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1. Introduction

Knowing your position is, in many situations, very important. It is so today and has
been so for a long time. Today many navigation systems are based on Global Navig-
ation Satellite Systems (GNSS), of which the US system Global Positioning System
(GPS) is the most widely used. Because of very low signal power levels from the
satellites, this system is vulnerable to interfering signals. Increased robustness can be
achieved by integrating GPS with another navigation system. An attractive solution
is integration with an Inertial Navigation System (INS). An INS is a self contained
system. The position of a vehicle is calculated using measurements of accelerations
and rotations in three dimensions, which are all quantities that can be measured on
the vehicle without external aiding or data. This makes an INS extremely insensitive
to external interferences, i.e. jamming.

Another way to protect the GPS receiver from interfering signals is to use a more soph-
isticated antenna. With an antenna array, consisting of several antenna elements, it
is possible to direct a beam with higher gain in the directions of the satellites. This
can give a significantly increased signal-to-noise ratio (SNR) that in turn increases
the availability of the GPS.

1.1 Objective

The objective of this thesis is to create a simulation environment for a robust naviga-
tion system. The environment should contain a centralized integration of an INS and
a GPS receiver, using a tightly coupled complementary Kalman filter.

To increase the availability during periods when other signals are interfering the GPS
signals, simulations with an adaptive beamforming antenna should be performed.

The work is divided into two parts, Integration of INS/GPS and Beamforming for
GPS.

1.2 Problem and Methods

1.2.1 Integration of INS and GPS INS and GPS have several complementary
properties, e.g. they have small errors for short and long times, respectively. The
GPS system is based on distance measurements and can provide position and time es-
timates with bounded errors. The sample rate is not very high, typically a few Hertz,
which is often too low for control purposes. An INS, on the other hand, can provide
measurements at higher sampling rates, but as noisy sensor data are integrated its
error without bound. The fact that an INS and a GPS have these complementary
properties can be used advantageously, if the two systems are integrated. The integ-
rated system can therefore have better navigation performance and robustness than
each of the systems alone. This behaviour is depicted in Figure 1.1.

The integration of raw IMU sensor signals and GPS pseudoranges is performed by
means of a complementary Kalman filter. The filter structure used is depicted in
Figure 1.2.

1
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1.2.2 Beamforming for GPS Beamforming means that the gain of an antenna
is concentrated to a certain direction. In this thesis an antenna array is used, which
consists of a number of antenna elements. By manipulating the signals from each
element the reception pattern, which describes the antenna gain for all directions,
can be controlled. When using a beamforming antenna for GPS the beams must be
controlled in three dimensions since the orbits of the GPS satellites can cover the whole
sky. An example of a three-dimensional reception pattern is shown in Figure 1.3.

1.3 Previous Work

The area of inertial navigation and its performance has been well known for a long
time. The developments in INS performance are mainly due to better performance in
the sensors.The development of satellite based navigation systems in the 1990’s, e.g.
GPS, and the ability to integrate the two systems, gave a rebirth to the INS research.
Yet today, this is an area that is not considered fully investigated.

The second main area of this thesis, adaptive beamforming, is a relatively new topic.
The theories and many algorithms were developed in the late 1980’s, but it is not
before the last years, with the increased computational power of computers, that the
algorithms have been able to be used in real applications.

At the Swedish Defence Research Agency (FOI) some relevant research has been made
within the field of GPS and INS integration. The Kalman estimator and a particle
estimator filter have been compared in a navigation application [1] and the dynamics
of an INS system have been modelled and implemented in FOI-NAV matlab toolbox.
Another project at FOI has developed a matlab toolbox for adaptive beamforming
antennas in communication systems [2].

1.4 Outline of Thesis

The thesis is divided into several chapters. Chapters 2–4 mainly present background
information and theories.

Chapter 2 Inertial Navigation describes the principles of inertial navigation. Some
mathematical terms for transformation between different systems are intro-
duced. The well-known navigation equations and their error dynamics are de-
rived.

Chapter 3 Satellite Navigation explains how the Global Positioning System (GPS)
works. The performance of a GPS receiver and errors affecting the accuracy are
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Figure 1.1: Comparison of error performance between integrated and
non-integrated systems. The integrated system (solid line) performs bet-
ter than both an unaided INS (dashed line) and a stand alone GPS
(marked with ×). The picture is generated with the simulation envir-
onment developed in this project.
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Figure 1.2: The tight integration of INS and GPS is done by means of
a complementary Extended Kalman filter. The inputs to the filter are
raw data from the INS and GPS, i.e. gyro and accelerometer data and
pseudoranges to satellites.

Figure 1.3: The signal-to-noise ratio can be significantly increased by
using an adaptively beamforming antenna. A beam with higher gain can
be directed towards a satellite in the same time as interfering signals are
suppressed. In the example above, two main beams are formed toward
two satellites and the noise signals (red lines) are heavily suppressed.

discussed. The chapter is written to give the reader a general knowledge about
GPS. In [3] a much more detailed description of GPS is given.

Chapter 4 Adaptive Beamforming for GPS Some theory for adaptive beam-
forming is presented. Some beamforming algorithms proposed in the literature
and articles are described.

Chapters 5–6 are more applied to this specific problem.

Chapter 5 Linearization and Discretization of Nonlinear Systems In this chapter
the non-linear error dynamics of the navigation equations are linearized and dis-
cretized to fit to the general state-space form.

Chapter 6 Implementation of Simulation Environment describes how the two
systems, the INS and the GPS, were modelled, and how the integration filter
was designed.

The three last chapters present results in form of simulations and summarizes the
work.

3
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Chapter 7 Simulation Results for GPS/INS Integration Simulations of the sys-
tem performance have been made in matlab. The integration filter is tested in
different situations.

Chapter 8 Simulations of Jamming Suppression using Adaptive Beamforming
The performance when using an adaptive beamforming antenna with the integ-
rated INS/GPS is tested.

Chapter 9 Conclusions summarizes the work. Some suggestions for future work is
given.

4



FOI-R--0848--SE

2. Inertial Navigation

The principles of inertial navigation are actually rather simple. For short, it is about
measuring relative transportation from a given initial position and with a given ini-
tial velocity. From the start position a measured acceleration is integrated twice with
respect to time, in order to get the relative transportation. To know in which direc-
tion the transportation is taking place, it is also necessary to measure the change in
attitude.

Since the problem is solved by integration, small measurement errors are integrated,
which has the effect that the calculated position “drifts away” from the true position.
Especially, an INS is sensitive to biases in the sensors. High-frequency noise is atten-
uated in the integration, which is a low-pass process.

The drift is one of the major drawbacks with inertial navigation. There are high-
precision sensors with very small biases and noise, but nevertheless, there will be a
drift error. An unaided INS has an unbounded long-term error.

It is worth noting that the integration process only requires information that can be
measured by the user himself, a so called self-contained system. The advantage of
having a self-contained system, the INS, is that it is a very robust way of navigating.
It is practically impossible to disturb an INS except by physically destroying the in-
ertial sensors.

More details about inertial navigation can be found in [4], [5] and [1].

2.1 The Principle of Inertial Navigation

The foundation of inertial navigation is Newton’s Laws of motion. Newton’s first law
says that in an inertial frame, a body at rest or in uniform motion will remain so in
absence of applied forces.

The second law states that the position x of a body with mass m affected by a force
fg, where gravity is excluded, can be described with the relation

fg =
d

dt
(mẋ). (2.1)

Neglecting relativistic effects and assuming a constant mass gives

fg = mẍ. (2.2)

This relation is valid in an inertial frame. However, a philosophical problem with
defining an inertial frame remains. An Earth-fixed frame is not inertial since Earth is
rotating. A frame fixed in space, where Earth is rotating is not really inertial either,
since this frame is affected by the gravity field from the sun. Also our solar system is
rotating around a point in the expanding universe. The only inertial frame, at least
in a local sense, where the classical mechanics hold, is a frame under free fall.

For practical purposes, the frame attached to the center of Earth and not rotating
with respect to distant stars (Figure 2.1), can be considered inertial [4]. This requires
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that compensation is done, at least for the gravity from Earth. Otherwise a body
would not stay in rest if no force is applied, as stated by Newton’s first law. With the
gravitational field g, affecting a mass m, equation (2.2) becomes

f +mg = mẍ (2.3)

or, after division with the mass m,

ẍ =
f

m
+ g. (2.4)

There are methods for compensating not only for the gravity caused by Earth in the
term g, but also for the gravity from the moon and sun and other celestial bodies. In
this thesis we are satisfied with considering the gravity from Earth.

The term f

m in (2.4) is recognized as an acceleration, and will be denoted as a. The
acceleration can be measured with an accelerometer. With knowledge of a and the
gravity g, the differential equation (2.4) could be integrated twice, to get the position
x. However, we also need to know the orientation of the vehicle, to know in what
direction the integration of (2.4) should take place. The orientation can be calculated
from angular rates, measured by a gyro. Integrating the gyro output yields the relative
change in orientation. Therefore the current orientation can be estimated, if the initial
orientation is known.

A set of sensors used for inertial navigation, an Inertial Measurement Unit (IMU),
usually consists of three gyros and three accelerometers, put together in two mutually
orthogonal sets. Such a set can measure acceleration and angular rates in three
dimensions. Later, we will se that this is sufficient for solving (2.4) for x. More about
performance and different types of IMUs can be found in [4].

To continue the derivation of the equations needed for inertial navigation, we first
have to define different frames and transformations between them.

2.2 Coordinate Frames

Different coordinate frames are used depending on the application. It is important
to sort out in which frame each quantity is measured. In all frames, positions will
be defined in right-handed coordinate systems with orthogonal axes. A quantity x,
measured in the arbitrary a-frame, will be denoted xa (if it is necessary to point it
out).

Sun

Earth

Earth

x

y

z

x´

y´

z´

Figure 2.1: Earth-Centered Inertial frame (ECI or i-frame). The ECI
frame is in free fall in the gravity field of the sun, but not rotating with
respect to the distant fixed stars.
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Earth Centered Systems Earth centered systems have, as the name indicates,
their origins in the center of Earth. These frames are preferred if the equa-
tions should be valid irrespective of position on Earth.

ECI Earth-Centered Inertial frame (i-frame). It is the changes relative to this
frame that are measured by the IMU.

The origin of the frame is located at the center of earth. The 1- and 2-axis span
the Equator plane and the 3-axis coincides with the rotation axis of Earth and
pointing towards the north pole. Figure 2.1 illustrates the ECI frame.

ECEF Earth-Centered Earth-Fixed frame (e-frame). The ECEF frame is sim-
ilar to the ECI frame, but this frame rotates with the same angular rate ωe as
Earth1. Thanks to the rotation, a fixed point on Earth also has fixed coordin-
ates in this frame.

Coordinates in e-frame can also be expressed as polar coordinates (longitude,
latitude and height). These coordinates are referred to as Geodetic coordinates,
but will not be used in this thesis.

Local Systems When navigating in a local area where Earth can be considered flat
it is convenient to give the coordinates relative to a fixed reference point. To
give a coordinate in a local system the coordinates of the reference point must
be defined.

When a local system is used in this thesis, the coordinates will be given as
Cartesian coordinates (East, North, Up).

Vehicle Centered Systems These systems are moving with the vehicle, so that the
vehicle is always centered in the origin of the frames.

Body Fixed Frame The Body Fixed Frame (b-frame) is defined with the
1-axis in the front direction of the vehicle, the 2-axis pointing to the right and
the 3-axis through the floor.

The IMU can either be gimballed or fixed to this frame. Here, the IMU is
considered to be strapped to the vehicle, a so called strapped down INS. The
IMU can also be arranged in a gimballed system, so that the IMU can turn
relative to the b-frame. In that case the IMU is aligned with another well-
defined frame, i.e. the local frame.

2.3 Coordinate Transformations

In section 2.2 the different frames that will be used was described. It is important to
be able to transform coordinates expressed in one frame to another. If the directions
of the coordinate axes differ, the coordinates have to be rotated.

2.3.1 Direction Cosine Matrix The direction cosine matrix (DCM) is used to
transform coordinates between two concentric frames. Direction cosine matrices are
important to be able to understand the derivation of the navigation equations which
follows.

A transformation of coordinates xt in the t-frame to coordinates xs in the s-frame
can be done as

xs = Cs
tx

t (2.5)

1ωe = 7.292115 · 10−5 rad/s given by WGS-84 [6]

7
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where the direction cosine matrix is

Cs
t =



c1,1 c1,2 c1,3

c2,1 c2,2 c2,3

c3,1 c3,2 c3,3


 . (2.6)

The columns are mutually orthogonal and so are the rows. This implies that Cs
t is

an orthogonal matrix with the following properties:

Cs
t (C

s
t )

T = I ⇒ Ct
s ≡ (Cs

t )
−1 = (Cs

t )
T (2.7)

A theorem by Euler, referred to in [4], says that any sequence of rotations can be
represented by one single rotation about a single axis. This fact can be used to per-
form any coordinate transforms by a number of rotations around the coordinate axes.
In three dimensions, the rotation is split up into three rotations, one around each
coordinate axis. Together, the rotations give the same result as one rotation around
the axis as given by Euler’s theorem. For small angles the order of rotation does not
matter.

One important property that can be expressed in terms of rotation around the co-
ordinate axes is the time derivative of a transition matrix Cs

t . In [4] it is shown that
Ċs

t can be expressed as
Ċs

t = Cs
t Ωt

st. (2.8)

Here, the factor Ωt
st is a skew-symmetric matrix which is built up by ω

t
st = [ω1, ω2, ω3].

The subscripts in ω
t
st tells that it is the rotation of the t-frame relative to the s-frame

that is measured, and the superscript tells that the rotation is measured with coordin-
ates from the t-frame.

Ωt
st = [ωt

st×] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (2.9)

The notation [ωt
st×] is sometimes used for Ωt

st and comes from the close relation
with the vector cross product. Time-derivatives of small angles, like ω

t
st above that

describe rotation rates, are usually called angular rates.

2.3.2 Quaternions Multiplication by a complex number s = ‖s‖ ej arg(s) with
the constraint

∥∥s
∥∥ = 1, can be seen as a rotation of an arbitrary complex number

c = ‖c‖ ej arg(c). Since

s · c = ‖s‖ ej arg(s) · ‖c‖ ej arg(c)

= 1 · ej arg(s) · ‖c‖ ej arg(c)

= ‖c‖ ej(arg(c)+arg(s))

(2.10)

the complex number c is rotated around the origin with the angle arg(s).

A quaternion is an extension of the complex numbers that perform the rotation de-
scribed in (2.10) in three dimensions.

q = j · a+ k · b+ l · c+ d (2.11)

where j, k and l are mutually orthogonal imaginary units that span a right-hand
coordinate system. There is still a unit constraint so that ‖q‖ = 1. The constraint
reduces the number of degrees of freedom from 4 to 3, in the same way as the unit
constraint reduces the unit complex number from 2 to 1 degree of freedom.

Quaternions are used in the integration process of the navigation equations that is
described later in this chapter. However, the quaternions are not crucial for under-
standing the further description. More about quaternions can be found in [4] or [7].

8
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2.4 Navigation Equations

The navigation equations are a set of differential equations describing how position,
velocity and attitude are changed depending on acceleration and angular rotations. In
this thesis the navigation equations will be expressed with coordinates in the e-frame
(see Section 2.2).

Applying (2.4) gives the following equation for the position coordinates xi in the
inertial frame (i-frame):

ẍi = ai + gi. (2.12)

We want to develop a corresponding expression valid in the e-frame. A coordinate xe

can be expressed in the coordinates xi by means of the transition matrix Ci
e according

to
xi = Ci

e xe (2.13)

The time derivative of the transition matrix Ci
e can be calculated if the general equa-

tion (2.8) is applied to Ci
e:

Ċi
e = Ci

e Ωe
ie (2.14)

where Ωe
ie is a skew-symmetric matrix with elements given by the angular rates ω

e
ie =

[ω1, ω2, ω3] between the i-frame and e-frame:

Ωe
ie =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (2.15)

The only non-zero components in Ωe
ie is ω3, since the e-frame is defined to rotate

about the 3-axis. This component is denoted ωe.

We further need the second time derivative of Ci
e, which is

C̈i
e = Ci

e Ω̇e
ie + Ci

e Ωe
ie Ωe

ie, (2.16)

where (2.14) has been used twice. It is possible to simplify this expression by noting
that the Earth rotation Ωe

ie is constant, and therefore Ω̇e
ie is zero, which gives

C̈i
e = Ci

e Ωe
ie Ωe

ie. (2.17)

Now, differentiating (2.13) and inserting the expressions for the first and second de-
rivative of Ci

e from (2.14) and (2.17) yields

ẍi = C̈i
e xe + 2 Ċi

e ẋe + Ci
e ẍe

= Ci
e Ωe

ie Ωe
ie xe + 2Ci

e Ωe
ie ẋe + Ci

e ẍe.
(2.18)

Multiplying both sides with Ce
i = (Ci

e)
−1, solving for ẍe and using (2.12) gives

ẍe = −2Ωe
ie ẋe −Ωe

ieΩ
a
ie xe + ae + ge (2.19)

where ge = Ce
i gi are the components of the gravity expressed in the e-frame. The

quantity ae is the sensed acceleration in the e-frame. The sensed acceleration in
e-frame is given by

ae = Ce
b ab, (2.20)

where ab are the components in the b-frame of the sensed acceleration. The transition
matrix Ce

b from b-frame to e-frame in (2.20), that describes the attitude of the vehicle,
is determined from the gyro outputs. The dynamics of the attitude is described by
the general equation (2.8) which, applied to the e- and b-frame, gives

Ċe
b = Ce

b Ωb
eb. (2.21)

9
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If the angular rates between the e-frame and the b-frame are denoted ω
b
eb = (ω1 ω2 ω3)

T ,
the skew-symmetric matrix Ωb

eb is, according to (2.9),

Ωb
eb = [ωb

eb×] =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (2.22)

But the gyros sense the angular rates relative to the inertial frame, ω
b
ib:

ω
b
ib = ω

b
ie + ω

b
eb. (2.23)

We have to compensate for the angular rates ω
b
ie that is caused by Earth rotation in

the i-frame:

ω
b
eb = ω

b
ib − ω

b
ie

= ω
b
ib −Cb

eω
e
ie.

(2.24)

The three-dimensional second-order differential equation (2.19) can be transformed
to a system with six first-order differential equations by introducing the velocity vec-
tor ẋe as state variables. Together with (2.21) and (2.24), a system of nine first-order
differential equations, that is sufficient for describing the navigation problem can be
formed:

d

dt
Ce

b = Ce
b Ωb

eb

d

dt
ẋe = −2Ωe

ie ẋe −Ωe
ieΩ

e
ie xe + Ce

b ab + ge

d

dt
xe = ẋe.

(2.25)

The system (2.25) is the navigation equations in e-frame. It is a system of nine
differential equations. The only non-linearity in the system is the gravity term, which
depends on the position in a non-linear way (see Section 2.4.1). Measurements from
accelerometers and gyros are included in ab and Ωb

eb, respectively.

In this thesis the ECEF frame (e-frame) will be used for the navigation equations.
The reason for this is not only that the navigation equations have a simple form in
this frame, but also that GPS expresses coordinates in this frame. Obtaining the
navigation equations in other frames is not as straight-forward as for the e-frame. In
[4] and [1] the navigation equations can be found for other frames, e.g. the popular,
but complicated navigation-frame (n-frame).

2.4.1 Gravity Model Earth will be assumed to be homogeneously dense spher-
ical. With this assumption the gravity will always be directed towards the center of
the Earth. An approximation of the gravity according to [4] is

ge ≈ −kM|xe|3 xe =
−kM
r3

xe. (2.26)

Here xe = (x1, x2, x3)
T are the coordinates in e-frame and, hence, r = |xe| is the

distance from the center of Earth to the point xe, where the gravity is evaluated. The
constant term

kM ≈ 3.986 · 1014 m3s−2

is the gravitational constant k times the mass of Earth M .

The derivative of the gravity, the gravity gradient Γe derived from the approximation

10



FOI-R--0848--SE

in (2.26) is

Γe ≡ ∂ge

∂xe
= −kM

(
I3

r3
− 3

xe(xe)T

r5

)

= −kM






1 0 0
0 1 0
0 0 1


 r−3 − 3




x2
1 x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x3x2 x2
3


 r−5


 .

