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ABSTRACT
Networks are constantly generating an enormous amount of rich di-
verse information. Such information creates exciting opportunities
for network analytics. However, a major challenge to enable ef-
fective network analytics is the presence of missing data, measure-

ment errors, and anomalies. Despite significant work in network
analytics, fundamental issues remain: (i) the existing works do not
explicitly account for anomalies or measurement noise, and incur
serious performance degradation under significant noise or anoma-
lies, and (ii) they assume network matrices have low-rank structure,
which may not hold in reality.

To address these issues, in this paper we develop LENS decompo-

sition, a novel technique to accurately decompose a network matrix
into a low-rank matrix, a sparse anomaly matrix, an error matrix,
and a small noise matrix. LENS has the following nice properties:
(i) it is general: it can effectively support matrices with or with-
out anomalies, and having low-rank or not, (ii) its parameters are
self tuned so that it can adapt to different types of data, (iii) it is
accurate by incorporating domain knowledge, such as temporal lo-
cality, spatial locality, and initial estimate (e.g., obtained from mod-
els), (iv) it is versatile and can support many applications includ-
ing missing value interpolation, prediction, and anomaly detection.
We apply LENS to a wide range of network matrices from 3G,
WiFi, mesh, sensor networks, and the Internet. Our results show
that LENS significantly out-performs state-of-the-art compressive
sensing schemes.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions – Network monitoring

General Terms
Algorithms, Measurement, Performance
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1. INTRODUCTION
Motivation: Wireless networks are constantly generating an enor-
mous amount of rich and diverse information. Such information
creates exciting opportunities for network analytics. Network ana-
lytics can provide deep insights into the complex interactions among
network entities, and has a wide range of applications in wireless
networks across all protocol layers. Example applications include
spectrum sensing, channel estimation, channel feedback compres-
sion, multi-access channel design, data aggregation, network cod-
ing, wireless video coding, anomaly detection, and localization.

Challenges: A major challenge to enable effective network an-
alytics is the presence of missing data, measurement errors, and
anomalies. Failures in measurement systems and network losses
can lead to missing data. On the other hand, many network tasks
require complete data to operate properly. For example, traffic en-
gineering requires knowing the complete traffic matrix between all
source and destination pairs in order to properly provision traffic
and avoid congestion. Wireless rate adaptation needs SNR infor-
mation across all OFDM subcarriers in order to compute effective
SNR [16]. Channel selection requires knowledge of received sig-
nal strength (RSS) information across all channels in order to se-
lect the best channel. Moreover, anomalies and erroneous data are
common in real-world network data. It is challenging to distinguish
genuine network structure and behavior of interest from anomalies
and measurement imperfections in a robust and accurate fashion.

There are numerous approaches to interpolate missing data. They
all exploit certain structure in the data. Many studies assume that
network matrices (e.g., traffic matrices, delay matrices, RSS matri-
ces) exhibit low-rank structure (i.e., the matrix can be well approx-
imated by the product of two factor matrices with few columns).
Accurate extraction of such sparse or low-rank structure is crucial
for a variety of network analysis tasks. For example, traffic matrix
estimation method tomo-gravity [47, 48, 49]) achieves high accu-
racy by exploiting the fact that traffic matrices can be well approxi-
mated using the gravity model, which is a rank-1 matrix. The low-
rank nature of Internet delay matrix is essential to the effectiveness
of network coordinate systems [34, 30]. The presence of sparse
or low-rank structure is also a key assumption behind compressive
sensing [8, 14, 7, 37, 38, 50]. For example, Zhang et al. develop
a novel spatio-temporal compressive sensing framework that lever-
ages the spatio-temporal characteristics of real-world traffic matri-
ces and their sparse or low-rank structure.

The immense complexity and heterogeneity of these datasets im-
ply that many assumptions and operational conditions required by
existing compressive sensing techniques may not hold [50]. In par-
ticular, our analysis show that many real network matrices are not
low rank. Violation of low rank assumption significantly reduces
the effectiveness of existing compressive sensing approaches.



Another key limitation of existing work is that they do not ex-
plicitly account for anomalies or measurement noise. Real-world
network datasets often contain a plethora of (i) errors (e.g., miss-
ing or erroneous measurements), (ii) noise (introduced by either
Mother Nature or measurement procedure itself), and (iii) anoma-
lies (caused by network events such as flash crowds, failures, at-
tacks, etc.). The performance of existing approaches seriously de-
grades under significant noise or anomalies. It remains a fundamen-
tal challenge to develop new techniques that can accurately distin-
guish genuine structure and behavior of interest from errors, noise,
and anomalies common in real-world network data.

