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Abstract

Purpose Multispectral imaging can provide reflectance

measurements at multiple spectral bands for each image

pixel. These measurements can be used for estimation of

important physiological parameters, such as oxygenation,

which can provide indicators for the success of surgical treat-

ment or the presence of abnormal tissue. The goal of this

work was to develop a method to estimate physiological para-

meters in an accurate and rapid manner suited for modern

high-resolution laparoscopic images.

Methods While previous methods for oxygenation estima-

tion are based on either simple linear methods or com-

plex model-based approaches exclusively suited for off-line

processing, we propose a new approach that combines the

high accuracy of model-based approaches with the speed

and robustness of modern machine learning methods. Our

concept is based on training random forest regressors using
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reflectance spectra generated with Monte Carlo simulations.

Results According to extensive in silico and in vivo exper-

iments, the method features higher accuracy and robustness

than state-of-the-art online methods and is orders of magni-

tude faster than other nonlinear regression based methods.

Conclusion Our current implementation allows for near

real-time oxygenation estimation from megapixel multispec-

tral images and is thus well suited for online tissue analysis.

Keywords Multispectral imaging · Oxygenation · Inverse

Monte Carlo · Regression · Random forest · Anastomosis ·

Perfusion

Introduction

Monitoring oxygenation and blood volume fraction (vhb) is

highly relevant for assessing the success of surgical treat-

ments. One example are organ transplants. It is important to

determine whether or not the transplanted organ is properly

reperfused with oxygenated blood. The same applies to the

example of colorectal surgery, where the integrity of a bowel

anastomosis is largely dependent on adequate bowel perfu-

sion [17]. For example, a European multicentered analysis

of oncological and survival outcomes following anastomotic

leakage after rectal cancer surgery showed an increased rate

of 90-day postoperative mortality and morbidity from 1.3–

1.9 % in patients with no anastomotic leakage to 5.8–8.9 %

in patients with anastomotic leakage. In addition, the 5-year

disease-free survival rate decreased from 66.9 % in patients

without anastomotic leakage to 60.6 % in patients with anas-

tomotic leakage [5].

As tissue perfusion and oxygenation cannot be accu-

rately measured by the human eye, the automatic analysis
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of multispectral image data for the quantification of these

and other important tissue parameters in laparoscopy has

recently gained attention [3,12,13]. Multispectral images can

be regarded as a generalization of classical RGB images.

Instead of only three colors, they store an arbitrary number

of images, each one corresponding to one recorded spectral

band. Unlike RGB, these spectral bands are usually narrow

and do not overlap, thus encoding more specific information.

Each multispectral pixel can be thought of as reflectance

measurement at different spectral bands. This reflectance

measurement changes with the constitution of the underlying

tissue, therefore containing information about physiological

parameters such as oxygenation s or the blood volume frac-

tion per unit volume vhb [8].

Deciphering this information, i.e., estimating the molec-

ular tissue composition on the basis of multispectral images,

remains challenging. Most systems for live in vivo multi-

spectral imaging [3,10,12] use linear estimation approaches

based on the modified Beer–Lambert law [15]. While being

fast, the method is often based on the assumptions that

light travels an equal pathlength in the tissue regardless of

wavelength and that scattering is constant. These and sim-

ilar assumptions do not hold up in real tissue. Red light

penetrates the tissue deeper than blue light, because blood

absorbs less in higher wavelengths. The scattering is also

changing, e.g., dropping by about 20 % from 500 to 620 nm

within the bowel [3,9]. In the related fields of skin analy-

sis as well as ex vivo tissue analysis, numerous methods

for off-line processing of multispectral images using model-

based approaches have been proposed. These rely on a

tissue model to simulate labeled pairs of reflectance images

and the corresponding physiological parameters. Subse-

quently, regression approaches such as Newton–Raphson

[14], genetic algorithms [6] or support vector regression [19]

are used for inverting the simulated spectra. The drawback

of these methods is that they are too slow for near real-time

estimation of tissue parameters when dealing with high-

resolution multispectral images and are thus not suited for

application during surgery or interventional procedures.