(2.27)

2.5 Error Dynamics

Taking the differential of system (2.25) shows the dynamics of small errors in the
variables (denoted by the prefix δ):

d

dt
δCe

b = δCe
b Ωb

eb + Ce
b δΩ

b
eb

d

dt
δẋe =− 2 δΩe

ie ẋe − 2Ωe
ie δẋ

e − ( δΩe
ieΩ

e
ie + Ωe

ieδΩ
e
ie)x

e

−Ωe
ieΩ

e
ie δx

e + δCe
b ab + Ce

b δa
b + δge +

∂ge

∂xe
δxe

d

dt
δxe = δẋe.

(2.28)

The last term in the second equation is the gravity gradient defined in (2.27) and
comes from the fact that the gravity ge depends on the position xe. The term δge is
the gravity disturbance vector. It reflects the gravity deviation from the used gravity
model. We assume that the gravity model in Section 2.4.1 describes the gravity with
a sufficient accuracy and, hence, the gravity disturbance vector δge is set to zero.

The term δCe
b represents a misalignment in the transition matrix Ce

b, that transforms
coordinates from the b-frame to the e-frame. Under the assumption that this mis-
alignment is small, δCe

b can be written as a skew-symmetric matrix. An alignment
error represented by the small angles Ψe = (ψe

1, ψ
e
2, ψ

e
3)

T can then, according to [4],
be written as

δCe
b = −[Ψe×]Ce

b, (2.29)

where [Ψe×] is a skew-symmetric matrix, with elements (ψe
1, ψ

e
2, ψ

e
3)

T , like the one
defined in (2.9). Further, Ωe

ie is a known constant and therefore δΩe
ie = 0.

The error dynamics of the system in (2.25) can now be written as

d

dt
δCe

b = δCe
b Ωb

eb + Ce
b δΩ

b
eb

d

dt
δẋe =− 2Ωe

ie δẋ
e − (Ωe

ieΩ
e
ie − Γe) δxe + δCe

b ab + Ce
b δa

b

d

dt
δxe = δẋe.

(2.30)

with Γe as a short notation for the gravity gradient, defined in (2.27). The system
can be written in matrix form if the DCM δCe

b is rewritten in terms of the angles Ψe

and a skew-symmetric matrix instead:

d

dt




Ψe

δẋe

δxe


 =



−Ωe

ie 03 03

[ae×] −2Ωe
ie Υ

03 I3 03






Ψe

δẋe

δxe


+



−Ce

b 03

03 Ce
b

03 03



[
δωb

ib

δab

]
(2.31)

where Υ = −(Ωe
ieΩ

e
ie−Γe). The terms δωb

ib and δab are errors in the accelerometers
and gyros, respectively.
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3. Satellite Navigation

In this chapter the principles of Global Navigation Satellite Systems (GNSS) will be
described. Since GPS (Global Positioning System) is the by far most commonly used
GNSS, the text will be concentrated on this system.

Today two systems for satellite navigation exist, the well-known GPS and a Russian
system named GLONASS (GLobal Orbit NAvigation Satellite System). The two
systems have many similarities. GLONASS is currently (November 2002) not fully
operational, since only about 10 satellites are in their orbits. Normally both GPS and
GLONASS have satellite constellations of 24 satellites orbiting earth.

There is also a European system, Galileo, under construction. It is planned to be fully
operational in year 2008. A first test satellite will be launched in late 2004.

3.1 The Global Positioning System

The GPS system can be divided into three parts or segments: the two system seg-
ments, the satellites and ground controls and the user segment, which is all receivers.
There are at least 24 satellites orbiting Earth about 20200 km (roughly 3 times the
radius of Earth) above the surface. The satellites are tracked by the ground control,
which periodically uploads orbit and clock correction data to the satellites. The re-
ceivers can calculate their 3–dimensional position by measuring the distances to the
satellites.

GPS was designed as a military system by the USA, but is free for civilian users
too. Civilian users are restricted to a Standard Positioning Service (SPS). The milit-
ary part of the system, which only the military of the USA and users authorized by
them have access to, is referred to as the Precise Positioning Service (PPS). Some
of the codes used in the military signals are encrypted. The accuracy in positioning
is slightly better in the PPS compared to the SPS. The names Precise and Standard
are left from the time when the accuracy in the civilian part (SPS) was intentionally
degraded. This degradation was removed May 1, 2000. The expected error in a posi-
tion determined by a GPS receiver is about 10 m horizontal and 20 m vertical 95 %
of the time.

3.1.1 Satellite Orbits The 24 satellites are divided into six Earth-centered or-
bital planes with at least four satellites in each plane. The orbits are nearly circular
and the six planes are equally spaced along the equator. The inclination angle rel-
ative to the equator is about 55◦. An illustration of the satellite orbits is shown in
Figure 3.1.

To be able to calculate a position, the user must know the coordinates of the satel-
lites. These coordinates can coarsely be calculated from GPS almanacs that list the
orbit parameters for all satellites. The almanacs are transmitted in the satellite data
message. They can also be obtained for off-line use1. GPS receivers use the almanacs
to determine which satellites that are currently in view. Without this information the

1E.g. from http://www.navcen.uscg.gov/ftp/GPS/archives/yuma/
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Figure 3.1: GPS satellite movements during 24 hours GPS week 168,
November 2002. At this time there were 29 satellites in the constellation.
The orbital period for a satellite is about 11 hours and 58 minutes.

receiver can not know which satellites it should try to track. For a finer calculation
of the satellite positions the ephemeris data, transmitted by the satellites in the data
message are used. The ephemeris data contain more accurate parameters which make
it possible to determine the satellite position within a few meters.

3.1.2 GPS Signals The positioning with GPS is based on radio signals trans-
mitted from the satellites. The signals transmitted are a mixture of codes and data
messages that are needed to determine a distance between a satellite and the receiver
and to separate signals from different satellites. The signals can mathematically be
written as

L1(t) = Ap1ps(t) d(t) cos(2πf1t) +Ac1cs(t)d(t) sin(2πf1t)

L2(t) = Ap2ps(t) d(t) cos(2πf2t)
(3.1)

where the two different carrier frequencies are

f1 = 1575.42 MHz
f2 = 1227.60 MHz

for the two frequency bands, L1 and L2 in use. Ap1, Ac1 and Ap2 are signal amplitudes
and ps(t) and cs(t) are binary spreading codes for satellite s. These codes are known
as Precision or P-code (ps) and Coarse/Acquisition or C/A-code (cs). The spreading
codes are unique for each satellite. Both the P- and the C/A-code are public, but the
P-code in turn is encrypted with a code with regulated access that is only known by
authorized users. The last code, d(t) is the 50 Hz data message broadcasted to the
receivers. This message contains information about the satellite condition, e.g. clock
offsets and orbit parameters. Both codes (P and C/A) and the data message consist
of ones (+1) and negative ones (−1). From a communication point of view, this is
binary phase shift keying (BPSK).

The correlation properties for the codes show similarities with the ones for discrete
random signals. That is the reason why these codes are often called Pseudo Random
Noise (PRN). However, the codes are actually deterministic and can be regenerated
exactly. More about the codes used in GPS and how they are generated can be found
in [8].
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The PRN coded satellite signals are used for two purposes, to separate different signals
and to determine the propagation delay. All satellites transmit with the same carrier
frequencies f1 and f2. Hence, the receiver must be able to separate the messages from
the satellites. This is the first thing the C/A- and P-code are used for. The codes are
unique for each satellite and have special correlation properties, the cross correlation
is almost zero for all time shifts for different codes. This property makes it possible
for a receiver to discriminate signals from different satellites. The auto-correlation is
also special for the codes. It is 1 for a zero time shift and close to zero for all other
time shifts. This property is used in the receiver to determine the propagation time
by correlating the received signal with an internally generated copy of the transmitted
signal. The time shift for the highest correlation is a measure of the propagation time.
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Figure 3.2: Example of codes in GPS. The chip rate is 1.023·106 chips/s
for the C/A-code and 10.23 · 106 chips/s for the P-code

The PRN C/A- and P-code have different chip rates, 10.23·106 chips/s for the P-codes
and 1.023 · 106 chips/s for the C/A-codes, see Figure 3.2. The term “chip” is often
used for the PRN codes instead of “bit” to emphasize that the codes do not contain
any information. The C/A-codes are 1023 samples or 1 ms long while the used part
of the P-code is one week long. As mentioned before, each satellite has its own unique
C/A- and P-code.

The higher chip rate of the P-code gives a better resolution in the correlation process
(since 1 chip corresponds to a shorter time) and therefor a better positioning capab-
ility than the C/A-code. Unfortunately, civilian users can, in general, not use this
more accurate method since the P-code is encrypted by another unknown code, con-
trolled by the USA military. However, there are methods to circumvent this problem.
One method is the so-called Z-tracking, described in [9], where the unknown code is
estimated and subsequently removed.

When the data message with a bit rate of 50 Hz is modulated with the more high
frequent C/A- and P-codes the energy of the data signal is spread to a wider frequency
band, see Figure 3.3. This is the reason why the codes are also referred to as Spread
spectrum codes. The technology where several users share the same frequency band
is generally called Code Division Multiple Access (CDMA). The spectras of the GPS
signals are depicted in Figure 3.3.
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Figure 3.3: Power spectrum for GPS signals on the L2 and L1 frequency
band.

3.2 Pseudorange determination

The signals transmitted by the satellites are used to measure the Time of Arrival
(TOA) at the receiver. Since the propagation speed (the speed of light) is known, the
distance can be calculated from the delay.

Earth

User

Satellite

s

u

r = s−u

Figure 3.4: Definition of the user-to-satellite vector r.

The position of the satellite, s, is known from satellite ephemeris data broadcasts
(ECEF coordinates). If a user is located at position u, the user-to-satellite vector r
can then be written as (see Figure 3.4)

r = s− u. (3.2)

Let r represent the distance between a satellite and the user,

r =
∥∥r
∥∥ =

∥∥s− u
∥∥ . (3.3)

The distance r, is determined by measuring the propagation time of a signal from the
satellite to the receiver. If the true time is Ts when the signal is sent from the satellite
and the true time is Tr when the signal reaches the receiver, the geometric distance r
can be written

r = c (Tr − Ts), (3.4)
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where c is the speed of light.

A big issue when measuring these distances is the clock synchronization. Because of
clock offsets, both in the satellite and in the receiver clock, the measured range will
be biased and therefore denoted as a pseudorange. It contains the true (geometrical)
range r, a range offset due to the receiver clock offset and a range offset due to the
satellite clock offset. If δt denotes the time the user clock is running fast, and δts the
corresponding time for the satellite, the measured pseudorange ρ can be written

ρ = c [(Tr + δt)− (Ts + δts)] + ǫ

= c (Tr − Ts) + c (δt− δts) + ǫ

= r + c (δt− δts) + ǫ,

(3.5)

where ǫ includes errors, e.g. noise or atmospherical disturbances, affecting the meas-
urement.

The clocks in the satellites are atomic clocks (rubidium or cesium) that are very stable.
Nevertheless, these clocks can have a constant deviation δts of several milliseconds
from GPS system time. To circumvent this problem, the ground control stations are
monitoring the satellite clock deviations and uploading correction parameters. These
parameters are then transmitted to the GPS receivers via the satellite broadcast data,
and the receivers can use this information to compensate for satellite clock errors. In
practice the satellite clock offsets after correction are small compared to other errors.

The clocks in the receivers are not as accurate as the satellite clocks. In addition, there
is no way of monitoring the clock errors of all GPS receivers in the world. Therefore
the receiver clock error δt is the by far most dominating clock error.

3.2.1 Code and Phase Measurement The pseudoranges are determined by
correlating the received signal with a receiver generated copy. The properties of the
PRN code determine the precision obtained by this correlation. As a complement,
there is another, more sophisticated way to determine the pseudorange. This is done
by measuring the phase of the received signal before demodulation. It gives a very
accurate measure with an uncertainty which is a fraction of a wavelength. The problem
is that it is only possible to measure the phase ϕ of the last fraction of a wavelength,
and not the real distance. There will be an unknown number of whole wavelengths
N passed, that can not be measured directly, see Figure 3.5. Hence, the measured
phase pseudorange can be written as

λϕ = r − λN. (3.6)

The unknown number of wavelengths N is called the Integer ambiguity. There are
several ways of solving the integer ambiguity, e.g. [10].

When the integer ambiguity is determined, the receiver can track the change in phase
due to movements of the receiver and the satellites. Therefore the integer ambiguity
must only be determined once as long as the receiver can track the signal.

The integer ambiguity has to be determined for each satellite tracked. The integer
is a number in the order N ≈ 108. Without determining the integer ambiguity, the
phase measurement is rather worthless. Hence, compared to the code measurement,
the phase measure is more accurate but less robust. Typical values for the standard
deviation of the noise that affects the measurements are listed in Table 3.1.

It should be noted that also the C/A code measurement contains an ambiguity. This
is because the code repeats every millisecond (about 300 km), and the distance to
the satellites is much longer. However, this ambiguity is easily resolved by setting a
coarse initial position. A position within a few hundred kilometers from the correct
one is sufficient [9].
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Figure 3.5: In the phase measurement, the phase ϕ of the received signal
is determined. But there is an unknown number of whole wavelengths N
passed, that can not be measured directly. Hence, the phase measurement
alone does not give any information about the total distance between the
satellite and the user.

Measurement Noise σ
C/A code 0.10− 3 m
P code 0.1− 0.3 m
Phase 2 · 10−4 − 5 · 10−3 m

Table 3.1: Typical values of noise standard deviations affecting the pseu-
dorange (from [9]). Note that the more accurate phase measurement can
only be used if the integer ambiguity is resolved.

3.2.2 Doppler Measurement Movements of the receiver will give a Doppler
shift of the received signals from the satellites. This Doppler shift can be used as a
measurement of the receiver velocity in the direction of the satellite. The movement
of the satellite, of course, also gives rise to a doppler shift, but the satellite movements
are highly predictable, and can be compensated for. Note that it is only the velocity
in the direction of the line from the receiver to the satellite, that contributes to the
Doppler shift.

The measurements of velocities, or as it is denoted in literature, delta pseudoranges,
can be used in the same way as the previously described pseudoranges. When it is
possible to determine a position in three dimensions from a set of pseudoranges, a
velocity in three dimensions can be determined from a set of delta pseudoranges.

3.3 Position Determination

There are various methods of how to calculate the position once the pseudoranges
are determined. It can be noted that since the receiver clock offset is unknown and
the three-dimensional position contains three unknown parameters, there are a total
of four unknown parameters. To solve a system with four unknowns, at least four
equations are needed, which in the GPS case corresponds to four pseudoranges. There
exist closed form solutions for the position if four pseudoranges are available. However,
a better approach, in most cases, is to measure as many pseudoranges as possible.
The system then becomes over-determined, but can be solved in a least squares sense.

Let the user’s position be u = (x, y, z) and let sj = (xj , yj , zj) denote the position of
the jth satellite, both in ECEF coordinates. The satellite position is known from the
broadcasted data message. The system with m equations can then be written as

ρj =
√

(xj − x)2 + (yj − y)2 + (zj − z)2 + c δt+ ǫ, j = 1, 2, . . .m. (3.7)

Note that these equations are nonlinear.

A geometrical interpretation of the system in (3.7) is illustrative. Each measured
pseudorange sets a constraint for how far from the satellite the user is. No information
about the direction is given so the constraint forms a sphere, with the satellite in the
middle and where the user is somewhere on the surface.
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SV1
SV2

Figure 3.6: Determining a position from a set of pseudoranges in a
two-dimensional case.

For a similar, but easier-to-visualize two-dimensional case, each pseudorange forms
a circle where the user can be positioned. In an ideal case, with no clock offsets, it
should be possible to determine a position by using only two pseudoranges/circles, if
a coarse user position is known (see Figure 3.6). If the receiver clock has an unknown
offset it is not possible to determine the user position from only two pseudoranges (see
Figure 3.7). A third pseudorange giving an extra constraint can solve this problem
since the receiver clock offset can be solved for as an unknown parameter. Note that
this example is only valid for the two-dimensional case, with two unknown coordinates
and one unknown clock offset. To solve for the four unknown in (3.7) at least four
pseudoranges must be measured.

User

SV1
SV2

SV3

(a) A positive receiver clock offset gives
over-estimated pseudoranges.

User

SV1
SV2

SV3

(b) A negative receiver clock offset gives
under-estimated pseudoranges.

Figure 3.7: Determining a position from a set of pseudoranges in a
two-dimensional case with a non-zero receiver clock offset. A least square
solution without taking the clock offset into account would not give the
correct position.

The same principle is valid for the delta pseudorange, described in Section 3.2.2.
Ideally, if three delta pseudoranges are measured, the velocity in three dimensions
can be calculated. The same problem with the receiver clock appears also in the
Doppler measurement, so in reality four delta pseudoranges has to be measured to
determine a three-dimensional velocity. The last measure is used to determine the
drift of the receiver clock, i.e. the frequency offset. This is equivalent with determining
the receiver clock offset c δt in the positioning determination case.
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3.4 Error Sources

The measured pseudoranges are affected by several errors. Before May 2000, the
largest error was Selective Availability (SA). SA is an intentional clock error intro-
duced in the satellites by the US Department of Defence to avoid unauthorized people
to get, in their opinion, a too accurate position. The SA signal was removed in May
2000 but there is no guarantee from the USA that it will not be introduced again.

In Table 3.2 typical errors that affect a pseudorange measurement are presented. With
the assumption that the errors are uncorrelated, they can be summed in a square root
sense, to form the User Equivalent Range Error (UERE). The UERE is used as an
indication of the reliability of one measurement.

Type of error Typical size (1-σ)
Ephemeris perturbations δrorb 4.2 m
Satellite clock error c δts 1.0 m
Selective Availability δrSA 0 m
Ionospheric delays δrion 5 m
Tropospheric delays δrtrop 1.5 m
Multipath errors δrMP 2.5 m
Receiver thermal noise v 1.5 m
User Equivalent Range Error σUERE 7.4 m

Table 3.2: Typical errors affecting the C/A-code pseudorange measure-
ments [3]. If SA is used δrSA can be set to 32.3 m (1-σ). All errors are
assumed to be uncorrelated and the error sources are summed in a square
root sense to form the User Equivalent Range Error σUERE .

With the notation from Table 3.2 the measured pseudorange from equation (3.5), can
be written as

ρ = r + c (δt− δts) + δrion + δrtrop + δrSA + δrMP + δrorb + v (3.8)

The term c δt is the receiver clock offset compared to GPS time. The reason why this
error is not taken into account in the σUERE is that it is usually calculated directly
from the measured pseudoranges, as described in Section 3.3.

3.4.1 Atmospherical Effects When the GPS signals propagate towards Earth,
they are affected by the atmosphere. The largest effect is due to the ionosphere and
the troposphere.

The propagation speed of a wave through a medium depends on the refractive index
n of the medium. For an electromagnetic wave the propagation speed vp is

vp =
c

n
, (3.9)

where c is the speed of light.

When talking about the propagation speed of an electromagnetic wave we have to
distinguish between phase speed, which is the propagation speed of the phase for a
single frequency wave, and the group speed, which is the propagating speed for the
energy from a group of waves with slightly different frequencies. Equation (3.9) is
valid for both the phase speed and the group speed, but the refractive index n differs.

A medium is said to be dispersive if its refractive index is a function of the frequency
of the propagating wave. In the atmosphere, there is a layer between about 70 km
and 1000 km, the ionosphere, that is a dispersive medium. If higher order terms are
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neglected, the refractive index for the phase speed, nph, and the group speed, ngr,
can according to [3] and [9], be approximated with

nph = 1 +
c2
f2

(3.10)

ngr = 1− c2
f2
, (3.11)

where f is the frequency of the wave and the coefficient c2 depends on the concentra-
tion of free electrons Ne in the ionosphere along the propagation path:

c2 = −40.3Ne. (3.12)

Here Ne is the number of free electrons per m3. Since the electron concentration Ne

is always positive, which implies that ngr > 1 > nph and further, the group speed,
vgr, will always be smaller than the phase speed, vph: vgr < c < vph. Applying
this on the GPS signals says that the phase pseudorange is measured too short and
code pseudorange is measured too long, compared to the true geometric range. The
concentration of free electrons depends on the time of day. It is largest a few hours
after noon and smallest at night.

In the GPS data message transmitted by the satellites, there are parameters for
modelling the ionospheric delay. By using this model, the Klobuchar ionospheric
correction model, approximately 50% of the error can be removed. The model is
described in [7].

The neutral troposphere is a non-dispersive medium. Hence, the tropospheric delay
does not depend on the frequency.