Our approach: In this paper, we first develop LENS decomposi-

tion, a novel technique to accurately decompose network data rep-
resented in the form of a matrix into a low-rank matrix, a sparse
anomaly matrix, an error term, and a small noise matrix. This de-
composition naturally reflects the inherent structures of real-world
data and is more general than existing compressive sensing tech-
niques by removing the low-rank assumption and explicitly sup-
porting anomalies. We further generalize the problem to incorpo-
rate domain knowledge, such as temporal stability, spatial locality,
and/or initial estimation (e.g., obtained from a model). We formu-
late this problem as a convex optimization problem, and develop an
Alternating Direction Method (ADM) to efficiently solve it.

Our approach has several nice properties: (i) it supports a wide
range of matrices: with or without anomalies, and with or without
low-rank structure, (ii) its parameters are either exactly computed
or self tuned, (iii) it can incorporate domain knowledge, and (iv) it
supports various network applications, such as missing value inter-
polation, prediction, and anomaly detection.

We evaluate LENS using a wide range of network matrices, in-
cluding traffic matrices from 3G, WiFi, and the Internet, channel
state information (CSI) matrices, RSSI matrices in WiFi and sensor
networks, and expected transmission time (ETT) traces from UCSB
Meshnet. Our results show that it significantly out-performs state-
of-the-art compressive sensing methods including Sparsity Regu-
larized Matrix Factorization (SRMF) under anomalies [50].

2. ANALYSIS OF NETWORK MATRICES
Network Date Duration Resolution Size
3G traffic Nov. 2010 1 day 10 min. 472× 144
WiFi traffic Jan. 2013 1 day 10 min. 50× 118
Abilene traffic [2] Apr. 2003 1 week 10 min. 121× 1008

GÉANT traffic [42] Apr. 2005 1 week 15 min. 529× 672
1 channel CSI Feb. 2009 15 min. 1 frame 90× 9000
multi. channels CSI Feb. 2014 15 min. 1 frame 270× 5000
Cister RSSI [35] Nov. 2010 4 hours 1 frame 16× 10000
CU RSSI [6] Aug. 2007 500 frames 1 frame 895× 500
UMich RSS [43] April 2006 30 min. 1 frame 182× 3127
UCSB Meshnet [41] April. 2006 3 days 1 min. 425× 1527

Table 1: Datasets under study.
2.1 Datasets

Table 1 lists the network matrices used for our study. We ob-
tained 3G traces from 472 base stations in a downtown area of a
major city in China during Oct. 2010. We generate traffic matri-
ces by computing the aggregated traffic every 10 minutes. M(i, t)
represents the total traffic volume to and from base station i during
time interval t, where t is a 10-minute interval.

We also got WiFi traffic from a large university in China, and
generated traffic matrices based on the traffic collected at the 50
most loaded access points (APs) on Jan. 4, 2013. M(i, t) denotes
the total traffic to/from AP i during the t-th 10-minute time interval.

In addition to wireless traffic matrices, we also use traffic ma-
trices from Abilene (Internet2) [2] and GÉANT [42], which are

standard traffic matrices used in several previous studies (e.g., [22,
24, 46, 50]) and useful for comparison. Abilene traces report total
end-to-end traffic between all pairs in a 11-node network every 10
minutes. GÉANT traces report total traffic between all pairs in a
23-node network every 15 minutes.

For diversity, in addition to traffic matrices, we also obtain sig-
nal strength and expected transmission time (ETT). We use the fol-
lowing SNR and RSS matrices: (a) our 1 channel CSI traces, (b)
our multi-channel CSI traces, (c) Cister RSSI traces, (d) CU RSSI
traces, and (e) UMich RSS. We collected (a) by having a moving
desktop transmit back-to-back to another desktop and letting the re-
ceiving desktop record the SNR across all OFDM subcarriers over
15 minutes using the Intel Wi-Fi Link 5300 (iwl5300) adapter. The
modified driver [20] reports the channel matrices for 30 subcarrier
groups in a 20MHz channel, which is about one group for every
two subcarriers according to the standard [3]. The sender sends
1000-byte frames using MCS 0 at a transmission power of 15 dBm.
Since MCS0 has 1 stream and the receiver has 3 antennas, the NIC
reports CSI as a 90 × 1 matrix for each frame. We collect (b) on
channels 36, 40, 44, 48, 149, 153, 157, 161, and 165 at 5GHz.
The transmitter starts from channel 36, and sends 10 packets be-
fore switching to the next channel. The receiver synchronizes with
the transmitter and also cycle through the 9 channels, which yields
270 × 1 matrix for each frame. In addition, we use Cister RSSI
traces [35], CU RSSI traces [6], and UMich RSS traces [43], all of
which are publicly available at CRAWDAD [12]. M(f, i) in Cister
traces denotes RSSI on IEEE 802.15.4 channel f in the i-th frame,
M(l, i) in CU traces denotes RSSI of the i-th frame at location l,
and M(s, i) in UMich-RSS trace denotes the RSS measurement
received by the s-th sensor pair in the i-th packet. We also use ETT
traces from UCSB Meshnet [41], which contains the ETT of ev-
ery links in a 20-node mesh network. We generate the ETT matrix
M(l, t), where M(l, t) denotes the ETT of the link l during the t-th
10-second window.
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Figure 1: CDF of energy that are contained in the top K singu-
lar values of the original matrices.