To overcome these issues, we present the first approach

to rapid estimation of physiological parameters that com-

bines the accuracy of model-based approaches with the

speed of state-of-the-art machine learning algorithms. Our

method involves training a random forest regressor with large

amounts of data generated with Monte Carlo (MC) simula-

tions.

Methods

Our approach comprises two main steps: generating the

training data with a physical model and MC simulations

(Sect. “Forward model for training data generation”) and

using the simulated training data to train a machine learning-

based regressor in Sect. “Inversion by random forest regres-

sion”. The complete process is visualized in Fig. 1.

Forward model for training data generation

Inspired by the typical layer structure of the colon and

other epithelial tissues, we model tissue inspected during

minimally invasive surgery as n-layered structures. We char-

acterize each layer l by a set of tissue properties: l =

{vhb, s, amie, b, g, n, d}, where the parameters describe the

following:

– vhb: blood volume fraction

– s: the ratio of oxygen-bound hemoglobin to total

hemoglobin, also referred to as oxygenation

– amie: a parameter quantifying the amount of scattering

– b: the scattering power, a term which characterizes expo-

nential wavelength dependence of the scattering

– g: anisotropy factor, characterizes the directionality of

scattering

– n: the refractive index

– d: the layer thickness

the optical and physiological parameters amie, b, g, vhb and

s influence the optical absorption and scattering coefficients.

As in [8], the absorption coefficient μa at wavelength λ is

calculated by

μa(vhb, s, λ) = vhbchb(sǫHbO2(λ)

+(1 − s)ǫHb(λ))ln(10) (1)

where ǫHbO2 and ǫHb are the molar extinction coefficients

of oxygenated and de-oxygenated hemoglobin1 and chb is

the molar concentration of hemoglobin in human blood.

We assume hemoglobin, which is the oxygen transporter in

human blood, to be the only notable absorber [9]. As in [4]

oxygenation is assumed to be the constant for all layers. This

is a reasonable assumption if the layers share a common

blood supply as, e.g., in the colon [4]. The reduced scatter-

ing coefficient μ′
s is calculated by an empirical power law

(see [9])

μ′
s(amie, b, λ) = amie

(

λ

500 nm

)−b

. (2)

The simple form for reduced scattering was chosen, as scat-

tering by large particles dominates in the visible spectrum.

The anisotropy g is assumed constant over the wavelength

range, and the scattering coefficient μs is calculated by

μs(amie, b, λ) =
μ′

s (amie,b,λ)

1−g
[9].

1 Values taken from http://omlc.org/spectra/hemoglobin/.
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Fig. 1 Overview of our approach. a Samples are drawn from our

n-layered tissue model. Monte Carlo simulations are performed to eval-

uate the expected reflectance spectrum for each tissue sample. b The

created spectra are adapted to fit the detection wavelengths of the mul-

tispectral imaging system. Noise is added, and the data are normalized

and transformed to absorption. The normalized data and the physiologi-

cal parameters coming from the tissue model are used to train a random

forest regressor. c Our custom-built multispectral laparoscope is used to

acquire multispectral images during interventions. Each pixel in these

images corresponds to one reflectance measurement. d The regressor

trained in (b) is used to estimate, e.g., oxygenation and blood volume

fraction for each pixel in the multispectral image

Table 1 Parameter ranges for

the colon tissue model
vhb (%) s (%) amie (cm−1) g n d (µm)

l1 0–10 [4] 0–100 18.9 ± 10.2 [9] 0.8–0.95 1.36 [4] 600–1010 [8]

l2 0–10 [4] 0–100 18.9 ± 10.2 [9] 0.8–0.95 1.36 [4] 415–847 [8]

l3 0–10 [4] 0–100 18.9 ± 10.2 [9] 0.8–0.95 1.38 [4] 395–603 [8]

To generate a multispectral reflectance spectrum r ∈ R
m

from our n-layer model, a function fsim is evaluated at m

wavelengths λ:

r(λ) = fsim(λ, l1, . . . , ln). (3)

For this publication, a multilayered MC (MCML)

approach was chosen for evaluation of fsim, because MC

models are widely considered to be the gold standard for cal-

culating how light travels through biological tissue. Aside

from being more accurate than, e.g., the diffusion approx-

imation or the modified Beer–Lambert law, it is easy to

configure and flexible. The MC tissue optics simulation

irradiates multilayered tissue with photon packets [20].