3.4.2 Dilution of Precision The accuracy of the position and clock offset solu-
tion is determined by the uncertainties in the pseudorange measurements, but also
by the satellite constellation. The relationship between the pseudorange errors and
the computed position and time bias errors are described by the Dilution of Precision
(DOP), which is a measure of how favorable the satellite constellation is. The DOP
is often between, say, 2 and 8, where a low value indicates a good constellation. Ex-
amples of constellations that lead to a large DOP are if all satellites are at the same
elevation angle above the horizon or located at a straight line from the user’s point
of view.

An error in the pseudorange measurements ρ gives an error contribution to the posi-
tion and the receiver clock offset. If the error in the pseudorange δρ can be considered
small, the relation between a small error in position δx, δy, δz, and in the receiver clock
offset δ(c δt) and a corresponding small error in the pseudorange δρ can be linearized
and written as

δρ = H δz (3.13)

where δz = ( δx, δy, δz, δ(c δt))T is a (4×1) vector with the errors in the unknown
variables, and H is the matrix of partial derivatives of the non-linear measurement
equation (3.7), with respect to the unknown states:

H =
∂ρ

∂z
=




−ex,1 −ey,1 −ez,1 1
−ex,2 −ey,2 −ez,3 1

...
...

...
...

−ex,m −ey,m −ez,m 1


 ∈ R

m×4 (3.14)

where ρ = ( ρ1, · · · , ρm)T are the measured pseudoranges to the m available satellites
and

(ex,j , ey,j , ez,j) =
sj − u∥∥sj − u

∥∥ , j = 1, · · · ,m, (3.15)
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is a unit vector ej pointing from the user position u towards the position sj of the
jth satellite. The least squares solution to (3.13) for δz can now be written

δz = (HT H)−1HT δρ (3.16)

Pseudorange errors δρ are assumed to be independent and Gaussian distributed with
variance σ2

ρ and E[δρ] = 0. Since matrix multiplication is a linear operation the
position and time error δz will also be Gaussian distributed with E[δz] = 0. The
covariance of δz is

cov(δz) = E[ δzδzT ]

= E[ (HT H)−1HT δρδρT ((HT H)−1HT )T ]

= (HT H)−1HT cov(δρ)H(HT H)−1

(3.17)

Since ρ is assumed to be independent with the same variance σ2
ρ, the center term in

(3.17) can be written as
HT cov(δρ)H = σ2

ρH
T H, (3.18)

which implies that (3.17) can be simplified to

cov(δz) = (HT H)−1σ2
ρ. (3.19)

The matrix (HT H)−1 is always of size (4× 4):

(
HT H

)−1
=




D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44


 ∈ R

4×4 (3.20)

The diagonal elements indicate how the measurement errors in the pseudoranges are
projected to an error in the calculated position and clock offset.

The following DOP parameters can be extracted from the diagonal of (3.20):

PDOP =
√
D11 +D22 +D33 (3.21)

GDOP =
√
D11 +D22 +D33 +D44 (3.22)

TDOP =
√
D44 (3.23)

Here PDOP is the position dilution of precision, GDOP is the geometric dilution of
precision and TDOP is the time dilution of precision. The three parameters in (3.21)-
(3.23) are valid in any coordinate system. Two more DOP parameters can be defined
which are only valid in a local system. If the local system describes a coordinate in
the order [East, North, Down] (a so-called ENU system), the two parameters are:

HDOP =
√
D11 +D22 (3.24)

V DOP =
√
D33, (3.25)

where HDOP is the horizontal dilution of precision and V DOP is the vertical di-
lution of precision. In this case it is sufficient that the matrix H in (3.14) gives the
direction to the satellites in ENU coordinates.

The DOP is a relation between the standard deviation σρ for the error in the pseu-
dorange measurements and the standard deviation for the error σz in the determined
position and clock offset solution. Which components that the errors are projected on
is determined by which of the DOP parameters defined in (3.21)–(3.25) that is used.
E.g. GDOP gives the standard deviation for the position error and TDOP the same
but for the clock offset. The relation is

σX = XDOP · σρ, (3.26)
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where XDOP is any of the previously defined DOP parameters and σX is the stand-
ard deviation for the errors in the components of z determined by the chosen DOP
parameter XDOP . In practice the standard deviation for the pseudorange error is un-
known. Often σρ = σUERE is used, where the User Equivalent Range Error (UERE),
σUERE , is the resulting standard deviation for errors in the pseudorange, if all errors
are approximated with uncorrelated Gaussian distributions. Typical errors are listed
in Table 3.2. Note that the DOP is determined by the satellites and user positions
only.

If less than four satellites are visible, the matrix H will have less than four rows and
hence HT H will not have full rank. Therefore the inverse (HT H)−1 taken in (3.20)
will not exist, which indicates that no position can be calculated from less than four
satellites in a single measurement. However, the information from the visible satel-
lites, even if they are less than four, can be used if the GPS and the INS are integrated
in a tightly coupled filter. This is one of the main advantages with the tight INS/GPS
integration.

Commercial GPS receivers can often present some type of DOP, where HDOP and
V DOP are the most commonly used.

3.5 Data Combinations

The pseudorange measurements in the GPS receiver can be combined or manipulated
to forms where some of the errors described in 3.4 are reduced. Since the SA was
turned off, the largest errors are disturbances from the atmosphere. Most of the data
combination methods therefore try to minimize these errors.

3.5.1 Differential Measurement One of the most common types of data com-
binations is the differential measurements. By differentiating between measurements,
errors that are common in the two measurements can be reduced or even eliminated.
For example the atmospheric disturbance is very similar in two receivers if they are
close to each other.

Single Difference The most common differentiating method is to differentiate
between two receivers. This is normally called single difference GPS or just Dif-
ferential GPS (DGPS). DGPS achieves enhanced accuracy since the two receivers
experience common errors that can be removed if measurements from both receivers
are available.

Usually one of the two receivers is at rest at a position with known coordinates, while
the other one is roving. Since the receiver at rest, often referred to as a base sta-
tion, knows its coordinates, it knows what pseudoranges it should expect to measure.
When the real erroneous pseudorange is measured a pseudorange correction can be
calculated. The correction can be broadcasted (e.g. via a radio link) to all roving
GPS receivers. The roving receiver can measure the pseudoranges and correct them
by using the received correction term calculated by the base station.

Using differential GPS techniques can increase the accuracy considerably. This is be-
cause the GPS error sources are very similar over a short distance and are therefore
virtually eliminated. For baselines less than 20 km GPS errors such as satellite clock
errors, orbital errors, Selective Availability, ionospheric and tropospheric delays can
be considered constant and if they are removed accuracies in sub-decimeter level can
be obtained.

One error that can not be eliminated with differential corrections is the thermal noise
in the receiver, v. Instead, its variance increases with a factor two. This is under the
assumption that the noise in the base station and the receiver is uncorrelated, which
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is reasonable.

When the dithering of the satellite clocks with the SA signal was used, the techno-
logy with DGPS gave a more significant precision improvement, since this error was
effectively removed by the differential correction.

Double Difference The method of double difference uses single differenced data
and in addition takes the difference between measurements from different satellites.
Since single differenced data are used, atmospheric effects, orbit errors, SA and satel-
lite clock errors are already eliminated. In addition, errors common to the two satel-
lites are eliminated. One common error is the receiver clock offset. The drawback
with taking the difference is, as in the single difference case, that the uncorrelated
noise is increased. Since the receiver clock offset is easily estimated, double difference
will not be used in this thesis.

Triple Difference A triple difference uses two double differenced measurements
from two different times. Again, common errors, which now are the integer ambiguities
are eliminated.

3.5.2 Dual Frequency As described in Section 3.4.1, the ionosphere has the main
atmospheric effect on the measured pseudoranges. Due to the dispersive nature of the
ionosphere, where signals are affected depending on the frequency, it is possible to
eliminate its effect if the pseudoranges are measured with two different frequencies [4]
[9].
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Figure 3.8: A high-level block diagram of a typical digital GPS receiver.

3.6 Receiver Architecture

To analyze how interference and noise affect the measurements, a more detailed de-
scription of the GPS receiver design is needed. Today almost all GPS receivers are
digital, which means that the signal processing is performed with sampled digital sig-
nals. A high-level block diagram describing the construction of a digital GPS receiver
is shown in Figure 3.8.

The radio frequency (RF) signals transmitted by the satellites are received by an an-
tenna. First, the received signal is filtered in a front-end filter to remove out of band
noise and interference. The analog signal is then down-converted to an intermediate
frequency (IF) signal. In the down-conversion the PRN codes and the Doppler inform-
ation in the signal are preserved, only the frequency of carrier wave is decreased [3].
The frequency of the IF signal is chosen to be sufficient for signal processing, usually
a few megahertz. Not shown in the block diagram is the anti-aliasing filter that cuts
the upper side-band of the down-converted signal. In the next step the IF signal is
sampled to a digital signal. The digital signal is then processed in the receiver chan-
nels to calculate pseudoranges ρ to the satellites in view. In receivers bought today,
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the processing is often done in parallel as indicated in the block diagram. Receivers
with 12 channels in parallel are common. A 12 channel receiver can simultaneously
track up to 12 satellites.

3.6.1 Tracking Loops Measuring of pseudoranges are done by correlating the
received PRN code with an internally generated copy of the code. The offset for the
highest correlation is a measure of the propagation time and, hence, also the distance.
The pseudoranges will change over time, due to movement of the receiver and the
satellites. Therefore the receiver must continuously adjust the offset of the internally
generated code to get a maximum correlation with the receiver signal. This is per-
formed in the tracking loops. There are two tracking loops in a receiver, a carrier
tracking loop and a code tracking loop. A block diagram of the carrier and the code
tracking loops is depicted in Figure 3.9.

Digital
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✲ Code
Wipeoff

Shift
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✛ PRN Code
Generator

r
✲ Code Loop
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✻
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Feedback line for code loop

Delayed
code

✻

Figure 3.9: Receiver channel containing the code and carrier tracking
loops. The carrier tracking loop is aided by an external velocity measure-
ment. The code tracking loop is aided by Doppler data from the carrier
tracking loop.

The objective of the carrier tracking loop is to adjust the frequency of the signal used
for down-converting. This is necessary because the received signal can be Doppler
shifted due to movements of the receiver. For slowly moving vehicles the largest Dop-
pler shift is caused by the movements of the satellites. If the frequency of the received
signal is changed, the carrier loop discriminator will sense that the frequency is wrong
and try to adjust the down-conversion frequency.

During periods with large dynamic stress, the frequency might need large adjustments.
There are two strategies to make this possible. Either to make the bandwidth of the
carrier tracking loop large, so it can feed large adjustments back to the Numerically
Controlled Oscillator (NCO), or to aid the carrier tracking loop with an external ve-
locity measure. The latter can be done with an INS. If the carrier tracking loop is
locked on the correct down-conversion frequency, the carrier frequency of the Digital
IF is removed by multiplying the two signals in the Carrier Wipeoff. What is left is
a complex baseband signal, representing the data signal, spread by the PRN code.

25



FOI-R--0848--SE

A carrier tracking loop can be implemented either as a phase locked loop (PLL) or a
frequency locked loop (FLL). An FLL is less sensitive to jamming and dynamic stress
compared to a PLL. A PLL, on the other hand, gives more accurate Doppler meas-
urements [3].

The objective of the code tracking loop is to synchronize the received coded signal
with an internally generated signal. Thanks to the correlation properties of the PRN
codes, the code loop discriminator can determine if the output from the PRN Code
Generator is early or late compared to the received signal and adjusts the delay in
a shift register. If the code loop is locked, i.e the correct delay shift is found, mul-
tiplication with the known PRN code in the code wipeoff despreads the baseband
signal, and only the data message and noise remains. When the code loop is locked
the delay shift is a measure of the pseudorange. The code tracking loop is often aided
by Doppler measurements from the carrier tracking loop.

The despreading process that is performed in the code wipeoff, decreases the band-
width of the signal in the same extent as the amplitude is increased. However, the
total power remains the same. The amount that the amplitude is increases is called
the processing gain. The processing gain, theoretically, is 43 dB for the C/A code2

and 53 dB for the P code. The two tracking loops imply that the tracking of a signal
is a two-dimensional search process. Only if both the down-conversion frequency and
the code offset are correct, a pseudorange can be determined.

An important property of the tracking loops, both the carrier and the code loop, is
that if their bandwidth is decreased it gives an increased SNR in the loops. A higher
SNR gives better tracking accuracy, so the obvious action is to decrease the loop band-
widths. However, there is a drawback. With more narrow tracking loop bandwidths
the receivers ability to track Doppler shifts, which arise from the dynamics of the
receiver is reduced. A way to narrow the loop bandwidth without limiting the track-
ing performance is to aid the carrier loop with external velocity measurements [12].
The information of the navigation platform velocity is used to make a coarse track of
the carrier phase, then the carrier tracking loop performs the fine track around that
predicted value.

Tracking Thresholds The tracking loops need a certain signal strength compared
to interfering signals and noise to be able to track the satellite signal. If the SNR is
below this value, the tracking threshold, the receiver will not be able to present any
measurements. It is also necessary that the tracking loops have acquired the signals,
which means that both the correct carrier Doppler shift and code offset are found.
The acquisition threshold is usually a few decibels higher than the tracking threshold.
An example of this is shown in Figure 3.10.

The first part in a GPS receiver to lose track due to low SNR is normally the carrier
tracking loop [3]. It is therefore interesting to get an idea of how low the SNR can
be, without losing lock in the carrier loop. The calculation of tracking thresholds is
treated in [3].

The PLL is non-linear and will lose lock for errors larger than 45◦. Considering this
as a 3-σ limit gives a rule-of-thumb for the 1-σ error:

σPLL ≤ 15◦. (3.27)

In [3] σPLL is approximated with

σPLL =
√
σ2

t + σ2
v + σ 2

A +
θe

3
, (3.28)

2Some authors [11] claim that the process gain for the C/A code in practice is not more than
about 24 dB due to the short sequence and therefore bad frequency spreading.
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Figure 3.10: The GPS receiver needs a certain SNR to be able to use
a satellite signal. In this example the tracking threshold is 16 dB and
the acquisition threshold is 21 dB. The receiver can use the signal in
the highlighted section, between approximately 18 s and 41 s. These
thresholds, 16 dB and 21 dB are the ones that are actually used in the
simulations described later. The assumptions leading to these values are
listed in Table 8.1.

where

σt = standard deviation of thermal noise in degrees
σv = standard deviation of vibration-induced oscillator

errors in degrees
σA = Allan variance-induced oscillation error in degrees
θe = dynamic stress error in PLL tracking loop,

The thermal noise with standard deviation σt is often the dominant term [3]. The
most important to note with the thermal noise is that it increases with a wider loop
bandwidth Bn. This is the reason for trying to narrow the loop bandwidth by e.g.
external velocity aiding.

Finding the vibration-induced oscillator error σv, is a complex problem. There are
closed form expressions [3], but they require that the characteristics of the oscillator
are known.

The Allan variance-induced oscillator error σA, also depends on the oscillator charac-
teristics, and no value can be calculated for σA in general. It is worth noting however,
that σA depends on 1/Bn, where Bn is the bandwidth of the PLL and thus also the
incoming noise. Decreasing the bandwidth of the PLL gives a lower thermal noise
σt but, hence also increases the σA. For very low PLL bandwidths, σA can be the
dominating error. With an unaided PLL, and hence a larger PLL bandwidth, σA is
normally below 1◦.

3.7 Interfering a GPS Receiver

The power of the received signals from the satellites are extremely low because of
the long distance to the satellites. Because of the spectrum-spreading property of
CDMA, the received GPS signals are actually far below the thermal noise floor [3].
In the despreading process the signals are amplified with the processing gain of the
code used.

This makes it possible to make a GPS receiver useless with a relatively low jamming
power. Therefore the risk for jamming or unintentional interference is a big issue
when designing GPS receivers, especially for military use.
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There are two main types of intentional interference that a receiver can be exposed
to, jamming and spoofing. The objective with jamming is only denial of service,
by drowning the GPS signal in noise so that the receiver tracking loops lose lock.
Spoofing means that an incorrect GPS signal is transmitted, that looks like a real
signal to the user. The objective can be to make the user think he is at another
position than he actually is or to change the ephemeris data, e.g. saying that all
satellites are out of order. Jamming is relatively easy and inexpensive. Spoofing is
more difficult and requires much more sophisticated equipment. In this report only
the effects of jamming is considered.

The received interfering power is depending on the distance from the source. If the
most simple propagation model, free-space propagation [13], is assumed, the received
power density S (power per unit area) decreases as

S =
Pt

4π r2
(3.29)

where Pt is the totally transmitted power and r is the distance from the source. How
much of the power density that can be transformed into power is determined by the
size of the antenna, the effective aperture area, that collects the energy. If the effective
aperture area is Ae the received power is

P = Ae · S

= Ae ·
1

4π r2
· Pt.

(3.30)

According to [13] the following relation between the effective aperture area and the
antenna gain G holds

G = Ae ·
4π

λ2
, (3.31)

or equivalently

Ae = G ·
(

4π

λ2

)−1

, (3.32)

where λ is the wavelength of the received signal. Using this in (3.30) gives

P = G ·
(

4π

λ2

)−1

· 1

4π r2
· Pt

=
Pt ·G(
4π r

λ

)2 .
(3.33)

In radio communication applications, and so also for GPS, most quantities are given
in decibel (dB). The relation between decibel and ratio, e.g. for two power levels P1

and P2, is [
P1

P0

]

dB

= 10 log

(
P1

P0

)
(3.34)

where “ log” is the base-10 logarithm.

With quantities in decibels, the relation in (3.33) can be written as

P = Pt +G− L, (3.35)

where L = 20 · log
(

4π r
λ

)
is the path loss which corresponds to the denominator in

(3.33).
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3.7.1 Effects of Jamming The signal-to-noise ratio (SNR) is defined to be

SNR =

[
PS

PN

]

dB

= 10 log

(
PS

PN

)
, (3.36)

where PS and PN are the received powers of the GPS signal and the noise, respect-
ively.

In GPS applications the carrier-to-noise ratio (C/N0) is often used instead of the
signal-to-noise ratio. It is the ratio between the total carrier power and the noise
power over 1 Hz bandwidth. Hence, the unit for C/N0 is Hz or, if expressed in
decibel, dBHz.

In a best case scenario, when the receiver is not exposed to any jamming, the C/N0

is the ratio between the carrier power and the thermal noise. Using (3.35) and sub-
tracting the thermal noise spectral density and general losses gives

C

N0
= (PGPS +GGPS − LGPS)− (10 · log (k T0))− Ls (3.37)

where

PGPS = Transmitted GPS signal power (dBW)
GGPS = Antenna gain in direction towards satellite (dB)
LGPS = Path losses (dB)
k = Boltzmann’s constant (1.38 · 10−23 Ws/K)
T0 = Thermal noise reference temperature (K)
Ls = Other losses, e.g. polarization or implementation losses (dB)

According to the GPS specification, referred to in [3], the received GPS signal power
PGPS = PGPS − LGPS is guaranteed to be at least −159.6 dBW for the C/A-code.

When the receiver is exposed to interfering signals the C/N0 decreases. This lower
level is called the equivalent carrier-to-noise ratio and is in some literature denoted
[C/N0]. If the so-called jammer-to-signal ratio J/S in decibel is defined as

J/S = Jr − Sr, (3.38)

where Jr is the received jamming power in dBW and Sr is the received signal power
in dBW, the [C/N0]eq can, according to [3], be calculated as

[C/N0] =

(
1

10
C/N0

10

+
10

J/S
10

QRc

)−1

. (3.39)

Here Rc is the chip rate for the code used (e.g. 1.023 · 106 chips/s for the C/A-code)
and Q is a dimensionless constant that is decide by the type of jammer. For wideband
noise jammers Q = 2.

Combining the result of the current [C/N0] with knowledge about the tracking thresholds
(described in Section 3.6.1) gives an idea of when the GPS receiver can or can not be
used, because of interfering signals.
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4. Adaptive Beamforming for GPS

The extremely low power levels from the satellites make the GPS system vulnerable
to jamming and interference. The guaranteed signal power is only −160 dBW, so an
interfering signal does not have to be strong to drown the GPS signal.

Interfering signals with powers of several tens of decibels higher than the satellite
signals should be expected. Therefore it is often not good enough to form a narrow
beam towards the satellite. A better result can be achieved if the null gains in the
reception pattern are formed to get a sufficient suppression in the directions of inter-
fering signals.