2.2 Analysis
Rank analysis: For each network matrix, we mean center each
row (i.e., subtract from each row its mean value). We then ap-
ply singular value decomposition (SVD) to examine if the mean-
centered matrix has a good low-rank approximation. The metric
we use is the fraction of total variance captured by the top K singu-

lar values, i.e.,
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is the relative approximation error of the best rank-K approxima-
tion with respect to the squared Frobenius norm.

Figure 1 plots the fraction of total variance captured by the top
K singular values for different traces. As it shows, from low to
high, UCSB Meshnet, GÉANT, multi-channel CSI, UMich RSS,
RON, 1-channel CSI, CU RSSI, Abilene, WiFi, 3G, and Cister
RSSI matrices take 7.5%, 20.8%, 22.0%, 23.9%, 47.2%, 48.9%,



55.8%, 57.0%, 58.0%, 68.1%, and 81.0% singular values to cap-
ture 90% variance, respectively. Therefore, only UCSB Meshnet,
GÉANT, multi-channel CSI, and UMich RSS are close to low rank.
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(a) 5% anomalies with s=0.5
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(b) 10% anomalies with s=0.5
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(c) 5% anomalies with s=1
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(d) 10% anomalies with s=1

Figure 2: CDF of energy that are contained in the top K singu-
lar values under anomalies in traffic matrices.

Next we inject anomalies to see how it affects the results. We
inject anomalies to a portion of the entries in the original matrices.
Following the standard anomaly injection method used in existing
work [22, 18, 31], we first use exponential weighted moving aver-
age (EWMA) to predict the future entries based on their past values
(i.e., y = αx+(1−α)y, where α = 0.8 in our evaluation) and use
the maximum difference between the actual and predicted value as
the anomaly size to be injected. We vary the fraction of entries
to inject anomalies from 5% to 10%, and also scale the anomaly
size by s, which is 0.5 or 1. As shown in Figure 2, when we
inject more anomalies or larger anomalies, more singular values
are required in order to capture the variance of the matrices. This
trend is consistent across all traces. For example, as shown in Fig-
ure 2(a)-(b), when we inject 5% and 10% anomalies with s=0.5, it
takes 60.9% and 67.6% singular values to capture 90% variance in
UMich Meshnet, 71.0% and 75.8% in WiFi trace, and 75.7% and
80.0% in 1-channel CSI trace. As shown in Figure 2(c)-(d), when
we inject 5% and 10% anomalies with s=1, the corresponding num-
bers are 72.5% and 76.9% in UMich Meshnet, 72.0% and 78.3%
in WiFi trace, and 81.7% and 84.1% in 1-channel CSI trace. The
other matrices exhibit the same trend.
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Figure 3: CDF of normalized difference between i-th and i+k-
th time slot.

Temporal stability: Figure 3 plots the CDF of normalized tempo-
ral variation (i.e., x(i)−x(i−t)

max(x(i))
) across different traces. As it shows,

different traces exhibit varying degrees of temporal stability. For
example, 3G and Cister RSSI have high variation: the two adjacent
entries differ by 6.1%-9.8% in 90% cases, and 10 time-slot apart
entries differ by 16.7%-36.2% in 90%. In comparison, UMich
Meshnet and GÉANT have low variation, where the adjacent en-
tries differ by 0.3%-0.5% in 90% cases and 10 time-slot apart en-
tries differ by 1.0%-2.4% in 90%. The other traces are in between.