Depending on the layers’ properties, the photons will be

probabilistically reflected, scattered and absorbed. Among

other attributes, the photons reflected at the tissue surface

due to (possibly multiple) scattering events can then be mea-

sured.

Inversion by random forest regression

In the last section, we described how to create one single

reflectance spectrum given one instance of our tissue model.

To train machine learning-based methods, however, a large

amount of samples has to be available. Thus, a range of

layer parameters, which are plausible for the tissue we want

to observe, has to be defined and p reflectance spectra for

instances of our tissue model within these ranges have to be

generated. Possible ranges for the different parameters are

provided in Table 1. This yields the raw data for the regres-

sor.

Before training the regressor, the spectra need to be

adapted to the imaging system and normalizations to account
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for variabilities in real-world scenarios have to be applied.

For each filter k in the multispectral imaging system, the fil-

ter’s transmission spectrum bk(λ) is taken into account to

calculate the reflectance measured by the imaging system

rk

rk = w +

λmax
∑

λmin

bk(λ)r(λ), (4)

where w represented zero-mean Gaussian noise, which mod-

els nuisance factors as, e.g., camera noise.

Our method is aimed for in vivo application. Thus, it is

necessary to account for constant multiplicative changes in

reflection. These changes can, e.g., be caused by differences

in distance or angle of the camera to the tissue and the internal

scaling of reflection to values measured by the camera [4]. By

applying the l1 norm to the reflection values, these changes

are easily canceled out: r ′
k =

crk

c
∑

j r j
. Transformation to

absorption by applying −log and further normalization by

the l2 norm results in a{1...p}.

The vectors a{1...p} along with their corresponding oxy-

genations and blood volume fraction in the first layer were

used as training inputs for a random forest (RF) regres-

sor. Random forest regressors [2] average an ensemble

of random regression trees. The RF regressor was chosen

due to its rapid evaluation speed and general good perfor-

mance.

Experiments and results

In a set of in silico (Sect. “In silico quantitative validation”)

and in vivo (Sect. “In vivo qualitative analysis”) experi-

ments, we investigated the accuracy, robustness and run-time

of our new method compared to the widely applied linear

Beer–Lambert regression model described, e.g., in [3] as the

baseline method.

Data generation

Anastomosis success verification is a potential applica-

tion for multispectral imaging. We defined a tissue model

for colon tissue with the parameter values summarized in

Table 1. The values were chosen to mimic colonic tissue

viewed from the pneumoperitoneum with values chosen from

the literature when available. Values were drawn randomly

from these parameter ranges. The scattering power b was

set to 1.286, a mean value for soft tissues [9]. The molar

hemoglobin concentration chb was set to 120 gL−1, a typical

value in the colon as opposed to 150 gL−1 in general human

tissue [8]. This parameter scales the blood volume fraction

estimation result, as chb and vhb cannot be distinguished by

optical means (see Eq. 1).

In our experiments, we evaluated the MC simulation in

the [450, 720 nm] interval in 2 nm steps. The open-source

GPU-MCML [1] implementation was used as simulation

framework. The number of photon packets fired was set to

106 in all simulations, and the diffuse reflectance was taken

as the reflectance value.

Random forest parameters

The RF parameters were determined by fivefold cross-

validation and grid search on the training data, varying the

maximum forest depth from three to ten in increments of

one. The minimum samples per leaf were evaluated for 1,

5, 10, 20 and 100. The number of forests was set to ten to

keep the computational effort manageable. Experiments with

larger and deeper forests showed no change in performance.

The best forest parameter setting thus determined featured a

depth of nine and a minimum of ten samples per leaf. These

parameters were used in the subsequent experiments.

In silico quantitative validation

In the in silico experiments, we investigated how factors like

the number of samples, noise and domain switch influence

the regression result.