The interference can be either unintentional from other radio frequency equipment or
arise from hostile jamming. The use of antenna arrays and adaptive beamforming is
a promising method to overcome this problem. Adaptive beamforming has the ability
to change the antenna pattern to take advantage of the current signal environment,
and discriminate between signals separated in space. Signals not of interest (SNOI),
i.e. jamming or interfering signals, are suppressed, while a main beam is formed to-
wards the signal of interest (SOI) to amplify the signal. An example of this is shown
in Figure 4.1.
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Figure 4.1: A sample adaptive antenna reception pattern. The pattern
shows the antenna gain in different directions. A higher gain is set in the
direction from where the interesting signal is arriving (in this case 120◦).
Interfering signals approaching from 50◦, 160◦ and 260◦ are suppressed
by the beamforming algorithm.

There are non-adaptive antennas that can avoid many of the problems in GPS applic-
ations, e.g. low SNR or multipath. Antenna elements with a directional (but fixed)
antenna pattern can suppress interference from a known direction, for example choke
ring antennas. However, an adaptive beamforming antenna is much more flexible.
With the use of certain algorithms, an adaptive antenna can also help to prevent
multi-path problems by suppressing the reflected components [14]. With some beam-
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forming algorithms some protection against spoofing can also be expected.

Compared to a conventional antenna, an antenna array is more complex, often bulkier
and more expensive. These drawbacks are compensated for with a significantly better
performance in an interfered environment.

4.1 Antenna Array

An antenna array consists of a number of antenna elements, put together in a known
geometry. The geometry is usually symmetric, e.g. Uniform Linear Arrays (ULA),
Uniform Rectangular Arrays (URA) or Uniform Circular Arrays (UCA). The beam
pattern from a ULA is always rotational symmetric, so the power can only be directed
in one dimensions. To be able to control the beam pattern in two dimensions, a URA
or a UCA with the elements extended in two dimensions must be used.

The smallest mutual distance between elements is usually equal to or slightly less than
half a wavelength λ/2, of the SOI carrier. A larger distance than λ/2 leads to a kind
of “spatial under-sampling”. With a smaller distance, the risk for mutual coupling
between elements increases. This demand sets a physical limitation on how small the
array can be or how many elements that can be used. E.g. in a GPS application a
4 × 4 element URA can not be smaller than 3 · λ/2 × 3 · λ/2. For the L1 band this
is approximately 0.3 m × 0.3 m, neglecting the size of the antenna elements. The
minimum distance sets a upper limitation on how many elements that can be used on
a particular navigation platform.

4.2 Adaptive Beamforming Theory

The performance of adaptive beamforming strongly depends on the number of ele-
ments in the array. More elements gives a better performance, but also increases the
computational complexity. Generally, an N element array has N degrees of freedom.
These degrees can be spent on forming a sharp beam in the spatial domain, or to put,
at most, (N − 1) nulls in directions of unwanted signals.

The incoming signal to the antenna is an analog RF signal. The beamforming will
be performed digitally, so all manipulations will be performed on the corresponding
time-discrete complex baseband signal u(k). The complex baseband representation
of a bandpass signal is described in [15].

The carrier frequencies of the GPS signals are f1 = 1575.42 MHz (C/A and P)
f2 = 1227.60 MHz (only P). The bandwidth of the signals is 20 MHz for the P-code
signal and 2 MHz for the C/A-code signal. This makes the relative bandwidth less
than 2 % and less than 0.2 % of the carrier frequencies for the P- and C/A-code
signals, respectively.

In beamforming theory, a rule-of-thumb for a signal to be considered narrowband is
that it should not cover more than 1−2 % of the carrier frequency, which is a border-
line case for the P coded signal. The C/A coded signal can definitely be considered
to be a narrowband signal. The general case with a wideband signal requires that a
tapped-delay line (FIR filter) is applied behind each element for selection or suppres-
sion of the desired frequency.

Since the C/A-code signal are considered narrowband, delays can be described with
phase shifts. It is further assumed that the source is far away, which gives plane
wavefronts and no loss of signal strength over the antenna array. A signal incident at
the array then gives a signal vector

u(k) = [u1(k) . . . uN (k)]T (4.1)
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on theN elements of the array. These signals from the antenna elements are multiplied
with a vector of complex weights w

w = [w1 . . . wN ]T . (4.2)

The weights w is a vector of complex numbers, so that each multiplication corresponds
to an amplitude scaling and a phase shift (see figure 4.2). The weight vector w can

ej arg w∗
n

◗
◗

◗

✑
✑

✑|wn|
un(k) wn un(k)

Figure 4.2: An element wn in the weight vector w, can be seen as a
phase shift, arg w∗

n = − arg wn, and an amplitude scaling, |wn|.

be changed adaptively depending on the received data. As illustrated in Figure 4.3,
the scalar output, z(k), can be written as

z(k) = wHu(k), (4.3)

where the superscript (·)H denotes the Hermitian transpose1.

u1(k) ✑✑
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Figure 4.3: A block diagram of an adaptive beamformer for an N -
element antenna array.

The direction of a signal arriving from azimuth φ and elevation θ can be described
with a unit vector e in Cartesian coordinates, pointing from the array towards the
signal source. Azimuth φ is defined to be the angle from the y-axis in the plane
spanned by the x and y-axes. Elevation is defined as the angle between the x-y plane
and the coordinate, with positive direction towards the z-axis. Azimuth and elevation
are also illustrated in Figure 4.4. With these definitions the direction unit vector e in
Cartesian coordinates can be written:

e(φ, θ) = (ex, ey, ez) = (sinφ cos θ, cosφ cos θ, sin θ)T . (4.4)

If one of the elements in the array serves as a reference element, say element 1, we
can define the difference in propagation distance dn for a signal between element n
and the reference element. The distance dn can be written as

dn = eT · (rn − r1), n = 1, . . . , N, (4.5)

1A complex conjugation combined with transposition, AH = (A∗)T
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Figure 4.4: Example of a URA element structure in a Cartesian antenna
coordinate system. The definitions of the azimuth and elevation angles
for a coordinate are shown.

where rn and r1 are the coordinates of the nth element and the reference element,
respectively. Hence, dn is the projection of (rn − r1) on the direction unit vector e,
pointing towards the signal source. The signals in all N elements, compared to the
signal in the reference element, can then be written as a steering vector [16] [17] with
size (N × 1):

s(d) = (e−j 2π
λ d1 , e−j 2π

λ d2 , · · · , e−j 2π
λ dN )T , (4.6)

where d = [ d1, · · · , dN ]T is the vector containing all the propagation difference dis-
tances. The steering vector describes the phase shifts in the elements that the reques-
ted signal direction gives rise to.

4.3 Comparing Beamforming Algorithms

If the positions of the satellites relative to the antenna are known it would be possible
to direct the highest gain of the antenna in these directions. This also requires that
the position and orientation of the antenna are known.

The adaptive beamformer is designed to be used with an integrated INS/GPS. Two of
the outputs from the integrated system are the position and attitude relative to Earth.
These outputs are, thanks to the INS, determined much more accurate than with a
stand-alone GPS. From this, the directions to the GPS satellites can be calculated
and used as a priori information to the beamforming algorithm. With an integrated
INS/GPS, estimates of position and attitude are available also during periods with
satellite outages.

A wide range of different adaptive beamforming algorithms have been proposed in the
literature. All algorithms utilizes some kind of a priori information to discriminate
between the SOI and jammer signals, or signals not of interest (SNOI). The a priori
information in a GPS application can be:

• The direction of arrival, either for the SOIs or the SNOI.

• Correlation properties of the GPS signal or the spreading codes.

With the a priori information above, there are a few algorithms that are possible to
use.

4.3.1 Correlation Based Algorithms If a known reference signal is appended
to the SOI, correlation methods can be used to find the DOA. The algorithm tries to
minimize the difference between the actual received signal and the reference signal.
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This require that a known sequence is appended to the signal. Unfortunately, this is
not the case with the GPS signal today [14], so a reference signal based method is not
possible to use.

An additional problem is that correlation based algorithms are vulnerable to inter-
ference by signals similar to the reference signal. A person who wishes to interfere a
receiver using a reference signal based beamforming antenna, could simply retransmit
a copy of a PRN code. The beamformer could then mistake the interfering signal for
the one from the satellite and put a large gain in the wrong direction.

It may also be possible to use the known spreading codes for correlation. However,
the problem with false signals that look like the GPS signals remains.

4.3.2 Direction Constrained Null Steering If the DOAs of interfering signals
are known, or can be estimated, the antenna pattern can be adapted to form genuine
nulls in these directions [2]. As mentioned before, an N element antenna array can
form a maximum of N − 1 nulls in different directions.

The main problem with this algorithm is to estimate the DOAs for the, at most
(N − 1), strongest interferers. If less than (N − 1) interferers exist, a difficulty can
be to estimate this number. Using a direction constraint null steering algorithm is
a little bit of changing one problem, forming the weight vector, to another possibly
harder problem, namely finding the direction of an unknown number of interferers.

4.3.3 Minimum Variance Algorithm Minimum variance algorithms minimize
the power of the received signal at the array output z. Smaller gains are set in
directions where interferers are present, which gives effective suppression of strong
interfering signals. The minimum variance algorithm can actually work without any
a priori information, but there is a risk that also the SOI is suppressed. To avoid that
the SOIs are suppressed it is common to set constraints for the gain in the directions
of the SOIs.

The minimum variance condition results in a expression for the weight vector w as

min
w

ε[ |z(k)|2] = min
w

ε[ z(k) zH(k)]

= min
w

ε[wHu(k) (wHu(k))H ]

= min
w

wHε[u(k)uH(k)]w.

(4.7)

where ε[·] denotes the time average. The factor ε[u(k)uH(k)] is the array correlation
matrix and is denoted with R(k):

R(k) ≡ ε[u(k)uH(k)]. (4.8)

The array correlation matrix contains the spatial correlation of the incoming signals
in different antenna elements.

The gain constraints are set as
SHw = g, (4.9)

where S = [ s1, . . . , sL] is a steering matrix, i.e. a matrix containing L steering vectors
if L constraints are set. The vector g defines the fixed gains in the constraint direc-
tions. Each of the L vectors in S forms one constraint. When gain constraints are
set for a minimum variance algorithm, it is often called Linear Constrained Minimum
Variance (LCMV), which is the term that will be used in this thesis.

The solution to the condition (4.7), using the constraint in (4.9), is the optimal weight
vector using the LCMV algorithm

wLCMV = R−1 S
(
SH R−1 S

)−1
g, (4.10)
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described in detail in [18] [16]. There is a risk with using a minimum variance al-
gorithm: Since the algorithm tries to minimize the total power, it can in some cases
also suppress the SOIs. Especially if the estimated directions to the SOIs are slightly
wrong, and if the SOIs are strong compared to the interference, this can happen.

The a priori information is the directions to the SOIs which must be estimated. The
satellite positions are known and with the estimates of the position and attitude for
the vehicle from the navigation filter these directions can be estimated. Hence, the
minimum variance algorithm is a good choice. The risk for suppressing the SOIs
by mistake is small, since the power of the GPS signals is low compared to both
interfering signals and the thermal noise.

4.4 Beamforming Strategies

When using the most suitable algorithm, Linear Constraint Minimum Variance (LCMV),
the gain constraints can be set in different ways. It is appropriate to set gain con-
straints in directions to SOIs, if they are known. If the directions to interfering sources
are also known, zero gain constraints can be set in those directions. However, this
will probably not improve the result, since the algorithm automatically minimizes the
incoming power outside the constrained directions. Instead the algorithm becomes
more sensitive for errors in the constrained direction of the interfering source.

Three different types of constraints will be compared in simulations. These three are
described below.

4.4.1 Single LCMV Beamformer If the constraints in (4.9) are set for all visible
satellites, one weight vector w is calculated that fulfills all these constraints, see
Figure 4.5(a).

SHw = g. (4.11)

If the received power from all SOIs are the same (which is a reasonable assumption
for GPS if all satellites are at approximately the same distance), also all SNRs will
be the same. If one interfering source happens to be close to the direction where a
constraint is set, the algorithm will not be able to suppress it, and all the SNRs for all
SOIs will be degraded. This is the drawback with the single beamformer approach.

Another possible problem with the single beamformer approach is in case of a large
number of SOIs. If assuming that there are L SOIs present, resulting in that L
constraints are set, there will be only (N − L) degrees of freedom left to form nulls
for suppressing interfering signals.

4.4.2 Multiple LCMV Beamformers The constraint in (4.9) can also be set
in only one direction

sHw = g, (4.12)

where s is now a steering vector. With several beamformers processing the same data
in parallel, but with different constraints (4.12), it is possible to form several beam
patterns at the same time, where each pattern is optimized for one certain satellite,
see Figure 4.5(b). This requires that a weight vector is calculated individually for
each SOI, which can be computationally costly in case of many satellites. If this is
possible, and the set of constraints s is correct, the method gives an optimization of
the SNR for all satellites, since only one constraint is set for each beamformer. This
is shown in [19]. Note that the covariance matrix R is the same for all constraints
(and so, also the inverse R−1, which is used in (4.10)) at a fixed time k.
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(a) Single beamformer. One single
LCMV beamformer is used to form
one beam pattern that takes all con-
straints into account.
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(b) Multiple beamformers. Two
beamformers are running in parallel,
each of them forming a beam pattern
adapted for one of the constraints.

Figure 4.5: Sample gain patterns for single and multiple LCMV beam-
forming algorithms i decibel (the radial axis) for different azimuth angles.
The patterns are for a static scenario with two SOIs at 120◦ and 340◦.
Four SNOIs are present at 50◦, 160◦, 260◦ and 310◦.

4.4.3 Unconstrained Power Minimization If no constraints in (4.9) are set,
the algorithm only tries to minimize the incoming power. This will not give a good
result, since the trivial solution, which gives a minimum power, is w = 0. But this
will definitely not give an increased SNR. To avoid this solution, a help constraint has
to be set, e.g. the constraint

sHw = 1, (4.13)

with s = [1, 0, . . . , 0]T , is sufficient [16]. This means that the weight for the reference
element should be equal to 1. One degree of freedom is spent on the help constraint,
so there are (N − 1) more nulls to use for suppressing interferers.

When using an unconstrained power minimization algorithm there is usually a great
risk of suppressing also the SOIs. However, the GPS case is an exception since the
power of the satellite signals are far below the noise floor (approximately 20 dB below).

4.5 Practical Problems and Improvements

4.5.1 High Dynamics For highly dynamic vehicles, the signal environment can
change rapidly. Especially changes in the attitude give large variations in directions
to the SOIs. Then it is necessary to recalculate the weights more often. But every
change in the weight vector w gives an abrupt phase shift in the signal delivered to
the GPS receiver [20]. This could lead to tracking loop problems. It is left as a future
problem to be investigated how fast the weights must be updated.

4.5.2 Large Number of Interfering Signals Another problem is if there is a
higher number of interfering signals than the degrees of freedom for the beamformer.
This is a problem especially for the single beamformer LCMV, where many degrees of
freedom are spent on forming main beams towards satellites. The only solution is to
build arrays with a larger number of elements, or to avoid areas where one can expect
a large number of interfering sources.
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4.5.3 Errors in Steering Vector In a case when the GPS receiver loses track on
all satellites due to jamming, only the INS information is available. The estimation
errors in position and attitude grows large over time. This has the effect that the
beamformer is forced to use uncertain a priori information. If the a priori information
is considerably wrong, the beam patterns will be misdirected and the GPS receiver
will have problem to find the satellite signals again. It is therefore suitable to use
a method which does not require any a priori information. The easiest strategy is
to use the array for reception of signals, but without performing any beamforming.
However, this will not give any improvement of the SNR. Another, probably better,
strategy is to use the Power minimization algorithm described in Section 4.4.3, which
works without any direction information (no constraints). The drawback is the risk
of suppressing some of the satellite signals, but that is not a serious problem as long
as the SNR is increased for some other satellites.

4.5.4 Bad Directivity for Low Elevations A beamforming antenna array gives
best performance, in terms of narrow beams, in the direction perpendicular to the
array plane. For directions close to the plane, i.e. low elevations, the beams get
wider. This is explained by the effective area of the array. For high elevations the
total area of the array is directed towards the source. For lower elevation angles the
effective area decreases. The effective area depends on sin θ, where θ is the elevation
angle.

4.5.5 Estimating the Array Correlation Matrix The array correlation mat-
rix, defined in (4.8), describes the spatial correlation of the incoming signals for all
antenna elements. In practice the N ×N covariance matrix R(k) must be estimated
from the received data, with a finite number, M , of samples

R̂(k) =
1

M

k+M−1∑

j=k

u(j)uH(j). (4.14)

The more number of samples M used, the better the estimate R̂(k) gets.

Effects on the resulting beam pattern when few samples are used in the estimation
of R are high sidelobes and a distorted main beam. A way to avoid these problems
is diagonal loading [21] [18]. Diagonal loading means that a diagonal matrix is added

to the estimated array correlation matrix R̂. Often the diagonal matrix is chosen as
a function of the smallest eigenvalue of R̂. The resulting matrix is

R̂DL(k) = R̂(k) + αλmin I, (4.15)

where λmin is the smallest eigenvalue of R̂, α is the load factor and I is an identity
matrix. The diagonal loading increases all eigenvalues of the covariance matrix the
same amount. More about diagonal loading can be found in [21] or [2].
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5. Linearization and Discretization of Nonlinear

Systems

The Kalman filter is a recursive state estimation algorithm for linear systems. No
further explanation of the Kalman filter is given here, but can be found in e.g. [5] or
[22].

The Kalman filter theory requires linear systems, but also with non-linear systems
the Kalman filter could be interesting to use. The system must also be expressed in
time-discrete form for the filter to be implemented in a computer. In this chapter
methods for linearizing and discretizing a non-linear time-continuous system will be
described.

5.1 Discretization of a Linear System

Linear systems can not be directly implemented in discrete environments.The discret-
ization of a continuous time system is discribed in thid section.

Assume that we have a linear time-continuous and possibly time-variant system

ż(t) = F(t) z(t) + G(t)w(t)

y(t) = H(t) z(t) + v(t)
(5.1)

and want to transform it to a discrete-time form

zk = Φ(tk, tk−1) zk−1 + u(k)

yk = Hk zk + vk,
(5.2)

where k is a discrete time index and Φ is a state transition matrix that will be
described later.

5.1.1 System Equation We start with transforming the first equation in the
continuous-time system (5.1), the system equation, to fit into the first of the equa-
tions in the discrete-time system (5.2), the state transition equation. F(t) is the
dynamics matrix and G(t) is the transition matrix for the noise. Both F(t) and G(t),
as well as the system state z(t) and the noise vector w(t), can be time-dependent.
The noise vector is a continuous white Gaussian noise vector process. At each time t,
the noise vector, w(t), and system states, z(t), are assumed to be independent.

Linear, first-order differential equations can be solved by taking the sum of the homo-
geneous solution and any particular solution determined by the method of variation of
parameters, described in [4]. The solution to the non-homogeneous system equation
in (5.1), with boundary conditions at t′ given by z(t′), can then be written as:

z(t) = Φ(t, t′)z(t′) +

t∫

t′

Φ(t, ξ)G(ξ)w(ξ)dξ, (5.3)
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where the state transition matrix Φ(·, ·), for a fixed initial value t′, satisfies the dif-
ferential equation:

∂

∂t
Φ(t, t′) = F(t)Φ(t, t′), (5.4)

with initial condition
Φ(t′, t′) = I. (5.5)

In other words, the state transition matrix Φ(t, t′), transforms the state from its value
at time t′, to the value at an arbitrary time t. For sufficiently small time intervals,
∆t = t − t′, the time-continuous dynamics matrix F(t) is approximately constant
during the interval, which is constant. With this approximation the solution to (5.4)
can be written

Φ(t, t′) ≈ eF(t′)∆t. (5.6)

The right-hand side of (5.6) can be expanded as an infinite series. Truncating it to
the first order gives

Φ(t, t′) ≈ I + F(t′)∆t. (5.7)

As mentioned above, Φ(t, t′) can be seen as a transition, taking the state vector from
an initial time t′, to another time, t. By identifying the initial time as t′ = tk−1 and
the arbitrary time t = tk the discrete system can be written as

zk = Φ(tk, tk−1)zk−1 + uk, (5.8)

where

uk =

tk∫

tk−1

Φ(tk, ξ)G(ξ)w(ξ)dξ. (5.9)

The fact that the integral is a linear operator and that E[w(t)] = 0 for all t, implies
that the expected value for uk is also zero. Hence,

E[uk] = 0. (5.10)

If the time intervals for which the integral in (5.9) is evaluated are non-overlapping,
the samples uk for different values of k become uncorrelated. Therefore, uk is a
discrete white Gaussian noise sequence.

