, we can observe that the
mp-QP MVDR can widen the nulling extent and guarantee the nulling
level (inside the interference angle spread areas) strictly below the
prescribed threshold.

Figure 4 gives the array gain curves (which are computed by (24)
and (25), respectively) of the aforementioned beamformers for the
angle spread scenario of the interference signal, with SNRs ranging



Progress In Electromagnetics Research C, Vol. 20, 2011 251

Table 2. Weighting values calculated for Case 2.

Sensor ] MVDR mp-QP MVDR

1 0.1262− 0.0236j 0.0765− 0.0158j

2 0.0674 + 0.0075j 0.0963 + 0.0356j

3 0.0986− 0.0301j 0.1097− 0.0431j

4 0.1240 + 0.0014j 0.1383− 0.0176j

5 0.0972− 0.0069j 0.0888− 0.0187j

6 0.1090− 0.0089j 0.0984 + 0.0091j

7 0.0777 + 0.0208j 0.1029 + 0.0163j

8 0.1100 + 0.0125j 0.1264− 0.0126j

9 0.1521 + 0.0249j 0.1274 + 0.0159j

10 0.0377 + 0.0023j 0.0353 + 0.0309j
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Figure 3. The nulling performance with angle spreading from 35◦ to
50◦.

from −5 dB to 20 dB. It can be seen that the mp-QP MVDR
shows better performance since it guarantees the nulling level of all
interference signals strictly below prescribed threshold.
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Figure 4. Array gain versus SNR for various beamformers with angle
spread scenario.

6. CONCLUSIONS

This paper presents an effective robust beamforming method based
on the multi-parametric quadratic programming for nulling level
control. The optimal weight vector can be estimated by real-valued
computation. The presented method can guarantee that the nulling
level inside the interference angle spread areas are strictly below the
prescribed threshold. Simulation results are presented to verify the
performance of the proposed mp-QP MVDR beamformer with good
reliability.
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