If not mentioned otherwise, all experiments were con-

ducted with 15000 training samples generated from the

model specified in Sect. “Data generation” and tested with

a separate set of 5000 samples. The noise was varied by

modifying the signal-to-noise ratio SNR: w =
rk

SNR
. If not

mentioned otherwise, the SNR was set to ten. To simulate

a typical multispectral camera, the spectrum was parsed in

10 nm increments from 470–680 nm. For each of these cen-

tral wavelengths, a 10 nm sliding average simulated the filter

bandwidth bk(λ).

Dependency on noise In these experiments, we varied the

Gaussian noise of Eq. 4. First we investigated the perfor-

mance of the classifier while adding noise of the same distri-

bution for training and testing data (Fig. 2). For SNRs above

ten, our approach outperforms the linear Beer–Lambert

approach. Since the determination of noise is not trivial, we

also investigated the effect of differing training and testing

noise (Fig. 3). Even under these conditions, our approach

showed lower errors for SNRs above twenty.

As vhb cannot be measured by the baseline method, no

comparison has been made here. The median absolute error

stays below 1.6 ± 1.2 % regardless of noise and below 1 ±

1.1 % for SNRs larger than 10.

Performance under domain switch Knowledge about the

model may not always be available. Furthermore, malignan-

cies can change the parameter ranges. An example of such a
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Fig. 2 Error if training and testing data are based on the same noise

distribution: zero-mean Gaussian noise with standard deviation cor-

responding to the SNR. Depicted is the median absolute error in

oxygenation estimation and corresponding interquartile ranges as a

function of the amount of noise for baseline and the proposed random

forest-based method with 15,000 training samples

malignancy are carcinomas which, due to angiogenesis, may

show abnormally high values for vhb. To test the effect of

different parameter ranges, we generated data from a second

model with the values specified in Table 2. As in the colon

model oxygenation was assumed constant for all layers. As

an additional constraint all layers were normalized so they

totaled a maximum of 2 mm in depth.

When training with this model, the median absolute errors

of the proposed method and the baseline are the same. The

proposed method’s 75 % quartile error is 3 % higher and the

25 % quartile error is 0.7 % lower than the baseline.

Accuracy and run-time compared to state-of-the-art regres-

sion methods We compared Python implementations (scikit-

learn) of the proposed RF regressor with support vector

regression (SVR) and k-nearest neighbors (k-NN) regression.

Using grid search as in Sect. “Random forest parameters”

we determined the best parameters for the SVR to be the

radial basis function (RBF) kernel with C = 100 and

γ = 10. Five neighbors were used for k-NN as in [18],

and the algorithm parameter was set to auto. The experi-

ment was conducted on a Intel Core™i7 CPU@3.20GHzx12

machine

As can be seen in Fig. 4a, our method is at least two orders

of magnitudes faster than the baseline approaches. It took

0.18± 0.01 s to evaluate s and vhb for a one megapixel image.

The median absolute error was 5.4 % for RF, 4.8 % for SVR

and 5.5 % for k-NN. The linear Beer–Lambert method eval-

uates one megapixel in 0.03 s.

Number of samples As the generation of training data is

time-consuming even with the graphics processing unit

(GPU) accelerated MC simulation used in this publication,

we analyzed how much data would be really necessary for

training the regressor. Figure 4b shows stabilization after

training with about 104 samples.

(a) (b)

Fig. 3 Effect of unequal test and training noise. a Low SNR for train-

ing, varying testing noise. b High SNR for training, varying testing

noise. Depicted is the median absolute error in oxygenation estimation

and corresponding interquartile ranges as a function of the amount of

noise for baseline and the proposed random forest-based method with

15,000 training samples

Table 2 Parameter ranges for

the generic tissue model
vhb (%) s (%) amie (cm−1) g n d (µm)

l1 0–100 0–100 18.9 ± 10.2 [9] 0.8–0.95 1.33–1.54 [9] 0–2000

l2 0–100 0–100 18.9 ± 10.2 [9] 0.8–0.95 1.33–1.54 [9] 0–2000

l3 0–100 0–100 18.9 ± 10.2 [9] 0.8–0.95 1.33–1.54 [9] 0–2000
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(a) (b)