The covariance matrix for a process pk with zero mean is generally given by E[pkp
T
k ],

and therefore the covariance matrix for uk can be written as:

E[uku
T
k ] =

tk∫

tk−1

tk∫

tk−1

Φ(tk, ϑ)G(ϑ)E[w(ϑ)w(ζ)T ]GT (ζ)ΦT (tk, ζ)dϑdζ. (5.11)

The covariance of a scalar time-continuous white noise process n(t) with zero mean
is

E[n(ζ)n(ζ ′)] = σ2
n δ(ζ − ζ ′), (5.12)

where σ2
n is the constant power spectral density of the process and δ(t) is the Dirac

delta. For the vector w(t) of independent white noise processes this implies that

E[w(ζ)wT (ζ ′)] = Q δ(ζ − ζ ′), (5.13)

where the diagonal matrix Q contains the power spectral densities of the processes in
w(t). Using (5.13) simplifies the covariance equation (5.11)

E[uku
T
k ] =

tk∫

tk−1

Φ(tk, ϑ)G(ϑ)QG(ϑ)T ΦT (tk, ϑ)dϑ. (5.14)
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For short periods ∆t = tk−tk−1, it is possible to simplify this integral. G(ϑ) can then
be considered constant, Gk, during that period and Φ(tk, tk−1) can be approximated
with an identity matrix I. By applying these approximations, (5.14) can be written

Θk ≡ E[uku
T
k ] ≈ Gk QGT

k ∆t. (5.15)

5.1.2 Measurement Equation The second equation of the system in (5.1), the
measurement equation, is more straightforward to discretize. In the equation, the
matrix H(t) connects the states z(t) with the measurements y(t). A vector v(t) with
white Gaussian measurement noise is added.

The equation can simply be discretized by evaluating it at times t = tk, where k is a
discrete index. The noise process v(t) can be redefined in discrete time.

This fulfills the discretization of the system equation in (5.1).

5.2 Using Kalman Filters with Nonlinear Systems

In a situation as the one we have here, where two systems are to be integrated,
a complementary Kalman Filter is a good choice. The complementary filter uses
differences of measurements and estimates of the same quantity as observations. The
benefit with this is that the filter handles error states instead of full states. The error
states are expected to be small which makes it possible to use a linearized system,
which, in turn, makes the Kalman filter applicable.

Two types of linearizations will be performed, the Linearized Kalman Filter (LKF)
and the Extended Kalman Filter (EKF). The linearization will be applied to the
navigation equations, derived in Chapter 2.

Let z(t) be the full navigation state (containing attitude, velocity and position) and
let ω(t) and a(t) represent the gyro and accelerometer outputs, respectively. If ω(t)
and a(t) are the ideal (error free) IMU signals, the error free navigation state z(t)
will be a solution to the navigation equation. With these notations, the system of
navigation equations can be written as

ż(t) = f (z(t),ω(t),a(t))

y(t) = h (z(t)) + v(t).
(5.16)

Here f(·) and h(·) are non-linear functions, y(t) is an observation of the error free
navigation state z(t) and v(t) is white Gaussian noise.

5.2.1 Linearized Kalman Filter In the linearized Kalman Filter (LKF), it is
assumed that an approximate, or nominal, trajectory z̃(t) is available. In the al-
gorithm, z̃(t) is used as a trajectory differing δz(t) from the true trajectory z(t).

Now, let ω̃(t) and ã(t) be the real gyro and accelerometer signals:

ω̃ = ω + δω (5.17)

ã = a + δa, (5.18)

where δω and δa are the errors affecting the gyros and accelerometers, e.g. biases and
noise. The corresponding solution to the navigation equations is denoted z̃. Now we
have

˙̃z = f (z̃, ω̃, ã). (5.19)

The errors δz in the navigation states are defined according to

z̃ = z + δz. (5.20)
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If the error states δz and IMU-errors δω and δa are assumed to be small, linearization
of the error free navigation state dynamics, ż, gives

ż = ˙̃z− δ̇z = f(z,ω,a)

= f(z̃− δz, ω̃ − δω, ã− δa)

≈ f(z̃, ω̃, ã)− F(t) δz −G1(t) δω −G2(t) δa,

(5.21)

with

F(t) ≡
[
∂f

∂z

]

z̃(t),ω̃(t),ã(t)

(5.22)

G1(t) ≡
[
∂f

∂ω

]

z̃(t),ω̃(t),ã(t)

(5.23)

G2(t) ≡
[
∂f

∂a

]

z̃(t),ω̃(t),ã(t)

. (5.24)

Using the INS solution (5.19) in (5.21) and rearranging approximately gives

δ̇z = F(t) δz + G1(t) δω + G2(t) δa. (5.25)

This is the INS error equation. The approximate solution z̃ works as a nominal
solution, around which the linearization takes place.

Next, define the δy to be the difference between a calculated observation based on
the nominal solution z̃ and the real observation y:

δy ≡ h(z̃)− y. (5.26)

Using the second equation of (5.16) for the real observation gives

δy = h(z̃)− h(z̃− δz)− v, (5.27)

which, if δz is small, can be approximated with

δy = H(t) · δz− v, (5.28)

where

H(t) ≡
[
∂h

∂z

]

z̃(t)

. (5.29)

Hence, the differenced observation δy can be seen as an observation of the error state
δz. This is the property of a complementary filter, as previously mentioned. The two
equations, (5.25) and (5.28), together form a linear state space system:

δ̇z = F(t) · δz + G(t) δw

δy = H(t) · δz− v,
(5.30)

where

G(t) =



G1(t) 03

03 G2(t)
0 0


 (5.31)

δw = [ δωT δaT ]T . (5.32)

The structure of the linearized system in (5.30) is similar to the general system form
for a linear system in (5.1). The discretization procedure described in Section 5.1 can
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therefore be applied to the system in (5.30). Using the notation from the discretized
system in (5.2) results in the following linearized discrete-time system:

δzk = Φ(tk, tk−1) · δzk−1 + Gkwk

δyk = Hk · δzk − vk,
(5.33)

where δzk is the error state, wk and Gk are the discretized process noise and process
noise matrix, respectively, Hk is the observation matrix and vk is a white Gaussian
measurement noise, all at the time t = tk. The system in (5.33) is now linear and
discrete, and the Kalman filter theory can be applied.

Prediction In the prediction step there are no measurements available. To calculate
the values of the covariances Pk|k−1 and predicted state estimates δ̂zk|k−1 at time tk,
the system model is used for propagation:

Pk|k−1 = Φ(tk, tk−1)Pk−1Φ
T (tk, tk−1) + Θk (5.34)

δ̂zk|k−1 = Φ(tk, tk−1)δ̂zk−1, (5.35)

with Θk defined in (5.15). Here Pk−1 and δ̂zk−1 are the covariance and state estimate,
respectively, at time tk−1.

Kalman Gain The Kalman gain Kk reflects the optimal trade-off between trust-
ing the measurements (which gives noisy output) and trusting the propagated state
estimate from (5.35) (which gives bad tracking possibility).

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Rk

)−1
, (5.36)

where Rk is the covariance matrix for vk.

Measurement Update When an observation is available, the Kalman filter has
more information and therefore the previously predicted states are no longer the
optimal ones. The updated covariances and states are then:

Pk = (I−KkHk)Pk|k−1 (5.37)

δ̂zk = δ̂zk|k−1 + Kk

(
δyk −Hk δ̂zk|k−1

)
. (5.38)

In the LKF, the states are estimates of the difference between the nominal trajectory
and the true (unknown) one. An estimate ẑk of the full state is

ẑk = z̃k − δ̂zk. (5.39)

One risk with using LKF is that the linearization may not always be valid. As can
be seen in the block diagram in Figure 5.1, the LKF processes the data from the INS
before they are corrected with the estimated error δ̂z. If δz is not small this means
that the true solution differs much from the nominal one, and the linearization that
is performed about the nominal trajectory z̃ may not be valid.

5.2.2 Extended Kalman Filter The Extended Kalman Filter (EKF) is similar
to the LKF, but with a few important differences. One is that the linearization is
performed around a trajectory estimated by the filter, not a pre-computed nominal
one as in the LKF. Another difference is that the EKF will estimate the full states,
not error states. It is around the filter estimate ẑk|k−1 that the linearization takes
place. This has the effect that the linearization is always valid.
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Figure 5.1: The principle of the LKF algorithm, a feed-forward filter.

Since the filter handles full states, nonlinear equations can be used in the prediction
of the states. Hence, a numerical integration of the navigation equations can be used
to propagate the states. The navigation equation can be written on the form

ż = f(z,ω,a), (5.40)

where z is the states and ω,a are the gyro and accelerometer output, respectively.

Hence, a prediction z̃k of the full state at time t = tk is given by the result of
integrating the navigation equation from t = tk−1 to t = tk. The initial value at
time t = tk−1 is the current filter estimate ẑk−1. The term z̃k is the one-step-ahead
prediction of the full state that an unaided INS would give.

Since z̃k is the full state prediction, the navigation error δzk can be defined as the
difference between z̃k and the true states zk:

δzk = z̃k − zk. (5.41)

Hence, we can write an estimate of the full state as

ẑk = z̃k − δ̂zk, (5.42)

where δ̂zk is an estimate of the navigation error δzk. Further, a prediction of z, i.e.
ẑk|k−1 can be written as

ẑk|k−1 = z̃k − δ̂zk|k−1. (5.43)

Now, we want to write the measurement update equation

δ̂zk = δ̂zk|k−1 + Kk

(
δyk −Hk δ̂zk|k−1

)
, (5.44)

in terms of full states. The innovation term, i.e. δyk −Hk δ̂zk|k−1, can be rewritten
using the definition of δy from (5.26):

δyk −Hk δ̂zk|k−1 = h(z̃k)− yk −Hk δ̂zk|k−1

= h(z̃k)−Hk δ̂zk|k−1︸ ︷︷ ︸
≈h(z̃k−δ̂zk|k−1)

−yk

= h(z̃k − δ̂zk|k−1)− yk

= h(ẑk|k−1)− yk.

(5.45)

Note that the definition of Hk now is

Hk ≡
[
∂h

∂z

]

ẑk|k−1

. (5.46)
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Using (5.45) the measurement update equation for the error states (5.44) can be
written

δ̂zk = δ̂zk|k−1 + Kk

(
h(ẑk|k−1)− yk

)
. (5.47)

If z̃k is subtracted from both sides of (5.47), and using (5.43) we get

ẑk = ẑk|k−1 + Kk

(
yk − h(ẑk|k−1)

)
, (5.48)

which is the measurement update equation for the full states that will be used in the
EKF.

Prediction The prediction of the covariance has not changed from the LKF al-
gorithm:

Pk|k−1 = Φ(tk, tk−1)Pk−1Φ
T (tk, tk−1) + Θk (5.49)

The state prediction is given by integrating the navigation equations

ż = f(z,ω,a) (5.50)

at time t = tk, with the initial value z = ẑk−1 at time t = tk−1.

Kalman Gain The Kalman gain is computed identically as in the LKF

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k + Rk

)−1
(5.51)

but with the matrix Hk defined in (5.46).

Measurement Update The previously determined update equation for the full
states is:

ẑk = ẑk|k−1 + Kk

(
yk − h(ẑk|k−1)

)
, (5.52)

while the covariance update has not changed:

Pk = (I−KkHk)Pk|k−1. (5.53)

Note that the matrix Hk now depends on the current estimate.

INS

EKF

GPS

✲
Corrected

output

❄

✻
Estimates
of errors

✻

Figure 5.2: The principle of EKF, a feed-back filter.

The fact that the linearized equations depend on the previous measurements, makes
the EKF difficult to analyze. There is no guarantee that the EKF performs better
than the LKF in every realization, but empirically it does. Especially, the EKF is
more sensitive for errors in the initial values, compared to the LKF, since initial values
effect the future linearization [5]. If the initial guess is bad there is a risk that the
trajectory used to linearize about in the next step is worse than the initial one, leading
to an even bigger error in the next step, and so forth.
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In the block diagram for the EKF in Figure 5.2, it is illustrated that the EKF processes
data after the correction with the estimated errors. This has the effect that the
linearization is always valid, since it is performed around the current state estimate.

If the covariance matrix P is not positive semi-definite there is a major risk for the
state estimates to diverge from the correct ones. This is a problem for both the LKF
and the EKF.

It should be noted that the covariance matrix P is computed independently of the state
estimates and the observations (except that the state estimates determine the point
of linearization in the EKF). Comparing the variances in the diagonal of P with the
estimates could give information about how well the filter reflects the real navigation.
If the model is different from the real world this will be obvious by comparing the
variances and the estimates. Since the covariances are independent of observations, it
will not be able to adapt unmodelled changes as well as the state estimates will do.
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6. Implementation of Simulation Environment

As mentioned in section 1.2.1, INS and GPS have complementary characteristics.
GPS pseudoranges are available at a relatively low rate (typically 1 Hz) and can give
measurements with a bounded error. An INS can give a high output rate but with an
unbounded error growth. Further, the INS works better under high dynamics since
the oscillator in the GPS receiver is sensitive to dynamic stress. In Table 6.1 the
characteristics of INS and GPS are compared.

INS GPS
Measurement rate High Low
Error growth Unbounded Bounded
Dynamic properties Good Bad
Jamming susceptibility Very low High

Table 6.1: Characteristics of INS and GPS

Since the INS system alone has a drift due to accelerometer and gyro biases, an
important part of integrating the GPS receiver is to estimate these biases. This can
only be done when there is sufficient GPS satellite information. The bias estimates
can be used to reduce the errors when INS has to be used alone, for instance in a
tunnel or in case of intentional (or unintentional) jamming of the GPS signals.

Another advantage with the INS/GPS integration is that the INS can support the
tracking loops in the GPS. A feedback from the INS then tells the GPS about the
velocities of the vehicle, which can be used to calculate the expected line-of-sight
Doppler. With this knowledge the bandwidths of the tracking loops can be more
narrow which leads to a smaller wideband noise power, which in turn gives a better
jamming performance of the GPS. Both systems take advantage of each other, the
INS uses the bounded error of the GPS and the GPS can use the accurate velocity
estimate from the INS to aid the tracking loops.

6.1 Integration of GPS and INS measurements

In this thesis the integration of the INS and GPS data will be done by means of a
Kalman filter. All equations will be expressed in an earth-fixed earth-centered frame
(e-frame), using a Cartesian coordinate system.

The following definition of an error δz will be used:

δz = ẑ − z, (6.1)

is used, where ẑ is the estimate of the quantity z. This definition is important and
will be used consistently through this thesis.
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Figure 6.1: Loosely coupled INS/GPS (Decentralized integration). In
the decentralized case, measurements from different sensors are processed
by separate filters and the integration filter only has access to these filter
outputs.

6.1.1 Coupling Approaches A tightly coupled filter will be used to integrate
GPS and INS measurements. This means that the raw measurements from both the
IMU and the GPS are used in the integration filter (see Figure 6.2). The opposite is
a loosely coupled filter, where the raw measurements have been processed by another
filter and the integration filter only has access to the estimates and their covariances
(see Figure 6.1).

The cascade coupling of filters in the loosely coupled filter gives a problem. Often
the second filter has access only to the variances of the states and not the cross
correlation between them. This lack of information makes it impossible to design an
optimal integration filter. Another problem is that positions from GPS receivers are
often filtered to get a less noisy output. This has the effect that measurement errors
become correlated over time.

More important is that a centralized integration filter can use GPS measurements even
if less than four pseudoranges are available, which is not the case with a decentralized
integration.

A loosely coupled filter is also implemented for comparing the performance with the
tight coupling. The principles of the loosely and tightly coupled filters are shown in
the block diagrams in Figures 6.1 and 6.2.

6.1.2 Kalman Filter Types There are different possible types of Kalman filters.
In this application it is suitable to use a complementary filter. A complementary filter
uses the difference between two estimates or measurements of the same quantity as
an observation. When using an extended Kalman filter this is done by comparing
the expected pseudoranges from the position predicted by the filter with the actual
measured pseudoranges. Hence, the observations δy, can be written

δy = ρ̂− ρ

= h(x̂, c δ̂t)− ρ.
(6.2)

where x̂ is the current position estimate, c δ̂t is a clock offset estimate and ρ is the
vector of pseudoranges. The non-linear function h(·, ·) describes how the pseudorange
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Figure 6.2: Tightly coupled INS/GPS (Centralized integration) In the
tight integration the integration filter has access to both the raw inertial
sensor outputs (ω and a) and the pseudorange measurements ρ to form
the estimates and their covariances.

observations vector ρ depends on the current states. It depends on the user position
x, the clock offset c δt and a Gaussian noise v

ρ = h(x, c δt) = r(x) + c δt+ v, (6.3)

where r(x) = [ ‖x1 − x‖, ‖x2 − x‖, . . . , ‖xm − x‖]T are the geometrical distances to
the m visible satellites. This implies that the observation δy in (6.2) can be written
as

δy = (r̂ + c δt)− (r + c δt+ v)

= r̂− r− v

= δr− v,

(6.4)

where r̂ is the range that the position estimated by the filter would give and δr is
the range error. Hence, the complementary observations δy are observations of the
pseudorange prediction errors δr affected by a noise v. The observations δy of the
pseudorange prediction errors can in turn be used to calculate the navigation error
δx, in the same way as set of pseudoranges are used to calculate a position x.

The Kalman filter is a linear filter and can thus only be used for linear systems.
Two types of linearization approaches were addressed in Chapter 5. The Linearized
Kalman filter (LKF) is linearized around a pre-defined, nominal trajectory, while the
Extended Kalman filter (EKF) is linearized around the current trajectory estimated
by the filter. If the linearization should be valid, it is important that the linearization
point does not differ too much from the true point.

The best choice of filter type, LKF or EKF, depends on the application. In a scenario
where there is a nominal trajectory that makes sense, e.g. for a UAV (Unmanned
Aerial Vehicle) that is pre-programmed to follow a certain path, an LKF is the simplest
choice. The true trajectory of the UAV will probably not differ very much from the
expected and the linearization is always valid. In other scenarios where there is no
pre-defined trajectory the EKF is to prefer. The EKF is also the most suitable if errors
that should be fed back to the INS or the GPS are estimated. Since biases for the
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gyros and accelerometers in the INS should be estimated in this implementation, the
EKF is the best choice in this case. When the biases are fed back, the prediction in the
Kalman filter performs much better, also during periods when no GPS measurements
are available.

Both Kalman filter types are implemented, but only the EKF is used in simulations.

6.2 Sensor Data Generation

6.2.1 Data for the INS In an INS, signals from the gyros and accelerometers in
an IMU, are used for calculating a trajectory by means of the navigation equations
described in Chapter 2.

In the simulation environment this is done in the opposite order: First a trajectory
is defined. The ideal gyro and accelerometer outputs, ω and a, that this trajectory
would give are extracted. Next, errors are introduced to the ideal IMU signals to form
the erroneous gyro and accelerometer signals, ω̃ and ã:

ω̃ = ω + dω + δω (6.5)

ã = a + ba + δa, (6.6)

where dω and ba are the constant gyro and accelerometer biases, δω and δa are two
noise processes. The variances of the two noise processes δω and δa are time-invariant
and have the same variance in all three components

var(δω) = [ qω qω qω]T (6.7)

var(δa) = [ qa qa qa]T . (6.8)

6.2.2 GPS Pseudoranges In the simulation environment the GPS will provide
the integrated system with pseudorange measurements. The model for the GPS re-
ceiver is rather simple. The geometric distance r between the receiver and the satellite
is calculated and delays and disturbances are added according to

ρ = r + c (δt− δts) + δrion + δrtrop + δrSA + δrMP + v (6.9)

to get a pseudorange ρ. The same notations as in (3.8) are used.

Here, clock offsets (δt and δts) are set as constants. The atmospheric disturbance
(δrion and δrtrop) are modelled as described in [9]. Examples of these atmospheric
errors are shown in Figure 6.3.

The SA and multipath-error (δrSA and δrMP ) generation is taken from [23]. How-
ever, these two error terms are not used in the simulations, i.e. they are set to zero.
Remember that the intentionally introduced SA error was actually removed in May
2000. The last term, v, is a Gaussian measurement noise. This is the only uncorrel-
ated (white) error, all other terms have a time-correlation.