Summary: The major findings from the above analysis include: (i)
Not all real network matrices are low rank. (ii) Adding anomalies
further increases the rank. (iii) Temporal stability varies substan-
tially across different traces. These findings motivate us to develop
a general compressive sensing framework to support diverse matri-
ces that may not be low rank, exhibit different degrees of temporal
stability, and may even contain anomalies.

3. LENS DECOMPOSITION
In this section, we first present LENS decomposition framework.

Next we develop an alternating direction method for solving the de-
composition problem. Then we describe how to set the parameters.

3.1 LENS Decomposition Framework

Overview: There are many factors that contribute to real network
matrices, including measurement errors, anomalies and inherent
noise. To capture this insight, we decompose the original matrix
into a Low-rank component, an Error component, a Noise compo-
nent, and a Sparse anomaly component (hence the acronym LENS
decomposition). This is motivated by the following observations:

• Low-rank component: Network matrices often exhibit signif-
icant redundancy. A concrete form of redundancy is that the
network matrix of interest can be well approximated by low-
rank matrices. For example, TM estimation makes use of the
gravity model [47], which is essentially a rank-1 approximation
to matrices. [36] uses low-rank matrices for localization.

• Sparse component: Anomalies are common in large network
dataset. Anomalies may arise from a number of factors. For
example, traffic anomalies may be caused by problems rang-
ing from security threats (e.g., Distributed Denial of Service
(DDoS) attacks and network worms) to unusual traffic events
(e.g., flash crowds), to vendor implementation bugs, and to net-
work misconfigurations. Such anomalies are typically not known
a priori and are sparse [11, 25].
Note that there can be systematic effects that are only sparse af-
ter some transformation (e.g., wavelet transform). For example,
a major level shift may result in persistent changes in the orig-
inal data (and is thus not sparse). But after wavelet transform
(or simple temporal differencing), it becomes sparse.

• Error and artifacts: The measurement and data collection proce-
dure may also introduce artifacts. For example, a SNMP traffic
counter may wrap around, resulting in negative measurements.
One can always try his best to apply domain knowledge to filter
out obvious errors and artifacts (e.g., missing data or negative
traffic measurements). However, in general it is difficult to fil-
ter out all such artifacts. The advantage of considering both
anomalies and errors jointly is that the parts that cannot be fil-
tered can get absorbed by the sparse components.

• Noise. Noise is universal, making clean mathematical models
"approximate" in practice. For example, real-world network



matrices are typically only approximately low-rank as opposed
to exactly low-rank.

Therefore a natural approach is to consider the original dataset
as a mixture of all these effects. It is useful if one can decompose
the original matrix into individual components, each component
capturing one major effect.

Basic formulation: The basic LENS decomposition decomposes
an original m×n data matrix D into a low-rank matrix X , a sparse
anomaly matrix Y , a noise matrix Z, and an error matrix W . This
is achieved by solving the following convex optimization problem:

minimize: α‖X‖∗ + β‖Y ‖1 +
1

2σ
‖Z‖2F ,

subject to: X + Y + Z +W = D,

E. ∗W = W. (1)

where X is a low-rank component, Y is a sparse anomaly compo-
nent, Z is a dense noise term, and E is a binary error indicator
matrix such that E[i, j] = 1 if and only if entry D[i, j] is er-
roneous or missing, and W is an arbitrary error component with
W [i, j] 6= 0 only when E[i, j] = 1 (thus E. ∗W = W , where .∗
is an element-wise multiplication operator). Since W fully cap-
tures the erroneous or missing values, we can set D[i, j] = 0
whenever E[i, j] = 1 without loss of generality. The constraint
enforces D to be the sum of X , Y , and Z when D is neither
missing nor has errors (since E[i, j]. ∗ W [i, j] = 0 in this case),
while imposing no constraint when D is missing or has error (since
E[i, j]. ∗ W [i, j] = W [i, j] allows W [i, j] to take an arbitrary
value to satisfy X + Y + Z +W = D).

The optimization objective has the following three components:

• ‖X‖∗ is the nuclear norm [38, 37] of matrix X , which penalizes
against high rank of X and can be computed as the total sum of
X’s singular values.

• ‖Y ‖1 is the ℓ1-norm of Y , which penalizes against lack of spar-
sity in Y and can be computed as ‖Y ‖1 =

∑

i,j |Y [i, j]|.
• ‖Z‖2F is the squared Frobenius norm of matrix Z, which pe-

nalizes against large entries in the noise matrix Z and can be
computed as ‖Z‖2F =

∑

i,j Z[i, j]2.