Fig. 4 Timing results and evaluation of necessary training samples.

a Mean time for estimating oxygenation for a multispectral imaging

stack of dimension 1000 × 1000 × 8, where eight is the number of

spectral bands used. Compared are the proposed random forest (RF)

approach, support vector regression (SVR) and k-nearest neighbors (k-

NN). b Median absolute error in oxygenation estimation as a function

of the number of training samples. The results stabilize after training

with about 104 samples

(a) (b)

Fig. 5 Qualitative validation of the proposed method in a porcine small

bowel (a). The plot (b) shows the mean oxygenation in the small bowel

segment as a function of time. The vertical lines show the time points

at which the three vessels were clipped. The first two clips were applied

to the same vessel. The high variations before setting the third clip

and after setting the forth clip are caused by fast camera movements.

After setting the last clip, the camera was removed and reinserted about

10 min after setting the first clip

In vivo qualitative analysis

We used a custom-built hardware setup combining a Richard

Wolf (Knittlingen, Germany) laparoscope and light source

with a Pixelteq (Largo, FL, USA) 5Mpix Spectrocam. The fil-

ters were determined with the method from [21] with central

wavelengths of 470, 480, 511, 560, 580, 600, 660 and 700 nm.

The full width at half maximum of the bands is 20 nm, except

for the 480 nm band where it is 25 nm. The acquisition of

one multispectral image stack takes 400 ms. We downsam-

pled the images to one-fourth of the original size. This leads

to a resolution of 1228 × 1029 pixels, which is similar to

modern laparoscopic HD optics. No further post-processing

in the form of image registration or Gaussian smoothing as

in [3] was performed. The multispectral images were divided

by a recorded flatfield [11] to make them independent of the

light source illumination, laparoscope optics and quantum

efficiency of the camera. Before division both multispectral

image and flatfield were subtracted by the camera’s dark cur-

rent [11].

A rough estimate of the camera’s SNR was determined

by calculating the mean intensities for each band, using

all images acquired during one experiment. We subtracted

the mean intensities by the dark current and divided this

result by a camera noise estimate for the determined mean

intensities. This leads to a SNR range of 29 for the 470 nm

band to 47 for the 660 nm band. The differences in SNR

are mainly caused by the hemoglobin absorption, light

source spectrum and camera quantum efficiency. To train

the random forest, the SNR was set to ten to account

for variations caused by camera-tissue movements. This

is also motivated by the in silico results, which indi-
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Fig. 6 Visualization of small bowel oxygenation estimation. The clipped small bowel segment was segmented to estimate mean oxygenation. The

color bar shows oxygenation in percent. a Before clipping. b Setting of the fourth clip. c Nine minutes after applying first clip

(a) (b) (c)

Fig. 7 Qualitative validation of the proposed method in a porcine liver (a). The plots show the mean oxygenation (b) and blood volume fraction

(c) after lethal drug delivery as a function of time. Specular pixels were excluded by simple thresholding

cated that the method is robust to conservatively estimated

errors.

In a first experiment, we stopped the blood supply of a

small bowel segment in a porcine model by clipping three

vessels connected to the segment (see Fig. 6c). To simu-

late real operating conditions, we recorded a multispectral

video of the breathing swine while moving the camera and

the instruments in a clinically realistic manner. Mean oxy-

genation of the clipped bowel segment was determined by

manually segmenting the bowel segment and excluding spec-

ular regions by thresholding. A sharp drop in oxygenation

was detected after clipping. Figure 5b visualizes the estima-

tion result derived from all 315 multispectral image stacks

of the recorded video (Fig. 6).

In a second experiment, we recorded images of a porcine

liver directly after lethal drug delivery. Mean oxygenation

was determined over all image pixels except for specular

regions, which were excluded by thresholding. A steady drop

of oxygenation and blood volume fraction was measured as

shown in Fig. 7, which shows the estimation results for all

51 recorded image stacks.