Besides the pseudorange (which means the code pseudorange) there are other measur-
able quantities, e.g. the phase pseudorange. However, if the phase pseudorange should
be used, the integer ambiguity (described in Section 3.2.1) has to be resolved. A search
algorithm for finding the integer ambiguity has been implemented, but mainly for test
purpose and is not used in simulations. The most straight-forward way to handle the
problem with integer ambiguities is to assume that they are resolved. Then the phase
pseudorange, which usually has an order of magnitude smaller noise compared to the
code pseudorange, can be used.

Doppler measurements are not implemented. The reason for this is that the position
measurements (or equivalently, pseudorange measurements) are enough to bound the
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Figure 6.3: Atmospheric delays for the code pseudorange, L1 band,
1575.42 MHz. The upper solid curves are the ionospheric delays and the
bottom dashed curves are the tropospheric delays.

error from the INS.

Differential GPS (DGPS), which uses pseudorange corrections from a basestation to
decrease the effect of atmospherical and satellite orbit errors, is the only differential
method that is implemented. Double differential measurements, which eliminates the
receiver clock offset is not implemented because this clock offset can be estimated
from the measurements instead.

Due to the simple GPS receiver model, where realistic errors are introduced to the
true range to form the pseudoranges (see (6.9)), no tracking loops are implemented.
Hence, velocity aided tracking loops can not be treated.

6.3 Filter Implementation

Since the filter will be a complementary filter, the states will be error states. The
system, after linearization, can be written in continuous time on the state-space form

ż(t) = F(t) z(t) + G(t)w(t)

y(t) = H(t) z(t) + v(t).
(6.10)

However, the implementation of the system will take place in a discrete environment,
hence a time-discrete Kalman filter will be used. The discretization process was
addressed in Section 5.1

6.3.1 Process Noise Modelling The last term in the system equation in (6.10),
G(t)w(t), is the system noise. In the derivation of the Kalman filter it is assumed
that w(t) is a white gaussian process, caused by noise in gyros and accelerometers.
Suppose that w(t) can be written

w(t) = [δωT δaT ]T (6.11)

where δω is the gyro noise process and δa is the accelerometer noise process. The
matrix G(t) is

G(t) =




−Ce
b(t) 03×3

03×3 Ce
b(t)

0 0
...

...


 , (6.12)
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which is block-diagonal with blocks−Ce
b(t), C

e
b(t). The term Ce

b(t) is a time-dependent
direction cosine matrix. The transpose of a direction cosine matrix is the same as the
inverse, i.e. (Ce

b(t))
T = (Ce

b(t))
−1. According to (5.15) the covariance matrix Θk for

the discretized process noise uk is

Θk ≈ Gk QGT
k ∆t. (6.13)

Using the property in (6.7) and (6.8), the time-invariant covariance matrix Q can be
written as

Q =

[
qw · I3 03

03 qa · I3

]
, (6.14)

where qw and qa are the gyro and accelerometer noise variances, respectively. Since
the structure of Q and G(t) are similar with only block-diagonal elements, the product
in (6.13) is

Θk ≈ GkQGT
k ∆t =




qw · (−Ce
b)kI3(−Ce

b)
T
k 03 0 . . .

03 qa · (Ce
b)kI3(C

e
b)

T
k 0 . . .

0 0 0 . . .
...

...
...

. . .


∆t

=




qw · I3 03 0 . . .
03 qa · I3 0 . . .
0 0 0 . . .
...

...
...

. . .


∆t

(6.15)

and thus independent of time. This is one of the rewards for expressing the equations
in the e-frame!

6.3.2 Filter Models The error for an unaided INS is unbounded after a long
time, due to imperfections in the IMU. When the INS is aided by a GPS the error can
be made bounded. Another advantage with the integration is that biases in the IMU
can be estimated and compensated for. This gives a better navigation performance,
also during periods with bad satellite availability, when the system has to rely on the
INS alone.

Three different types of GPS measurements are used in the integration:

A. A loosely coupled filter, aided by a single GPS

B. A tightly coupled filter, aided by a single GPS

C. A tightly coupled filter, aided by differential GPS

The three models are described in this section. Before describing the three models,
we start with looking at the implementation of an unaided INS.

Unaided INS Since the integration will be performed by means of a complementary
filter, it will handle error states. States for position error δx, velocity error δv and
attitude error δΨ are used. Each of these is a 3-dimensional vector (3× 1), since we
should not be limited to navigate on a plane surface or only in a certain direction.
The error state vector for the unaided INS is denoted εINS .

εINS =
[

ΨT δvT δxT
]T

(6.16)

The linear (9× 9) system matrix from (2.31) for small errors in this system is

FINS =



−Ωe

ie 03 03

[a×] −2Ωe
ie Υ

03 I3 03


 , (6.17)
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using the same notation as in (2.31).

With an unaided INS there are no external measurements, and hence, there is no
measurement equation.

Loosely coupled, single GPS receiver In the loosely coupled filter, positions are
used as observations. A position can only be calculated by the GPS if four or more
satellites are available. Hence, if less than four satellites are available, no observations
will be passed to the filter. This is the main drawback with the loosely coupled filter.

The error state vector now reads

εA =
[

ΨT δvT δxT dT bT
]T
, (6.18)

where dT and bT are the gyro and accelerometer biases, respectively. The system
matrix FA for the loosely coupled filter reads

FA =

[
FINS F12

06×9 06×6

]
, (6.19)

where the matrix F12 is

F12 =



−Ce

b 03×3

03×3 Ce
b

03×3 03×3


 . (6.20)

The observation function hA(·) is trivial since the position states are observed

hA(x) = x. (6.21)

Tightly coupled, single GPS receiver In the tightly coupled integration filter,
raw pseudoranges from the GPS are used as observations. This has the advantage that
the integration filter gets information even when less than four satellites are available.

The tight integration require that also error states for the GPS receiver are included.
This gives an error state vector

εB =
[

ΨT δvT δxT dT bT δ(c δt)
]T
, (6.22)

where the first nine states, Ψ, δv, δx, are the navigation errors, defined in the previous
section. The next two (3 × 1) vectors, d and b, are gyro and accelerometer biases,
respectively, and δ(c δt) is the GPS receiver clock offset error.

The system matrix now reads

FB =




FINS F12 09×1

06×9 06×6 06×1

01×9 01×6 01×1


 , (6.23)

with FINS and F12 defined in (6.17) and (6.20). In the tightly coupled filter the
observations are pseudoranges and the non-linear observation function hB looks like

hB(x, c δt) =




‖x1 − x‖+ c δt
‖x2 − x‖+ c δt

...
‖xm − x‖+ c δt


 , (6.24)

where xs is the position of satellite s. Note that the size of hB depends on how many
satellites m that are visible.
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Tightly coupled, DGPS with two receivers Integrating an INS with a DGPS is
similar to integrating INS with a stand-alone GPS. The difference is that the measured
pseudoranges are corrected with terms from a basestation. Errors that are common
in the basestation and the roving receiver cancel, i.e. atmospheric errors and satellite
clock errors.

The single differential corrected pseudorange vector ρ∆1 can be written as

ρ∆1 = ρ− δρcorr, (6.25)

where ρ is the measured pseudoranges and δρcorr is the correction terms received
from the basestation.

6.3.3 State Modelling In addition to the navigation states (position, velocity
and attitude), states for receiver clock offset, gyro and accelerometer biases are in-
cluded. These are modelled as random constants, i.e. the time derivative is zero.

6.3.4 Numerical Problems in Covariance Update Some numerical problems
can occur in the Kalman filter. The most sensitive part is the prediction and measure-
ment update of the covariance matrix Pk. Two requirements on Pk are that it should
be symmetric (since it is a covariance matrix) and positive semi-definite (the positive
semi-definiteness guarantees that no diagonal elements are negative). However, it can
happen that some of these requirements are not fulfilled if any of the matrices used
in the Kalman filter algorithm are very ill-conditioned. This can e.g. happen if there
are large differences in the scaling of the states, so that the elements in Pk has an
extremely large spread. A non-positive-definite Pk usually leads to divergence of the
filter [5].

The symmetry of Pk is easily checked. It is possible to force Pk to be symmetric in
every iteration by replacing Pk with

Pk ←
1

2
(Pk + PT

k ) (6.26)

Another, more sophisticated, way is to use a symmetric form in the covariance meas-
urement update. The usual form, repeated from (5.37) and (5.53), is

Pk = (I−KkHk)Pk|k−1

An alternative measurement update form [5] is

Pk = (I−KkHk)Pk|k−1(I−KkHk)T + KkRkK
T
k , (6.27)

which is the sum of two symmetric matrices, the first being positive definite and the
second positive semi-definite. This expression is less sensitive to numerical errors inKk

and retains both symmetry and positive semi-definiteness better than the (5.37) form
[22]. This equation for the Pk update is referred to as the Symmetric Joseph form.
The symmetric form does not help for numerical problems due to an ill-conditioned
P matrix.

Another method that can remedy the problem with asymmetry, and also help with the
ill-conditioning is the Square Root algorithm [22][24]. The idea with all types of square
root algorithms is to update the square root, P1/2, of the covariance matrix. Taking
the square root decreases the span between the smallest and the largest elements in the
matrix. The benefit with this is that the elements can be represented more accurately
with a finite numerical precision. In practice, the numerical precision is always limited.
Normally, a square root algorithm can give the same accuracy with only half the
number of bits to represent a number, compared to a conventional algorithm. The
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price for increased numerical precision is a slightly increased computational cost. In
[22] several types of square root algorithms are compared.

The symmetric Joseph form of the covariance update equation is used in the toolbox.
As a comparison, a square root algorithm has been implemented and tested with the
EKF. It gives better results for situations with large initial spread in the covariance
matrix. This could happen if one has very little knowledge about a certain state, so
the initial variance for it has to be set very high.

6.3.5 Observability The integrated INS/GPS system that has been implemented
has at least 10 states, and in most cases more. Most of the time, much less than
10 satellites will be visible. It is clear that the number of states can be higher than
the number of observations. The question is: Is it possible to estimate all of the states
from the given observations?

In some cases it is obvious that certain states can not be estimated. States that do
not affect the observations at all, not even indirectly, are impossible to estimate. Also
several states that affect the observations in the same way can not be told from each
other.

To determine whether all states can be estimated, the observability of the system can
be calculated. From [25] , an observability matrix O for a time-invariant system, can
be set up as

O(Φ,H) =




H
HΦ1

HΦ2

...
HΦm−1




(6.28)

where m is the number of states and H and Φ are the time-discrete observation
and state transition matrices, respectively. The system is fully observable only if the
matrix O has full rank. In the integrated INS/GPS system, both the transition matrix
and the observation matrix depend on time. The observability matrix will then also
be time dependent and can be written as

O(Φk,Hk)k =




Hk+1−m

Hk+2−mΦ(k+2−m,k+1−m)

Hk+3−mΦk+3−m,k+2−mΦk+2−m,k+1−m

...
Hk−1Φk−1,k−2 · · · Φk+3−m,k+2−mΦk+2−m,k+1−m

HkΦk,k−1Φk−1,k−2 · · · Φk+3−m,k+2−mΦk+2−m,k+1−m




(6.29)

where Φk,k−1 is a short-hand notation for a state transition matrix Φ(tk, tk−1) that
propagates the state from time t = tk−1 to t = tk, and Hk is the observation matrix
at time k.

Calculating the rank of O(Φk,Hk)k in simulations indicates that the system is fully
observable if one or more satellites are available. The exception is the start of a flight,
where the number of observable states grows from zero before the first measurement
to m after some time. How fast the observability grows, depends on the number of
available satellites.

6.4 Integration of Adaptive Beamforming Antenna

The adaptive beamforming algorithms used in the simulations need the directions to
all visible satellites expressed with azimuth φ and elevation θ, defined in an antenna
coordinate frame according to Figure 4.4. Since coordinates in the body frame are

55



FOI-R--0848--SE

given in the order (forward, right, down), this means that azimuth is the angle from
the forward direction and the elevation is the angle above the forward-right-plane.
Estimates of φ and θ can be calculated from the state estimates given by the Kalman
filter. The estimates for the position x̂e = (x̂, ŷ, ẑ)T and the orientation relative to

Earth Ĉe
b are required. Also the satellite positions s in the e-frame must be known.

The antenna is assumed to be strapped to the vehicle, which means that the antenna
is fixed in the b-frame.

With satellite s at coordinates xe
s = (xs, ys, zs)

T in e-frame, an estimate of the vector
from the vehicle to the satellite r̂b = (r̂1, r̂2, r̂3)

T in b-frame can written as

r̂b = (Ĉe
b)

T (xe
s − x̂e). (6.30)

When the vector r̂b is known, the directions to the satellite can be estimated as

φ̂ = arctan2(r̂2, r̂1) (6.31)

θ̂ = arctan2(−r̂3,
√
r̂21 + r̂22), (6.32)

where arctan2(·, ·) is the four-quadrant arctangent. The minus sign before r̂3 in the
expression for the elevation is due to the fact that the 3-axis in b-frame is defined to
point downwards (see Section 2.2), but we want the elevation to be positive upwards,
to be consistent with the definition of mask angle when talking about GPS.

6.4.1 Lever-arm Compensation If the IMU and the GPS antenna are spatially
separated, the two instruments will sense slightly different positions and velocities [7].
If the separation is large, it should be considered whether this needs to be modelled.
In this thesis no compensations for the lever-arm are made.

6.5 Error Measurements

6.5.1 Circular Error Probable Circular error probable (CEP) is a two-dimensional
measure for position errors. It is defined as the circle centered at the true position in
which 50 % of all position estimates end up. The CEP is related to the (2 × 2) co-
variance matrix describing the uncertainty in the two-dimensional position estimate.
The CEP is often used when talking about GPS errors.

6.5.2 Root Mean Square The Root mean square (RMS) is a commonly used
quantity for expressing the magnitude of errors that vary over time. It is, as the
name indicate, defined to be the square root of the time average of the squares. For
a discrete time series z = [ z1, z2, . . . , zN ]

T
this is

RMS ≡
√

1

N
δzT δz. (6.33)
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7. Simulation Results for GPS/INS Integration

The input data in the simulations are generated and therefore known, which is not
the case in a real application. The advantage working with known data is that es-
timation errors can be calculated and the same set of data can be used repeatedly
comparing different methods. The known estimation errors can be compared to the
variance calculated by the Kalman filter. For a well-tuned filter, the true error and
the standard deviation should correspond in size. A different behavior indicates that
some unmodelled errors are present.

The simulation has been divided into four sections:

Simulations without atmospheric disturbance To be able to compare the dif-
ferent integration methods based on different observations, simulation without
atmospherical errors are performed in Section 7.2

Simulations with atmospheric disturbance In practice, there will always be in-
fluence from the signal propagation through the atmosphere. In Section 7.3 it
is tested how these unmodelled disturbances affect the performance.

Simulations with satellite outage During some periods, the GPS receiver can
lose the ability to track some of the satellites. This could be caused by either
blocking of the signal or other interfering signals. The results of satellite outages
are tested in Section 7.4.

Comparison between different flight paths The type of flight path will affect
the results. In Section 7.5 the estimation errors are compared for a low dynamic
and a more high dynamic flight path.

The results are summarized in Section 7.6.

7.1 General Settings

The simulations are made with a relatively low IMU sample rate, 10 Hz. Usually
this rate is much higher, 200− 400 Hz is common. The reason for the low rate is to
speed up the simulations. Since the same rate is used in all simulation, the results
are comparable anyway. The GPS pseudoranges are measured with the rate of 1 Hz.

7.1.1 Integration Methods Different integrating methods have been implemen-
ted. All methods use an extended Kalman filter (EKF) to integrate the INS and GPS
data. In all integration methods gyro and accelerometer biases are estimated and
used for compensation in the time propagation of the EKF which takes place between
the GPS measurements. A short description is given below of the three different
integration methods:

A. Loosely coupled, single receiver This method uses a loosely coupled extended
Kalman filter. The observations used in a loose integration are positions. This
means that an external process has solved the possibly over-determined system
of equations by least squares to convert pseudoranges into position.
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B. Tightly coupled, single receiver In this integration a single GPS receiver and
an INS system are tightly coupled. This means that the measurements used
in the Kalman filter are pseudoranges to GPS satellites. An advantage with
using pseudoranges instead of positions as observations is that pseudoranges are
available even if less than four satellites are in line-of-sight.

C. Tightly coupled DGPS A base station is located at known coordinates and
receives information from the same satellites as a moving receiver (rover). Since
the position of the base station is known, a correction term for each pseudorange
can be calculated. As long as the rover can be considered to have the same
atmospheric disturbances as the base station, the correction terms can be used
to remove the atmospheric influence. This requires that the baseline between
base station and rover must be relatively short. This is assumed to be fulfilled.
The integration filter used is identical to the one used for the tightly coupled,
single receiver.

7.1.2 GPS Satellite Constellation The simulations are performed in GPS week
number 167 and starts at 43 200 s. This corresponds to UTC (Coordinated Universal
Time) 12.00 on Sunday, November 3rd 2002.

At this time there were 9 satellites visible if a 5◦ mask angle is used. The mask angle
sets a lower limit of the angle above the horizon for the satellites that are used. The
visible satellites and their constellation in the sky are illustrated in Figure 7.1. This
satellite constellation gives an initial GDOP value of 2.15, increasing to about 2.25
after 10 minutes.

5

7

9

11

18

21

26

28

29

EASTWEST

NORTH

SOUTH

Figure 7.1: Visible satellites during the simulations. The satellites pos-
itions are drawn in polar coordinates (azimuth and elevation) from a user
point of view. The outer circle corresponds to the horizon and center of
the circles is zenith. No satellites below the mask angle 5◦ are used.

7.1.3 Flight Paths Two different flight paths, shown in Figure 7.2, have been
used in the simulations. Both flight paths start in Stockholm, Sweden, with coordin-
ates

xe = [ 3124205, 1015116, 5467131 ]T [m]

in e-frame, at zero velocity. In geodetic coordinates this corresponds to latitude
59.1692◦ and longitude 18.0000◦.

The main difference between the two flight paths is the dynamics. The first flight path
(Figure 7.2(a)) contains several turns. Each turn manoeuver consists of one roll, one
pitch and finally, one roll back again. The second flight path (Figure 7.2(b)) contains
only one pitch manoeuver in the beginning and one 90◦ turn.

The flight path in Figure 7.2(a) is a test path used by the Swedish Defence Material
Administration to test the performance of flight sensors [26].
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Figure 7.2: An illustration of the flight paths used in the simulations.
Both paths last for about 11 minutes but they differ in their dynamics.

7.1.4 IMU Performance The IMU introduces errors. These are modelled as
white noise and biases in the accelerometer and gyro sensors. The variances of the
white noise and the values of the biases are taken from a Litton LN200 A1 data sheet
and are listed in Table 7.1. This IMU is considered in [4] as a medium quality IMU,
but in other books, equally performing IMUs are said to be of low quality.

Litton LN200 A1 White noise spectral density Bias

0.09◦ h−1/2 10◦ h−1

Gyro 0.09◦ h−1/2 10◦ h−1

0.09◦ h−1/2 10◦ h−1

4.9050 · 10−4 m s−2Hz−1/2 2.9 · 10−3 m s−2

Accelerometer 4.9050 · 10−4 m s−2Hz−1/2 2.9 · 10−3 m s−2

4.9050 · 10−4 m s−2Hz−1/2 2.9 · 10−3 m s−2

Table 7.1: Errors introduced on the INS sensors. Values are taken from
a Litton LN200 A1 data sheet.

7.2 Simulation without Atmospheric Disturbance

In order to compare the performance of method A, the loose integration, and method B,
the tight integration, a first simulation is done without any atmospherical disturb-
ances. The flight path depicted in Figure 7.2(a) is used.

Introduced Errors In all simulations, a set of pseudoranges ρ from user to satel-
lites are generated. In a tight integration (method B) these pseudoranges are also
the observations. In the loose integration (method A) a least square calculation is
performed on each observed set of pseudoranges, to achieve position coordinates as
observations. This has been done to achieve comparable results in the simulation.
The errors that are introduced to these pseudoranges are listed in Table 7.2.