The weights α, β and 1
2σ

balance the conflicting goals to simul-
taneously minimize ‖X‖∗, ‖Y ‖1 and ‖Z‖2F . We describe how to
choose these weights in Section 3.3.

Generalized formulation: Below we generalize both the con-
straints and the optimization objective of the basic formulation in
Eq. (1) to accommodate rich requirements in the analysis of real-
world network matrices.

First, the matrix of interest may not always be directly observ-
able, but its linear transform can be observed though subject to
missing data, measurement errors, and anomalies. For example,
end-to-end traffic matrices X are often not directly observed, and
what can be observed are link load D. X and D follow AX = D,
where A is a binary routing matrix: A(i, j) = 1 if link i is used
to route traffic for the j-th end-to-end flow, and A(i, j) = 0 oth-
erwise. We generalize the constraints in Eq. (1) to cope with such
measurement requirements:

AX +BY + CZ +W = D (2)

Here A may capture tomographic constraints that linearly relate
direct and indirect measurements (e.g., A is a routing matrix in
the traffic matrices). B may represent an over-complete anomaly
profile matrix. If we do not know which matrix entries may have

anomalies, we can simply set B to the identity matrix I . It is also
possible to set B = A if we are interested in capturing anomalies
in X . Without prior knowledge, we set C to be the identity matrix.

Prior research on network inference and compressive sensing
highlights the importance of incorporating domain knowledge about
the structure of the underlying data. To capture domain knowl-
edge, we introduce one or more penalty terms into the optimization
objective:

∑K
k=1 ‖PkXQT

k − Rk‖2F , where K is the number of
penalty terms. We also introduce a weight γ to capture our confi-
dence in such knowledge.

Examples of domain knowledge include temporal stability con-
straints, spatial locality constraints, and initial estimation of X (e.g.,
[47] derives initial traffic matrices using the gravity model [21]).
Temporal and spatial locality are common in network data [32, 44,
15]. Such domain knowledge is especially helpfulwhen there are
many missing entries, making the problem severely under-constrained.

Consider a few simple cases. First, when k = 1, P1 is an identity
matrix I , R1 is a zero vector, we can set Q1 = Toeplitz(0, 1,−1),
which denotes the Toeplitz matrix with central diagonal given by
ones, the first upper diagonal given by negative one, i.e.,

Q =

















1 −1 0 0 . . .

0 1 −1 0
. . .

0 0 1 −1
. . .

...
. . .

. . .
. . .

. . .

















. (3)

QT denotes the transpose of matrix Q. P1XQT
1 captures the differ-

ences between two temporally adjacent elements in X . Minimizing
‖P1XQT

1 − R1‖2F = ‖P1XQT
1 ‖2F reflects the goal of making X

temporally stable. For simplicity, this is what we use for our eval-
uation. In general, one can use similar constraints to capture other
temporal locality patterns during different periods (e.g., seasonal
patterns or diurnal patterns).

Next we consider the spatial locality, which is represented by P .
If k = 1, R1 = 0, Q1 is an identity matrix I , we can set P1 to
reflect the spatial locality. For example, if two adjacent elements in
the matrix have similar values, we can set P = Toeplitz(0, 1,−1).
Similarly, if different parts of the matrix have different spatial lo-
cality patterns, we can use different P ’s to capture these spatial
locality patterns. For simplicity, our evaluation considers only tem-
poral stability, which is well known to exist in different networks.
We plan to incorporate spatial locality in the future.

Finally, if we have good initial estimate of Xinit (e.g., [47] uses
the gravity model to derive the initial TM), we can leverage this
domain knowledge by minimizing ‖X−Xinit‖ (i.e., R1 = Xinit).
This term can be further combined with spatial and/or temporal
locality to produce richer constraints.

Putting everything together, the general formulation is:

minimize: α‖X‖∗ + β‖Y ‖1 +
1

2σ
‖Z‖2F +

γ

2σ

K
∑

k=1

‖PkXQT
k −Rk‖2F ,

subject to: AX +BY + CZ +W = D

E. ∗W = W. (4)

Note that our formulation is more general than recent research on
compressive sensing (e.g., [50, 9, 38, 37]), which do not consider
anomalies, have simpler constraints (e.g., there is no A, B, or C),
and have less general objectives.



3.2 Optimization Algorithm
The generality of the formulation in Eq. (4) makes it challenging

to optimize. We are not aware of any existing work on compressive
sensing that can cope with such a general formulation. Below we
first reformulate Eq. (4) to make it easier to solve. We then consider
the augmented Lagrangian function of the reformulated problem
and develop an Alternating Direction Method to solve it.