Discussion

In this contribution, we developed a machine learning-based

method for deriving physiological parameters from multi-

spectral images. It is based on generating labeled training

data using a physical model and highly accurate MC sim-

ulations. Random forests are used to invert the MC spectra

and derive oxygenation and blood volume fraction for every

pixel in the recorded image.

The estimation of these parameters is of relevance for

monitoring the success of operations like colectomies or

organ transplants. The method could also be applied in min-

imally invasive cancer screenings such as colonoscopies. By

detecting changes in blood volume fraction and oxygena-

tion, it could help in detecting polyps and flat adenomas.

To guarantee practical applicability in these scenarios, spe-

cial emphasis was given to developing a fast, but powerful,

method.

Unlike the compared state-of-the-art method, the pre-

sented approach is capable of estimating both oxygenation

and blood volume fraction. Due to the underlying MC frame-

work, it is not restricted to assumptions as constant light

penetration depth and scattering losses. In the following, we

discuss our forward model and the proposed inversion tech-

nique as well as our results.

Forward model Oxygenated and de-oxygenated hemoglobin

were chosen as sole absorbers in our model because they are

the only notable absorbers of visible light in human tissue

besides melanin, which, however, is mainly contained in the
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skin [9] and thus irrelevant for minimally invasive surgical

applications. Note that our model allows for straightforward

integration of further absorbers (if necessary) by modifica-

tion of Eq. 1. Modification of the tissue composition requires

investigation as to whether the generated spectra can still be

inverted, e.g., by using the regression techniques presented

in this paper.

The value for anisotropy is hard to measure and is not well

understood for human tissues, as experiments and the results

from theoretical analysis by Mie theory do not coincide [9].

Most experiments come to the conclusion that human tissue

is strongly forward scattering with quite high levels of g in

the visible range [9]. Therefore, we modeled the anisotropy

to be in a range that covers most of the experimental values

depicted in [9].

Inversion by random forest regression Random forest regres-

sors were chosen because they are capable of near real-time

regression of megapixel multispectral images. Additionally,

random forest regressors are inherently multivariate and thus

allow joint oxygenation and blood volume fraction estima-

tion.

From a machine learning standpoint, the additive Gaussian

noise w is necessary to prevent over-fitting of the regres-

sor. The term models noise from the camera, tissue/camera

movement during image acquisition and model inaccuracies.

Model inaccuracies can, e.g., be the presence of additional

unknown absorbers, cross talk between pixels caused by

inhomogeneous tissue or tissue structures not modelable by

a multilayer model. To account for the latter two, 3D MC

simulations would be a viable option for future experiments.

Such a setup would need careful design to both ensure the

modeling of realistic tissue and be general enough to cover

a relevant tissue variability.

To account for constant multiplicative illumination

changes, we applied the l1 norm. Other normalizations pro-

posed to account for these changes are the usage of image

quotients [16] or division by the integral of the reflectance

spectrum [4]. The l1 norm was chosen because it is more

robust to noise than image quotients; the integral can be tricky

to calculate in cases where the spectral bands are unevenly

spaced and sparse.

The additional normalizations of transformation to absorp-

tion and further l2-normalization could be left out in principle

because nonlinear regressors were applied. We found, how-

ever, that doing these normalizations improves the mean

absolute regression errors by more than 4 % for our method.

The also analyzed SVR did not necessitate the l2 normal-

ization and transformation to absorption. The k-NN result

dropped by 10 % when omitting normalizations.

The developed method can also be seen as an in silico test-

ing stage for hardware setups. It could, for example, help in

choosing the most relevant multispectral bands. Furthermore,

the framework can be used to compare different inversion

techniques. To this end, we made our Python framework

available on GitHub.2

Experimental setup For this publication, an MCML approach

was chosen to create the reflectance spectra, because MC

models are widely considered to be the gold standard for

calculating how light travels through biological tissue. Aside

from being more accurate than, e.g., the diffusion approxima-

tion or the modified Beer–Lambert law, it is easy to configure

and flexible.

Its main drawback is the time consumption. With the setup

described in Sect. “Experiments and results”, the evaluation

of one reflectance spectrum took about 16 s by an off-the-

shelf desktop PC with a NVIDIA GeForce GTX 660 Ti

graphics card. The simulation of 15,000 spectra used for

training our regressor therefore took less than 3 days. Because

it is only required for training, this one-time investment of

three-day computation was not seen as critical.