Kalman Filter Parameters To get an optimal performance of the filter, the stat-
istics of the errors affecting the measurements must be chosen as good as possible
using data sheets and testing. Here, the errors are generated and therefore known,
but in reality errors are typically unknown. A measurement error covariance mat-
rix R should reflect the errors in Table 7.2. The measurements are assumed to be
uncorrelated, which is reasonable for pseudoranges, with a variance σ2 = (2.0 m)2.
This value does not take the receiver clock offset into account, since it is estimated
as a state and the uncertainty is affecting through the state covariance matrix P.
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Error sources Introduced error σ σ in estimation
Ionosphere 0 m 0 m
Troposphere 0 m 0 m
Selective Availability 0 m 0 m
Multi-path 0 m 0 m
Receiver clock offset 2 µs (≈ 600 m) 0 m
Satellite clock offset 0 m 0 m
Uncorrelated noise 2.0 m 2.0 m
User Equivalent Range Error (UERE) 2.0 m

Table 7.2: Errors added to the pseudorange measurements. The values
in the left column are the introduced errors while the values in the right
column are used to form the measurement covariance matrix R. The
reason for not including the receiver clock offset when forming the UERE
is that it is estimated as a state and affects the filter through the state
covariance matrix P.

The initial value for the receiver clock offset in the state covariance matrix is set to
1000 m. All initial values for P are presented in Table 7.3.

Attitude Velocity Position Gyro Acc Clock
bias bias offset

5 · 10−3 rad 0.1 µm/s 10 m 4.85 · 10−5 rad/s 2.9 · 10−3 m/s2 1000 m
5 · 10−3 rad 0.1 µm/s 10 m 4.85 · 10−5 rad/s 2.9 · 10−3 m/s2

5 · 10−3 rad 0.1 µm/s 10 m 4.85 · 10−5 rad/s 2.9 · 10−3 m/s2

Table 7.3: Square roots of the diagonal elements in the initial error cov-
ariance matrix P0. The parameters with three values belong to variables
in three dimensions, e.g. position.

The system noise covariance Q is another tunable parameter. The values used are
listed in Table 7.4. The variances for the attitude and velocity system noise reflect the
gyro and accelerometer noise listed in Table 7.1. The bias and clock offset states are
modelled as random constants (i.e. their time derivative is zero), and will therefore
have no system noise.

Attitude Velocity

0.6854 · 10−9 (rad/s)2 0.2406 · 10−6 (m/s)2

0.6854 · 10−9 (rad/s)2 0.2406 · 10−6 (m/s)2

0.6854 · 10−9 (rad/s)2 0.2406 · 10−6 (m/s)2

Table 7.4: Diagonal elements in the Kalman filter system noise matrix
Q. The noise variance for the attitude and velocity reflect the gyro and
accelerometer white noise spectral densities, respectively.

We also need an initial estimate of the state vector. The start position is assumed to
be known, so that attitude, velocity and position can be initialized with the correct
values. The bias estimates, on the other hand (gyro, accelerometer and receiver clock
offset), are all initialized to zero, which is the only reasonable guess for a bias. If the
biases should have an expected value which is not zero, it should not need to be mod-
elled as a random constant, but rather compensated for as a deterministic constant
(possibly combined with an estimated random constant).

Methods used Two methods are tested and compared, the loose integration (method A)
and the tight integration (method B). The filter configurations are described in Sec-
tion 6.3.2. The biases in the IMU sensors (see Table 7.1) will also be estimated by
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the filters, and used to compensate the IMU outputs. The compensation of the IMU
outputs are depicted in Figure 6.2.

Loose integration (method A) The loose integration approach uses complement-
ary measurements of the position as observation. The only information available
to the filter is a three-dimensional position estimate and its estimated variance.
The estimated position error variance is given by the variance of the pseu-
doranges and the square of the current DOP. The diagonal elements of the
measurement error covariance matrix is set depending on the current DOP and
the pseudorange errors. Hence, the filter will not be able to handle correlation
between the errors in the three coordinates.

Tight integration (method B) The tightly integrated filter uses the complement-
ary measured pseudoranges as observations. In theory, method B should give a
better result than method A, since more information is available to the filter.

The results from the simulations without atmospheric disturbance are shown in Fig-
ures 7.3, 7.4, 7.5, 7.6 and 7.7. With method B the receiver clock offset must also be
estimate, which is shown in Figure 7.8. Position estimation errors, ‖x̂− x‖, from the
simulations without atmospheric disturbances are presented in Table 7.5. The values
are calculated as the mean over 5 simulations with different noise realizations. The
maximum position error, position error at end point and RMS position errors are
compared for the two integration methods. The RMS is defined in (6.33).
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Figure 7.3: Position estimation error for method A and method B,
without atmospheric disturbance (local frame). In (a), (b), (c) method A
(loose integration) was used while method B (tight integration) was used
in (d), (e), (f).

Comments As expected, the tight integration (method B) gives a significantly bet-
ter performance in the position estimate compared to the loose integration (method A).
This can be seen in Figure 7.3. Due to the correlated measurement errors with
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(a) East component
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(b) North component
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(c) Up component
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(d) East component
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(e) North component
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(f) Up component

Figure 7.4: Velocity estimation error for method A and method B,
without atmospheric disturbance (local frame). In (a), (b), (c) method A
(loose integration) was used while method B (tight integration) was used
in (d), (e), (f).
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(a) Roll
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(b) Pitch
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(c) Yaw

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

Time (s)

A
tt

it
u

d
e

 e
s
ti
m

a
ti
o

n
 e

rr
o

r,
 R

o
ll 

d
e

g

Estimation error

3 σ limit

(d) Roll
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(e) Pitch
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(f) Yaw

Figure 7.5: Attitude estimation error for method A and method B,
without atmospheric disturbance (local frame). In (a), (b), (c) method A
(loose integration) was used while method B (tight integration) was used
in (d), (e), (f).
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(a) Roll gyro
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(b) Pitch gyro
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(c) Yaw gyro
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(d) Roll gyro
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(e) Pitch gyro
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(f) Yaw gyro

Figure 7.6: Gyro bias estimation error for method A and method B,
without atmospheric disturbance (body frame). In (a), (b), (c) method A
(loose integration) was used while method B (tight integration) was used
in (d), (e), (f).
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(a) Forward accelerometer
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(b) Right accelerometer
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(c) Down accelerometer
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(d) Forward accelerometer
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(e) Right accelerometer
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(f) Down accelerometer

Figure 7.7: Accelerometer bias estimation error for method A and
method B, without atmospheric disturbance (body frame). In (a), (b), (c)
method A (loose integration) was used while method B (tight integration)
was used in (d), (e), (f).

63



FOI-R--0848--SE

0 100 200 300 400 500 600

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

C
lo

c
k
 b

ia
s
 e

s
ti
m

a
ti
o

n
 e

rr
o

r,
  

m

Estimation error

3 σ limit

Figure 7.8: Receiver clock offset estimation error for method B (tight
integration), without atmospheric disturbance.

method A, which are not modelled in the filter, the indicated covariance seems slightly
mismatched compared to the real position error.

Method Position error (m)
Maximum At end point RMS

Loosely integrated INS/GPS (A) 8.20 m 1.08 m 1.09 m
Tightly integrated INS/GPS (B) 4.18 m 0.6038 m 0.45 m

Table 7.5: Position estimation errors without atmospherical disturbance.
The numbers are averaged over 5 realizations.

7.3 Simulation with Atmospheric Disturbance

The behavior of the filter when pseudoranges are affected by atmospherical disturb-
ances is tested. A DGPS simulation (method C) is tested and compared to the tight
integration (method B) that was used in the previous section. The integration filter
used in method B is not designed to handle these extra non-modelled errors.

The same flight path as in the simulations without atmospheric disturbances is used
(see Figure 7.2(a)).

Introduced Errors The difference from the previous simulation is that atmospher-
ical delays are introduced. Note that the ionospheric and tropospheric delays are not
actually Gaussian distributed and definitely not uncorrelated in time. The introduced
delays depend both on the elevation angle and the time of the day. Their behavior
are depicted in Figure 6.3 on page 51. The models for these atmospheric phenomena
are taken from [9]. The errors are listed in Table 7.6.

Error sources Introduced error σ σ in estimation
Ionosphere ≈ 6.5 m 6.5 m
Troposphere ≈ 1 m 1 m
Selective Availability 0 0
Multi-path 0 0
Receiver clock offset 2 µs (≈ 600 m) 0
Satellite clock offset 0 0
Uncorrelated noise 2.0 m 2.0 m
User Equivalent Range Error (UERE) 6.9 m

Table 7.6: Errors added to the pseudorange measurements. The values
in the left column are the introduced errors while the values in the right
column are used to form the measurement covariance matrix R. The
reason for not including the receiver clock offset when forming the UERE
is that it is estimated as a state and affects the filter through the state
covariance matrix P.
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Kalman Filter Parameters The settings for the Kalman filter parameters are the
same as in the previous case (see Table 7.4 on page 60).

Methods used Two methods are tested and compared:

Tight integration (B) This scenario is identical with the one tested in the previous
section, except that atmospherical disturbance has been added. Since no states
are added in the model to handle the extra delays, one should not expect similar
performance.

DGPS (C) Using a DGPS theoretically removes all atmospheric disturbance if the
baseline between the basestation and the roving receiver is short. Also satellite
clock errors and disturbances in the orbits are cancelled. The only drawback is
that the magnitude of the variance for the white measurement noise is twice as
large, since two signals with the same noise variance are subtracted.

The results from the simulations with atmospheric disturbance are shown in Fig-
ures 7.9, 7.12, 7.10 and 7.11. Position estimation errors for the simulation with
atmospheric disturbance are collected in Table 7.7. The values are calculated as the
mean over 5 simulations with different noise realizations.
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(a) East component
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(b) North component
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(c) Up component
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(d) East component
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(e) North component
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(f) Up component

Figure 7.9: Position estimation error for method B and method C, with
atmospheric disturbance (local frame). In (a), (b), (c) method B (single
receiver, tight integration) was used while method C (differential GPS,
tight integration) was used in (d), (e), (f). Note that the unmodelled
atmospheric disturbances when using method B, mainly effect the up-
component.

Comments Differential GPS is an effective way to overcome the problem with at-
mospheric delays. Using a stand-alone GPS without modelling the atmospheric delays
results in a bias in the estimation error. This bias mainly effects the height component
of the position estimate (see Figure 7.9(c)). The reason for this is that the satellites
are spread on a half-sphere from the user’s point of view, which causes an unmodelled
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(a) Roll gyro
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(b) Pitch gyro
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(c) Yaw gyro
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(d) Roll gyro
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(e) Pitch gyro
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(f) Yaw gyro

Figure 7.10: Gyro bias estimation error for method B and method C,
with atmospheric disturbance (body frame). In (a), (b), (c) method B
(single receiver, tight integration) was used while method C (differential
GPS, tight integration) was used in (d), (e), (f).
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(a) Forward accelerometer
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(b) Right accelerometer
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(c) Down accelerometer
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(d) Forward accelerometer

100 200 300 400 500 600

−8

−6

−4

−2

0

2

4

6

8

x 10
−3

Time (s)

A
c
c
. 
b
ia

s
 e

s
t.
 e

rr
o
r,

 R
ig

h
t 
  
(m

/s
2
)

Estimation error

3 σ limit

(e) Right accelerometer
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(f) Down accelerometer

Figure 7.11: Accelerometer bias estimation error for method B and
method C, with atmospheric disturbance (body frame). In (a), (b), (c)
method B (single receiver, tight integration) was used while method C
(differential GPS, tight integration) was used in (d), (e), (f).
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(a) Method B
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(b) Method C

Figure 7.12: Clock offset estimation error for method B and method C,
with atmospheric disturbance. In (a) method B (single receiver, tight
integration) was used while method C (differential GPS, tight integration)
was used in (b). The estimate in (a) is biased because the filter was
not designed to handle the atmospheric delays. Note that the scales are
different.

Method Position error (m)
Maximum At end point RMS

Tightly integrated INS/DGPS 3.392 m 0.279 m 0.501 m
Tightly integrated INS/GPS 17.81 m 14.61 m 8.97 m

Table 7.7: Position estimation errors without atmospherical disturbance.

bias to affect the up-component, whereas the effect are more or less cancelled for the
east and north components, if the satellite constellation is good. Also the estimate of
the receiver clock offset is effected which can be seen in Figure 7.12.

7.4 Simulations with Satellite Outage

The orbits for the GPS satellites are designed in a way that there should always be at
least four satellites visible. Despite this, situations with temporary satellite outages
are common. The outages could be caused by intentional jamming in the GPS band
or loss of line-of-sight to satellites. In urban environments it is common with very few
visible satellites due to blocking of the satellite signals.

In these simulations the navigation filter is tested when the number of available satel-
lites are reduced. The flight path depicted in Figure 7.2(a), which lasts for 660 seconds,
is used. After 450 seconds a satellite outages of 120 seconds is simulated. The tight
integration (method B) is used. The general settings for this simulation are the same
as for the simulation in Section 7.2.

7.4.1 Bias Estimation During Satellite Outage In this simulation it is shown
how systematic errors (biases) in the IMU affect the navigation performance. The
biases can be estimation and compensation for in the navigation filter. Again, integ-
ration method B is used. In Figure 7.13 the performance of an unaided INS and an
INS aided by a GPS are compared. It is easy to see that the navigation performance
is increased if the biases are properly estimated. Note that the error grows much
slower during the outage (Figure 7.13(b)) if the biases are properly estimated, even
though the GPS does not get any information in this interval. In Figure 7.13(a), the
stand-alone INS, the estimation error has grown to just over 150 meters after the first
120 seconds. In Figure 7.13(b), where the INS is aided by a GPS except during the
outage, the estimation error is only just over 20 meters after a 120 s total satellite
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(a) Unaided INS, no bias estimation
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(b) INS aided by GPS with bias es-
timation

Figure 7.13: Position errors. Between between 450 s and 570 s a total
satellite outage occur and no satellites are possible to use. In (a) the
biases are neither estimated nor compensated for. This corresponds to
an unaided INS or a case when the navigation filter is initialized during
a long satellite outage. In (b) the navigation filter has had the chance
to estimate the biases during the first 450 s. Between 450 s and 570 s
no GPS information is available, but thanks to the estimated biases the
error grows much slower than in (a). Note that the scales are different in
(a) and (b).
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Figure 7.14: Bias estimation error for a flight path with a total satellite
outage. Note that during the outage (450 s-570 s) the bias estimates are
kept constant by the filter since no additional information is available.

outage. The reason for this increased performance is, as previously mentioned, that
constant biases in the inertial sensors can be estimated and compensated for. The
bias estimation errors are depicted in Figure 7.14.

7.4.2 Position Errors for Different Number of Satellites An important dif-
ference between integration method A (loose integration) and method B (tight integ-
ration) is when the number of available satellites is reduced to less than four. Using
method A, no observation at all will be presented to the filter, while with method B
the measurements from the satellites in view (even when less than four) can be used
as observations.
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(a) 5 satellites (SV 5, SV 7, SV 9,

SV 11, SV 18)
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(b) 4 satellites (SV 5, SV 7, SV 9,

SV 11)
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(c) 3 satellites (SV 5, SV 7, SV 9)
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(d) 2 satellites (SV 5, SV 7)

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

Time (s)

P
o

s
it
io

n
 e

rr
o

rs
, 

3
−
σ 

lim
it
s
 (

m
)

3σ limit

Position error

(e) 1 satellite (SV 5)
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7.13(b))

Figure 7.15: Position errors with reduced satellite availability between
450 s and 570 s. Integration method B is used. Before 450 s and after
570 s there are 9 satellites available.
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In this simulation it is tested how integration method B performs during satellites
outage. Different numbers of satellites are available during the outages.

Position estimation errors during the satellite outage are shown in Figures 7.15. The
differences between the six simulations are the number of available satellites during
the outages, which is varied between zero and five satellites.

In Table 7.8 the changes in the variance of the position errors are listed for the satellite
outage simulations.

Number of satellites available during outage
5 4 3 2 1 0

Sigma at 450 s (m) 1.88 1.88 1.88 1.88 1.88 1.88
Sigma at 570 m (m) 2.58 2.91 3.72 7.00 54.4 78.7
Maximum sigma during outage (m) 2.64 2.95 3.73 7.00 54.4 78.7
Average sigma rate (m/s) 0.0058 0.0086 0.015 0.043 0.44 0.64

Table 7.8: Changes in position sigma (square root of variance) during
outage.

Comments Satellite outages give larger errors in position, since less information is
passed to the filter. With a tightly coupled filter satellite information can be used also
if less than four GPS satellites are available. The fewer satellites that are available,
the faster the estimation error and the corresponding variance grows.

In cases with only one or two satellites, the error indicated by the filter (i.e. the
covariance matrix) is often larger than the real estimation error. The reason for this
is that the variances indicated by the filter are slightly overestimated compared to the
real estimation errors for the gyros and accelerometer biases. This can be seen e.g.
in Figures 7.6 and 7.7 where the estimation error are much smaller than the 3 − σ
indicated by the covariance matrix in the filter.

7.5 Comparing Flight Paths

In this simulation the performance of integration method B (tight integration, single
receiver) is tested for two different flight paths. The objective with this simulation is
to see how the dynamics of the flight path affects the bias estimations.

The introduced errors are the same as for the first simulations, defined in Table 7.2
and Table 7.1. The two flight paths that were used are shown in Figure 7.2. Flight
path (a) is more dynamic than flight path (b). Both flight paths have the same total
length. The dynamics of the flight paths are depicted in Figure 7.16.

The bias estimates for the two flights are compared in Figures 7.17 (gyro bias estim-
ates) and in Figures 7.18 (accelerometer bias estimates).

Comments The turns and rolls in the more dynamic flight path (Figure 7.2(a))
help the bias estimate to converge faster. The yaw gyro, which reflects rotations
around the up-axis has a slower convergence than the other two gyros. The down
accelerometer, which is affected by the gravity component most of the time, is the
most easily estimated of the accelerometers.

7.6 Summary of GPS/INS Integration Simulations

Using a tight integration, the INS can be aided by the GPS also with less than four
GPS satellites available. The fewer satellites, the faster the variance estimated by the
filter grows.
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(b) Acceleration, high dynamic
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(c) Angular rate, low dynamic
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(d) Acceleration, low dynamic

Figure 7.16: The dynamics for the two flight paths compared.
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(a) Roll gyro
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(b) Pitch gyro
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(c) Yaw gyro
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(d) Roll gyro
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(e) Pitch gyro
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(f) Yaw gyro

Figure 7.17: Gyro bias estimation errors with the high dynamic (a),
(b), (c) and low dynamic flight path (d), (e), (f).
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(a) Forward accelerometer

100 200 300 400 500 600

−8

−6

−4

−2

0

2

4

6

8

x 10
−3

Time (s)

A
c
c
. 
b
ia

s
 e

s
t.
 e

rr
o
r 

(m
/s

2
)

Estimation error

3 σ limit

(b) Right accelerometer
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(c) Down accelerometer
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(d) Forward accelerometer
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(e) Right accelerometer
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(f) Down accelerometer

Figure 7.18: Accelerometer bias estimation errors with the high dy-
namic (a), (b), (c) and low dynamic flight path (d), (e), (f).

The bias estimates are noise sensitive, especially in the beginning of a flight. The
flight path, and mainly the dynamics of it, is important for the performance of the
bias estimation. A more high dynamic flight path gives a faster convergence of the
bias estimates. Even if the IMU bias would be estimated perfectly, there would still
be a slow error drift in position during total satellite outages, due to the accumulated
sensor noise.

The atmospheric disturbance (ionospheric and tropospheric) affect the position es-
timates. The height component is significantly more affected than the two horizontal
components.
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8. Simulations of Jamming Suppression using

Adaptive Beamforming

An adaptive beamforming antenna array can be combined with the integrated INS/GPS
system.

The following simulations will be performed:

Different Numbers of Antenna Elements in the Array In Section 8.2 the res-
ults from a simulation with different number of elements in the array, is shown.
A single LCMV beamformer is used. The equivalent carrier power-to-noise spec-
tral density ration, [C/N0], are compared when using a beamforming antenna
and an isotropic single element antenna.

Beamforming Strategies The performance of the system with a beamforming an-
tenna array is tested under a realistic jamming scenario in Section 8.3. Three
types of the chosen variance minimization beamforming algorithm are compared.

Robustness of Beamforming Algorithm Small errors in the a priori information
to the beamforming algorithm will degrade the performance. In Section 8.4 it
is investigated how large this degradation is.

The simulations are summarized in Section 8.5.