Reformulation for optimization: Note that X and Y appear in
multiple locations in the objective function and constraints in the
optimization problem 4. This coupling makes optimization diffi-
cult. To reduce coupling, we introduce a set of auxiliary variables
X0, X1, · · · , XK and Y0 and reformulate the problem as follows:

minimize: α‖X‖∗ + β‖Y ‖1 +
1

2σ
‖Z‖2F

+
γ

2σ

K
∑

k=1

‖PkXkQ
T
k −Rk‖2F ,

subject to: AX0 +BY0 + CZ +W = D,

E. ∗W = W,

Xk −X = 0 (∀k = 0, · · · ,K),

Y0 − Y = 0. (5)

where Y0 and Xk(0 ≤ k ≤ K) are auxiliary variables. Note that
formulations Eq. (5) and Eq. (4) are equivalent.

Alternating Direction Method for solving (5): We apply an Al-
ternating Direction Method (ADM) [4] to solve the convex opti-
mization problem in (5). Specifically, we consider the augmented
Lagrangian function:

L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ)

△

= α‖X‖∗ + β‖Y ‖1 +
1

2σ
‖Z‖2F

+
γ

2σ

K∑

k=1

‖PkXkQ
T
k −Rk‖

2
F

+ 〈M,D −AX0 −BY0 − CZ −W 〉 (6)

+
K∑

k=0

〈Mk, Xk −X〉 (7)

+ 〈N,Y0 − Y 〉 (8)

+
µ

2
· ‖D −AX0 −BY0 − CZ −W‖2F (9)

+
µ

2
·

K∑

k=0

‖Xk −X‖2F (10)

+
µ

2
· ‖Y0 − Y ‖2F (11)

where M , {Mk}, N are the Lagrangian multipliers [1] for the

equality constraints in Eq. (5), and 〈U, V 〉 △

=
∑

i,j(U [i, j] ·V [i, j])
for two matrices U and V (of the same size). Essentially, the aug-
mented Lagrangian function includes the original objective, three
Lagrange multiplier terms (6)–(8), and three penalty terms con-
verted from the equality constraints (9)–(11). Lagrange multipli-
ers are commonly used to convert an optimization problem with
equality constraints into an unconstrained one. Specifically, for
any optimal solution that minimizes the (augmented) Lagrangian
function, the partial derivatives with respect to the Lagrange mul-
tipliers must be 0. Hence the original equality constraints will be
satisfied. The penalty terms enforce the constraints to be satisfied.
The benefit of including Lagrange multiplier terms in addition to
the penalty terms is that µ no longer needs to iteratively increase to

∞ to solve the original constrained problem, thereby avoiding ill-
conditioning [4]. Note that we do not include terms corresponding
to constraint E. ∗W = W in the augmented Lagrangian function,
because it is straightforward to enforce this constraint during each
iteration of the Alternating Direction Method without the need for
introducing additional Lagrange multipliers.

The ADM algorithm progresses in an iterative fashion. During
each iteration, we alternate among the optimization of the aug-
mented Lagrangian function by varying each one of X , {Xk}, Y ,
Y0, Z, W , M , {Mk}, N while fixing the other variables. Intro-
ducing auxiliary variables {Xk} and Y0 makes it possible to obtain
a close-form solution for each optimization step. Following ADM,
we increase µ by a constant factor ρ ≥ 1 during each iteration.
When involving only two components, ADM is guaranteed to con-
verge quickly. In our general formulation, convergence is no longer
guaranteed, though empirically we observe quick convergence in
all our experiments (e.g., as shown in Section 4). We plan to apply
techniques in [13] to ensure guaranteed convergence in future work.
We further improve efficiency by replacing exact optimization with
approximate optimization during each iteration. Appendix A gives
a detailed description on the steps during each iteration.

Improving efficiency through approximate SVD: The most time-
consuming operation during each iteration of the Alternating Di-
rection Method is performing the singular value decomposition. In
our implementation, we add an additional constraint on the rank of
matrix X: rank(X) ≤ r, where r is a user-specified parameter
that represents an estimated upper bound on the true rank of X .
We then explicitly maintain the SVD of X and update it approxi-
mately during each iteration through the help of rank-revealing QR
factorization of matrices that have only r columns (which are much
smaller than the original matrices used in SVD). We omit the de-
tails of approximate SVD in the interest of space.