Experimental results Our method outperforms the baseline

method for SNRs above ten and is at least as good as the

baseline for SNRs below ten. This is true even if the training

noise is set to a fixed SNR of ten and the testing noise is

varied. The main challenge determined by our experiments

was applying the method to data from a different domain.

In future works, we will therefore use data generated from

a more generic model to train our regressor. To combat the

introduced covariate shift, domain adaptation methods will

be applied. Other advanced nonlinear methods show compa-

rable performance but lack the rapid evaluation speed shown

by our choice of random forests. The methods inverts 106

spectra with more than 5 Hz. As our camera records images

with 2.5 Hz, the method is fast enough for real-time process-

ing of these images.

In both in vivo experiments, the expected drops in oxy-

genation and blood volume fraction have been observed. The

initial value of oxygenation of 70–85 % in both experiments

is in line with the literature [7]. The drop in oxygenation

of the bowel is in line with the experiments performed in

[3]. The drop in oxygenation of the liver after euthanasia is

also expected. The blood volume fraction probably decreases

due to the loss of blood pressure and subsequent drainage of

blood from the liver surface due to gravity. The results on the

in-vivo tissues are especially encouraging, as the regressor

was trained on data tailored to colonic tissue.

We determined the camera to have SNRs ranging from 29

to 50 in our experiments. The recorded images were quite

dark with mean values within the lowest percentile of the

camera’s dynamic range. This can be ameliorated with a

brighter light source. Additional, probably more critical noise

2 https://github.com/swirkert/ipcai2016.
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is introduced by tissue and camera movement during image

acquisition, which takes 400 ms. Alignment algorithms,

noise reduction schemes tailored for multispectral images

and faster camera techniques should be explored to reduce

the expected noise. In future work, we will build elaborate

tissue-mimicking phantoms to further validate the approach.

In conclusion, our method features both the flexibility and

realism of complex model-based approaches and speed com-

parable to simple online methods. According to extensive

in silico and in vivo experiments, our method is more flex-

ible and accurate than the commonly used Beer–Lambert

law-based regression and orders of magnitude faster than

regression approaches developed for skin and ex vivo mul-

tispectral image analysis. Due to its robustness, nonlinear

estimation capability and rapid execution time, there is a high

potential for future application in interventional multispec-

tral imaging.

Acknowledgments Funding for this work was provided by the

European Research Council (ERC) starting grant COMBIOSCOPY

(637960). Martin Wagner received funding from the German Research

Foundation (DFG) as part of project A01 in the SFB/TRR 125

Cognition-Guided Surgery.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical standards This article does not contain any studies with human

participants. All applicable international, national and/or institutional

guidelines for the care and use of animals were followed.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Alerstam E, Yip Lo WC, Han TD, Rose J, Andersson-Engels S,

Lilge L (2010) Next-generation acceleration and code optimization

for light transport in turbid media using GPUs. Biomed Opt Express

1(2):658–675

2. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

3. Clancy NT, Arya S, Stoyanov D, Singh M, Hanna GB, Elson DS

(2015) Intraoperative measurement of bowel oxygen saturation

using a multispectral imaging laparoscope. Biomed Opt Express

6(10):4179

4. Claridge E, Hidovic-Rowe D (2014) Model based inversion for

deriving maps of histological parameters characteristic of cancer

from ex-vivo multispectral images of the colon. IEEE Trans Med

Imaging 33(4):822–835

5. den Dulk M, Marijnen CaM, Collette L, Putter H, Phlman L,

Folkesson J, Bosset JF, Rdel C, Bujko K, van de Velde CJH (2009)