In the simulations the C/A-code will be used. The reason for this is that it is valid for
all receivers. There are methods for using the P-coded and encrypted signal even if the
encryption code is unknown, but this significantly decreases the SNR [9]. Therefore, in
a situation with strong interfering signals, this will probably not be a useful method.
In such a case, the user has to rely on the C/A-code measurement only. Actually,
also most military receivers, with knowledge about the encrypted P-code, use the
C/A-code signal when doing the first coarse acquisition of the signal.

Using only the C/A-code means that the performance is comparable with a civilian
GPS receiver. For a military receiver using the P-code a better protection against
jamming can be expected since the processing gain is 10 dB higher for the longer
P-code.

8.1 General Settings

A rectangular array consisting of a number of isotropic antenna elements will be used
in the simulations. The number of antenna elements in the array is varied. The
L1 band will be used, since this is the frequency where the civilian C/A code is
transmitted. Therefore the element spacing in the array is 0.09 m, which is slightly
less than half a wavelength. Diagonal loading, described in Section 4.5.5, is used in
all simulations. The load factor in equation (4.15) is set to α = 100. This means that
to the unloaded array correlation matrix, a diagonal matrix with elements 100 times
the smallest eigenvalue of the array correlation matrix is added.
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8.1.1 Settings for the INS When a dynamic scenario is simulated the navigation
filter that integrates GPS and INS sensor data is used. The same inertial sensors
parameters, corresponding to an Litton LN200 A1, as in Chapter 7 are used. The
performances of the sensors are listed in Table 7.1 on page 59.

8.1.2 Settings for the GPS Receiver The GPS receiver is simulated by a rather
simple model: a C/N0 tracking threshold is set, and the tracking loops are assumed to
lose lock if the equivalent carrier-to-noise spectral density [C/N0] is below this value.
The quantity [C/N0], which describes the power of the GPS signal C, compared to
the noise power spectral density N0, is often used to describe the quality of the GPS
signal instead of the SNR.

The critical part in the measurements is the acquisition of the GPS signal. Therefore
another threshold, an acquisition threshold, is defined. This [C/N0] is required for
the loops to first lock to the signal. The tracking threshold is set to 28.0 dBHz. It is
taken from [3] and is valid for a L1 receiver with a pre-detection integration time of
20 ms, an Allan deviation of 10−11, oscillator vibration sensitivity of 10−9 s2m−1, and
a maximum jerk stress of 100 m/s3. These assumptions are summarized in Table 8.1.
For an explanation of these assumptions, the reader is referred to [3]. The acquisition
of the GPS signal typically requires 5 dB higher [C/N0] than the tracking. Hence,
the acquisition threshold is set to 33.0 dBHz.

The received power from the GPS satellites are all set to be −160 dBW, which is
slightly less than the power that is guaranteed (−159.6 dBW, [3]). Note that the
received power is often higher than the minimum guaranteed power. Losses in the
receiver, e.g. from A/D conversion, is set to 4 dB.

The same settings for the generation of pseudorange error as for the simulations in
Section 7.2 will be used. All properties are listed in Table 8.1. These settings are
for a good quality C/A-code receiver. The model of the GPS receiver and how the
pseudoranges are generated are described more in detail in Section 6.2.2. Settings for
the beamformer are listed in Table 8.2.

Carrier frequency L1 (1575.42 MHz)
Received satellite signal power −160 dBW
Code used C/A
Receiver losses 4 dB
Carrier loop tracking threshold 28.0 dB
Carrier loop acquisition threshold 33.0 dB
Carrier loop bandwidth 18 Hz
Pre-detection integration time (PIT) 20 ms
Allan deviation for oscillator 10−11

Oscillator vibration sensitivity 10−10 s2m−1

Maximum jerk stress 100 m/s3

Vibrations 0.5 m2s−3

Table 8.1: Assumed parameters for GPS receiver in beamforming simu-
lations.

Number of antenna elements: varying
Array structure: 2–D square URA
Array element spacing: 0.09 m
Thermal noise power: −140 dBW

Table 8.2: Assumed parameters for antenna array and beamforming
algorithm.
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8.1.3 Scenarios Three different scenarios will be used in the beamforming simu-
lations. They are depicted in Figure 8.1.

8.2 Arrays with Different Numbers of Elements

The number of antenna elements in the array decides the degrees of freedom that can
be used to form nulls. Since the element spacing is constant the number of elements
will also determine the size of the array, the array aperture, which in turn determines
the width of the main beam. The objective of this simulation is to show how the
number of antenna elements affects the performance. This is tested for the scenarios
described in Figures 8.1(a) and 8.1(b). The difference between the two scenarios is
that there are 10 SNOIs in (a) and 15 SNOIs in (b).

A minimum variance beamforming algorithm (LCMV) has been used, with one con-
straint in the direction of the only SOI. The constraint is chosen correctly.

Comments The achieved SNRs are summarized in Table 8.3. The resulting beam
patterns for the scenario with 10 SNOIs are shown in Figure 8.2. Arrays with a larger
number of elements are able to form more narrow main beams.

Number of SNR
elements 10 jammers 15 jammers

1× 1 −170.0 dB −171.8 dB
2× 2 −165.3 dB −164.6 dB
3× 3 −161.4 dB −160.9 dB
4× 4 −157.8 dB −156.8 dB
5× 5 −154.5 dB −153.6 dB
6× 6 −149.0 dB −149.8 dB

Table 8.3: SNR for different number of elements. The scenarios in
Figures 8.1(a) and 8.1(a) are used.

8.3 Comparing Beamforming Strategies

One of the beamforming algorithms discussed in Section 4.3, the power minimization
algorithm, will be used with a (4 × 4) element URA. Three different strategies for
setting the gain constraints will be compared. These three strategies are described in
section 4.4.

Single LCMV Beamformer means that the LCMV power minimization algorithm
is used with one single beamformer. The single beamformer must be able to form
high antenna gains toward all satellites simultaneously and at the same time use
the remaining degrees of freedom to suppress interfering signals.

Multiple LCMV Beamformers means that the LCMV power minimization al-
gorithm is used with several beamformers running in parallel. Each beamformer
is optimized to direct its maximum gain towards one certain satellite.

Unconstrained Power Minimization This method uses a single beamformer which
tries to minimize the output power. Hence, it works without any a priori in-
formation about the directions to the SOIs.

The directions to the satellites, that are a priori information to the first two types
of beamformers, are calculated from the estimates given by the navigation filter.
Estimates for the position and orientation of the vehicle are needed. In addition,
the positions for the satellites are necessary. Equations (6.31) and (6.32) are used to
calculate estimates of the azimuth φ and elevation θ, respectively.
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(a) Scenario a. There are 10 SNOIs
present. The only SOI is at direction φ =
64◦, θ = 48◦. The incoming power from
each SNOI is 1 W (0 dBW). The incom-
ing power from the SOI is −160 dBW.
Hence, the total SNR with an isotropic
antenna is −170 dB.
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(b) Scenario b. This scenario is identical
to scenario a, except that there are
15 SNOIs present. The total SNR with
an isotropic antenna is now −171.8 dB.
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(c) Scenario c. In this scenario a flying vehicle enters an area with

several jammers. A 10 W noise jammer is placed at the target (to
the right) and 11 airborne low-power (100 mW) noise jammers are
on the planned route at heights between 170 m and 260 m. The
planned route starts on the ground (at (0, 0)), accelerates to about
100 m/s and then rises to 100 m above the ground. The received
power from each satellite is −160 dBW. Free space propagation
is assumed for the interfering signals. The projection of the flight
path is projected on the ground and vertical lines are drawn every
10 seconds.

Figure 8.1: Scenarios used in beamforming simulations. In Scenario a

and Scenario b all directions to signals are static. In Scenario c the
directions are dynamic due to the movement of the vehicle and also the
movement of the satellites.
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(e) 6 × 6 elements

Figure 8.2: Gain patterns for different numbers of elements in the array.
The scenario in Figure 8.1(a) is used. The only SOI is at direction φ = 64◦,
θ = 48◦. The received power is the same from all ten interferers, 1 W
(0 dBW) from each one. The received SOI power is −160 dBW.
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The scenario depicted and described in Figure 8.1(c) will be tested. A flying vehicle
navigating towards a certain point with a tight integration of an INS and a GPS
enters an area with several jammers. Free space propagation is assumed for the
interfering signals, i.e. equation (3.35) is used to determine the received power from
the interfering sources. A (4× 4) array is used. The results are compare with a single
isotropic antenna.

Equation (3.37) is used to calculate the unjammed C/N0. The thermal noise reference
temperature T0 is set to 300 K and the losses Ls = 4 dB. Since the received satellite
power is assumed to be −160 dBW, the resulting unjammed C/N0 is 39.8 dB. The
beamforming antenna suppresses the interfering signals so that the jamming-to-signal
ratio J/S is decreased. The [C/N0] after the beamforming is calculated using equation
(3.39).

Beamforming method Position error (m)
At end point RMS

Isotropic antenna (no beamforming) 412 m 108 m
Single LCMV beamformer 315 m 67.5 m
Multiple LCMV beamformers 0.25 m 0.96 m
Unconstrained power minimization 1.40 m 1.01 m

Table 8.4: Position estimation errors using different beamformers. The
scenario in Figure 8.1(c) is used. The numbers are averaged over 5 simu-
lations
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Figure 8.3: Position errors for the three beamforming methods com-
pared. The position error when using a single isotropic antenna are also
presented as a comparison.

Results and Comments The resulting [C/N0] with the different adaptive beam-
forming algorithms are compared in Figure 8.4. The assumed SNR thresholds have
the effect that not all visible satellites are possible to use all the time. The available
satellites for the different algorithms are shown in Figure 8.4.

The resulting position errors are presented in Table 8.4 and Figure 8.3. The numbers
in Table 8.4 are averaged over 5 simulations.

The reason for the bad performance of the single beamformer approach is that too
many degrees of freedom is spent on setting gain constraints in the directions to all
SOIs, and therefore not enough nulls can be formed to suppress jammers. The more
constraints that are set in different directions, the more the gain pattern starts looking
like a pattern from an isotropic antenna, since the gain constraints are spread over
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(a) Single LCMV beamformer. The aver-

age C/N0 gain is 13.2 dB.
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(b) Available satellites, single LCMV
beamformer.
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(c) Multiple LCMV beamformers. The

average C/N0 gain is 34.2 dB.
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(d) Available satellites, multiple LCMV
beamformers.
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(e) Unconstrained power minimization.

The average C/N0 gain is 30.4 dB.
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(f) Available satellites, unconstrained
power minimization.

Figure 8.4: Comparing LCMV with different constraints. In (a), (c) and
(e), the [C/N0] levels for each satellite when using an adaptive beamform-
ing antenna is drawn with dotted lines. The mean [C/N0] for all visible
satellites are drawn with a solid line (blue). The bottom solid lines (red)
show the received [C/N0] if not using any beamforming, i.e. an isotropic
antenna. A tracking threshold is drawn at 28.0 dBHz and an acquisition
threshold at 33.0 dBHz (green). A satellite is available if it is visible and
it can be tracked by the receiver.
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almost the whole half-sphere. This has the effect that if only one interfering signal is
close to any of the satellite’s directions, this will increase the noise level not only for
the signal from that satellite, but for all satellites. The [C/N0] will be equal for all
satellites since the same received powers are assumed and the same gain is constrained
in the directions of the satellites.

With multiple beamformers, one for each satellite, only one degree of freedom is spent
on setting the gain constraint. Also, since there is one beamformer for each constraint,
an interfering signal that is close to a satellite’s direction will only increase the noise
level for that satellite. The satellite availability is therefore significantly better com-
pared to the single LCMV simulation.

The unconstrained power minimization beamformer also has a good satellite availab-
ility, resulting in small navigation errors. Having in mind that the calculation com-
plexity is much lower for the unconstrained power minimization compared to multiple
beamformers, the result is quite impressive.

8.4 Robustness for LCMV

The gain constraints that are set in the LCMV algorithm are the estimated directions
to the satellites. Small errors in the estimated attitude of the vehicle means that the
gain constraints in the direction to the satellites will be slightly wrong and, hence,
the main lobes for all calculated beam patterns will be slightly misdirected. In this
section it is investigated how attitude errors affect the resulting SNR.

The SNR is calculated for different errors in the estimated direction to the SOI. Errors
in the estimated position also give a small error to the a priori information used by
the beamforming algorithm. However, a position error must be unreasonably large
to give any effect in the directions, because of the large distance to the satellites.
Therefore, only attitude errors are tested.

Scenario a, with 10 SNOIs depicted and described in Figure 8.1(a) will be used. A
constrained power minimization algorithm is used. Since only one SOI is present the
previously described methods with single or multiple beamformers are equivalent.

The errors are introduced in the azimuth and elevation that describe the direction
to the SOI. The introduced angle errors are Gaussian distributed noise with variance
σ2. The errors are introduced both in azimuth and elevation with σ = σazimuth =
σelevation and

φconstraint = φtrue + n1

θconstraint = θtrue + n2,
(8.1)

where φtrue and θtrue are the true directions to the satellites and φconstraint and
θconstraint the directions used when setting the constraints. The two Gaussian noise
processes n1, n2 both have variance σ2. The degradation in SNR is tested for σ =
0◦, 0.1◦, 1◦, 5◦, 10◦, 15◦, 20◦. Three different arrays are tested, a (3×3) URA, a (4×4)
URA and a (5× 5) URA.

Results and Comments The SNR gain compared to a single element isotropic
antenna are presented in Figure 8.5. The SNR gain for each array and introduced
error σ is calculated as the average over 25 Monte Carlo simulations.

As expected, arrays with a larger number of elements give a higher SNR gain when
the direction errors are small. This is due to the more narrow beams that can be
formed. The degradation of SNR gain when errors are introduced is faster for larger
arrays, also due to the more narrow beams that can be formed.

It is interesting to see that direction errors that can be expected from an integrated
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INS/GPS (usually much less than 1◦, see Section 7) hardly affect the SNR gain at all,
not even the large (5× 5) array.
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Figure 8.5: SNR gain compared to a single element isotropic antenna
for different errors in the direction to the SOI. Three arrays are tested,
a (3 × 3) URA, a (4 × 4) URA and a (5 × 5) URA. The scenario in
Figure 8.1(a) is used.

8.5 Summary of Adaptive Beamforming Simulations

GPS receivers are extremely vulnerable to interfering signals. An adaptive antenna
can increase the robustness against interference.

Using multiple beamformers, which all process the same sampled data gives the largest
improvement of signal quality. With a single LCMV beamformer, it is an all-or-
nothing situation. A good compromise in computation complexity and hardware cost
is the unconstrained power minimization beamformer. It performs almost as good as
the multiple LCMV beamformer in terms of navigation errors, but with much lower
demands on hardware and computation capacity.

Two of the beamforming algorithms tested, single and multiple LCMV beamforming,
require that the directions to the GPS satellites are known. It is shown that the the
LCMV algorithm is robust in terms of perturbation in the constrained direction. The
third beamforming algorithm, unconstrained power minimization, does not require
any information about the directions to the satellite. Hence, it is insensitive to satellite
direction errors.
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9. Conclusions

Aiding an inertial navigation system with a GPS gives better navigation performance
since the growing errors from the INS are bounded. A tight integration of INS and
GPS has been implemented and is compared to a loose integration. With the tight
integration, measurements from the GPS satellites can be passed to the filter also
when less than four satellites are available.

The estimation of systematic errors and imperfections in the inertial sensors, e.g. gyro
and accelerometer bias, is a big issue. These errors can be estimated by the navigation
filter and be compensate for. A good estimate of the biases increases the navigation
performance also during periods when no GPS aiding is available.

Using an adaptive beamforming antenna with a minimum variance algorithm, the
equivalent carrier power-to-noise spectral density, [C/N0], can be significatively in-
creased.

Three different types of a minimum variance algorithm have been implemented. Sim-
ulations have shown that with the most effective type, multiple LCMV beamformers,
the [C/N0], can be increased with up to 40 dB on average, in a difficult signal envir-
onment. The unconstrained power minimization performs almost as good as multiple
LCMV, but with much lower computation capacity needed.

The LCMV algorithm is in simulations shown to be robust to errors in the direction
to the satellites.

9.1 Future Work

Several improvements can be made to get more realistic simulations:

More advanced GPS modelling With an improved GPS model which also in-
cludes the tracking loops, the simple [C/N0] thresholds for satellite availability
could also be replaced with a more realistic criteria. If the loops are aided by
the INS the jamming susceptibility can be decreased. With real tracking loops
it can also be tested how fast the beamforming weights must be updated to
avoid phase slips.

In [27] a software GPS receiver that works in real-time is described. This im-
plementation is also prepared to sample and handle real data.

Signal propagation model Today, free space propagation is assumed for the inter-
fering signals and a constant received power from the satellites. A more detailed
signal propagation model makes the simulations more realistic.

Integrity control The integrity of the GPS measurements can be monitored by
comparing INS and GPS data. It is important to be able to tell system errors
from performance degradation caused by jamming or spoofing.

Control unit The navigation filter could be integrated with a control unit that uses
the estimated position to navigate the vehicle to a certain point. An inter-
esting application would be to recalculate the planned flight depending on the
constellation of hostile jammers.
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Better user interface With a user interface and a connection to map and terrain
data, it could be possible to define flight paths, place jammers directly on the
map, etc.
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A. Notations

General Notations
a Vector (bold face, lower case)
A Matrix (bold face, upper case)
a Scalar

(̂·) Estimate
˙(·) Time derivative

(̈·) Second time derivative
(·)∗ Complex conjugate
(·)T Transpose
(·)H Hermitian transpose

(̃·) Nominal solution
δ(·) “Small” error

[(·)×] Skew-symmetric matrix
(·)k|k−n Prediction of (·)k given (·)k−n

E[·] Expected value for ensembles
ε[·] Expected value for time series
‖ · ‖ Vector norm

Constants
c Speed of light 299 792 458 m/s
f1 Carrier frequency, L1 band 1575.42 MHz
f2 Carrier frequency, L2 band 1227.60 MHz
ωie Earth rotation rate 7.292115 · 10−5 rad/s
M Mass of Earth 5.972 · 1024 kg
k Gravitational constant 6.67 · 10−11 m3/(kg s2)

Notation of Variables
t Time-continuous index
k Time-discrete index
x Position
v Velocity
Ψ Orientation
d Constant gyro bias
b Constant accelerometer bias
ε Error state vector in Kalman filter
c δt GPS receiver clock offset
c δts Satellite clock offset in satellite s
w Weight vector in antenna array
e Unit vector, ‖e‖ = 1
s Steering vector
σ2 Variance
ρ Code pseudorange
ϕ Phase pseudorange
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v Gaussian noise in pseudorange measurement
r Geometric distance
φ Azimuth angle
θ Elevation angle
z Arbitrary state vector in Kalman filter
0n (n× n) matrix with zeroes
In (n× n) identity matrix
α Load factor in diagonal loading of a correlation matrix
O Observability matrix
Φ Discretized system matrix in Kalman filter
F System matrix in Kalman filter
G System noise matrix in Kalman filter
H Measurement matrix in Kalman filter

C/N0 Unjammed carrier power-to-noise spectral density
[C/N0] Equivalent carrier power-to-noise spectral density
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B. Abbreviations

BPSK Binary Phase Shift Keying
C/A Coarse/Acquisition
CDMA Code Division Multiple Access
DCM Direction Cosine Matrix
DGPS Differential GPS
DOA Direction of Arrival
DOP Dilution of Precision
ECEF Earth-Centered Earth-Fixed
ECI Earth-Centered Inertial
EKF Extended Kalman Filter
ENU East-North-Up
FLL Frequency Locked Loop
FOI Swedish Defence Research Agency
GNSS Global Navigation Satellite System
GPS Global Positioning System
IF Intermediate Frequency
INS Inertial Navigating System
IMU Inertial Measurement Unit
LCMV Linear Constraint Minimum Variance
LKF Linearized Kalman Filter
MMSE Minimum Mean Square Error
NCO Numerical Controlled Oscillator
NED North-East-Down
PLL Phase Locked Loop
PPS Precise Positioning System
PRN Pseudo-Random Noise
RF Radio Frequency
RMS Root Mean Square
SA Selective Availability
SNR Signal-to-Noise Ratio
SNOI Signal Not of Interest
SOI Signal of Interest
SPS Standard Positioning System
SV Space Vehicle
SVID Space Vehicle Identity
TOA Time of Arrival
UERE User Equivalent Range Error
ULA Uniform Linear Array
UCA Uniform Circular Array
URA Uniform Rectangular Array
UTC Coordinated Universal Time
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