3.3 Setting Parameters
Setting α, β and σ: A major advantage of our LENS decompo-
sition is that a good choice of the parameters α and β can be ana-
lytically determined without requiring any manual tuning. Specif-
ically, let σD be the standard deviation of measurement noise in
data matrix D (excluding the effect of low-rank, sparse, and error
terms). For now, we assume that σD is known, and we will de-
scribe how to determine σD later in this section. Moreover, we first
ignore the domain knowledge term and will adaptively set γ for the
domain knowledge term based on the given α and β.

Let density η(D) = 1 −
∑

i,j E[i,j]

m×n
be the fraction of entries in

D that are neither missing nor erroneous, where the size of D is
m × n and the size of Y is mY × nY . E[i, j] can be estimated
based on domain knowledge. For example, we set E[i, j] = 1 if
the corresponding entry takes a value outside its normal range (e.g.,
a negative traffic counter) or measurement software reports an error
on the entry. Moreover, our evaluation shows that LENS is robust
against estimation error in η(D).

We propose to set:

α = (
√
mX +

√
nX) ·

√

η(D) (12)

β =
√

2 · log(mY · nY ) (13)

σ = θ · σD (14)

where (mX , nX) is the size of X , (mY , nY ) is the size of Y . θ
is a user-specified control parameter that limits the contamination
of the dense measurement noise σD when computing X and Y . In
all our experiments, we set θ = 10, though it is also possible to
choose θ adaptively, just like how we choose γ as described later
in this section.



Below we provide some intuition behind the above choices of α
and β using the basic formulation in Eq. (1). The basic strategy is
to consider all variables except one are fixed. Our evaluation shows
that these choices work well in practice.

Intuition behind the choice of α: Consider the special case when
all variables except that X are already given and stay fixed. Then
we just need to solve:

min
X

α · ‖X‖∗ +
1

2σ
· ‖D −X − Y −W‖2F (15)

since Z = D − X − Y − W . We can prove the optimal X in
Eq. (15) can be obtained by performing soft-thresholding (a.k.a.,
shrinkage) on the singular values of D − Y −W . That is,

Xopt = SVSoftThresh(D − Y −W, α · σ)
△

= U ∗ SoftThresh(S, α · σ) ∗ V T , (16)

where [U, S, V ] = svd(D − Y − W ) is the singular value de-
composition of (D − Y − W ) (thus D − Y − W = USV T ),
and SoftThresh(S, ασ) = sign(S). ∗ max{0, abs(S) − ασ}
(sign(S) = S./abs(S)). Intuitively, soft-thresholding eliminates
the contamination on the singular values of X due to the dense
measurement noise σD .

From asymptotic random matrix theory [33], for a random ma-
trix with entries drawn i.i.d. from a Gaussian distribution with
probability η(D), its norm (i.e., the largest singular value) is bounded
by O((

√
m +

√
n) ·

√

η(D) · σD) with a high probability. So a
good heuristic is to set the soft threshold to:

α · σ = (
√
m+

√
n) ·

√

η(D) · σD · θ,

where θ is a control parameter that captures the desired separation
from the influence of dense measurement noise σD . Therefore, we
simply set α = (

√
m+

√
n) ·

√

η(D) and σ = θ · σD .

Intuition behind the choice of β: Now suppose X is given and
we need to solve:

min
Y

β‖̇Y ‖1 +
1

2σ
· ‖D −X − Y −W‖2F (17)

We can prove that the optimal Y for (17) can be obtained by
performing soft-thresholding (a.k.a., shrinkage) on the entries of
D −X −W . Specifically, we have:

Yopt = SoftThresh(D −X −W, β · σ), (18)

where soft-thresholding eliminates the contamination on entries of
Y due to the dense measurement noise.

In the context of standard compressive sensing setting:

min
y

β ∗ σd · ‖y‖1 +
1

2
· ‖y − d‖22,

where y is a vector of length ny , and σd is the standard deviation
of the vector of observables d. As justified in Basis Pursuit De-
Noising (BPDN) [10], a penalty term β =

√

2 · log(ny) should be
used, where ny is the number of elements in Y . Similarly, in our
context, a good heuristic is to set the soft threshold to:

β · σ =
√

2 · log(mY · nY ) · σD · θ.

So we simply set β =
√

2 · log(mY · nY ) and σ = θ · σD .

Estimating σD: When σD is not known in advance, we simply
estimate it from entries of D − AX0 − BY0 − W during each
iteration in the Alternating Direction Method (see Appendix A).
Specifically, let J = D−AX0−BY0−W , we estimate σD as the
standard deviation of {J [i, j] | E[i, j] = 0}. It is also possible to

use a more robust estimator (e.g., the mean absolute value), which
gives similar performance in our experiments.