Multicentre analysis of oncological and survival outcomes fol-

lowing anastomotic leakage after rectal cancer surgery. Br J Surg

96(9):1066–1075

6. Galeano J, Jolivot R, Benezeth Y, Marzani F, Emile JF, Lamarque

D (2012) Analysis of multispectral images of excised colon tissue

samples based on genetic algorithms. In: SITIS, pp 833–838. IEEE

7. Gioux S, Mazhar A, Lee BT, Lin SJ, Tobias AM, Cuccia DJ, Stock-

dale A, Oketokoun R, Ashitate Y, Kelly E, Weinmann M, Durr NJ,

Moffitt LA, Durkin AJ, Tromberg BJ, Frangioni JV (2011) First-

in-human pilot study of a spatial frequency domain oxygenation

imaging system. J Biomed Opt 16(8):086,015

8. Hidovic-Rowe D, Claridge E (2005) Modelling and validation of

spectral reflectance for the colon. Phys Med Biol 50(6):1071–1093

9. Jacques SL (2013) Corrigendum: optical properties of biological

tissues: a review. Phys Med Biol 58(14):5007–5008

10. Kaneko K, Yamaguchi H, Saito T, Yano T, Oono Y, Ikematsu H,

Nomura S, Sato A, Kojima M, Esumi H, Ochiai A (2014) Hypoxia

imaging endoscopy equipped with laser light source from preclini-

cal live animal study to first-in-human subject research. PLoS ONE

9(6):e99,055

11. Mansouri A, Marzani FS, Gouton P (2005) Development of a pro-

tocol for CCD calibration: application to a multispectral imaging

system. Int J Robot Autom 20(2):94–100

12. Nighswander-Rempel SP, Shaw RA, Kupriyanov VV, Rendell J,

Xiang B, Mantsch HH (2003) Mapping tissue oxygenation in the

beating heart with near-infrared spectroscopic imaging. Vib Spec-

trosc 32(1):85–94

13. Nishidate I, Aizu Y, Mishina H (2004) Estimation of melanin and

hemoglobin in skin tissue using multiple regression analysis aided

by Monte Carlo simulation. J Biomed Opt 9(4):700–710

14. Palmer GM, Ramanujam N (2006) Monte Carlo-based inverse

model for calculating tissue optical properties. Part I: theory and

validation on synthetic phantoms. Appl Opt 45(5):1062–1071

15. Sassaroli A, Fantini S (2004) Comment on the modified Beer–

Lambert law for scattering media. Phys Med Biol 49(14):N255–

257

16. Styles IB, Calcagni A, Claridge E, Orihuela-Espina F, Gibson JM

(2006) Quantitative analysis of multi-spectral fundus images. Med

Image Anal 10(4):578–597

17. Urbanaviius L, Pattyn P, Van de Putte D, Venskutonis D (2011) How

to assess intestinal viability during surgery: a review of techniques.

World J Gastrointest Surg 3(5):59–69

18. Vyas S, Banerjee A, Burlina P (2013) Machine learning methods

for in vivo skin parameter estimation. In: 2013 IEEE 26th interna-

tional symposium on computer-based medical systems (CBMS),

pp 524–525. IEEE

19. Vyas S, Van Nguyen H, Burlina P, Banerjee A, Garza L, Chellappa

R (2012) Computational modeling of skin reflectance spectra for

biological parameter estimation through machine learning, pp 83,

901B–83,901B–7

20. Wang L, Jacques SL, Zheng L (1995) MCML–Monte Carlo mod-

eling of light transport in multi-layered tissues. Comput Methods

Programs Biomed 47(2):131–146

21. Wirkert SJ, Clancy NT, Stoyanov D, Arya S, Hanna GB, Schlem-

mer HP, Sauer P, Elson DS, Maier-Hein L (2014) Endoscopic

Sheffield index for unsupervised in vivo spectral band selection.

In: Luo X, Reichl T, Mirota D, Soper T (eds) Computer-assisted

and robotic endoscopy, vol 8899. Springer International Publish-

ing, Cham, pp 110–120

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Robust near real-time estimation of physiological parameters from megapixel multispectral images with inverse Monte Carlo and random forest regression
	Abstract
	Introduction
	Methods
	Forward model for training data generation
	Inversion by random forest regression

	Experiments and results
	Data generation
	Random forest parameters
	In silico quantitative validation
	In vivo qualitative analysis

	Discussion
	Acknowledgments
	References