Searching for γ: γ reflects the importance of domain knowledge
terms. It is challenging to find an appropriate γ, since its value
depends on how valuable are the domain knowledge versus the in-
formation from the measurement data. Therefore instead of using
a fixed value, we automatically learn γ without user feedback or
ground-truth of the real missing entries as follows. Given the in-
complete data matrix D, we further drop additional entries of D
and apply our algorithm under several γ values, and quantify the
error of fitting the entries that were present in D but dropped inten-
tionally during the search (so we know their true values). We adopt
the value of γ that gives the lowest fitting error on these entries as
the final γ and apply it to our final matrix interpolation, which only
has the real missing elements.

Supporting the general formulation: In the general formulation
in Eq. (4), we first ensure that matrices A, B, C are properly scaled
such that each column of A, B, C has unit length (i.e. the square
sum of all elements in a column is equal to 1). We also automati-
cally scale Pk, Qk, Rk such that each row of Pk and Qk has unit
length. We then use the same choice of α, β, σ, and γ as in the
basic formulation.

4. EVALUATION

4.1 Evaluation Methodology
Performance metrics: We quantify the performance in terms of
estimation error of the missing entries and anomaly detection ac-
curacy. We drop data from existing network matrices and compare
our estimation with the ground truth. We use Normalized Mean
Absolute Error (NMAE) to quantify the estimation error. NMAE is
defined as follow:

NMAE =

∑

i,j:M(i,j)=0 |X(i, j)− X̂(i, j)|
∑

i,j:M(i,j)=0 |X(i, j)| , (19)

where X and X̂ are the original and estimated matrices, respec-
tively. We only measure errors on the missing entries. For each set-
ting, we conduct 10 random runs, which drop random set of data,
and report an average of these 10 runs.

We quantify the anomaly detection accuracy using F1-score [45],
which is the harmonic mean of precision and recall: F1-score =

2
1/precision+1/recall

, where precision is the fraction of anomalies
found by anomaly detection schemes that are indeed real anoma-
lies we injected and recall is the fraction of real anomalies that are
correctly identified by anomaly detection schemes. The higher F1-
score, the better. F1-score of 1 is perfect. We report an average of
10 random runs.

Anomaly generation: As mentioned in Section 2.2, we find the
maximum difference between the original trace and the EWMA
prediction, and then inject the anomaly of this size to the trace.
We vary the anomaly size using different scaling factors s and the
fraction of anomalies to understand their impacts.

Different dropping modes: As in [50], we drop data in the fol-
lowing ways: (i) PureRandLoss: elements in a matrix are dropped
independently with a random loss rate; (ii) xxTimeRandLoss: xx%
of columns in a matrix are selected and the elements in these se-
lected columns are dropped with a probability p to emulate random
losses during certain times (e.g., disk becomes full); (iii) xxElem-
RandLoss: xx% of rows in a matrix are selected and the elements
in these selected rows are dropped with a probability p to emulate



certain nodes lose data (e.g., due to battery drain); (iv) xxElem-
SyncLoss: the intersection of xx% of rows and p% of columns in
a matrix are dropped to emulate a group of nodes experience the
same loss events at the same time; (v) RowRandLoss: drop random
rows to emulate node failures, and (vi) ColRandLoss: drop random
columns for completeness. We use PureRandLoss as the default,
and further use other loss models to understand impacts of differ-
ent loss models. We feed the matrices after dropping as the input
to LENS, and use LENS to fill in the missing entries.

Schemes evaluated: We compare the following schemes:

• Base: It approximates the original matrix as a rank-2 approx-
imation matrix Xbase = X + Xrow1

T + 1XT
col, where 1 is

a column vector consisting of all ones and Xrow and Xcol are
computed using a regularized least square according to [50].

• SVD Base: As shown in [50], SVD Base, which applies SVD
to X − Xbase, out-performs SVD applied directly to X . We
observe similar results, so below we only include SVD Base.

• SVD Base + KNN: We obtain the result from SVD Base and
then apply K nearest neighbors (KNN) to perform local inter-
polation to leverage the local structure.

• SRMF: Sparsity Regularized Matrix Factorization (SRMF) lever-
ages both low-rank and spatio-temporal characteristics [50].

• SRMF+KNN: It combines SRMF results with local interpola-
tion via KNN [50].

• LENS: We use the output from the LEN decomposition as de-
scribed in Section 3.
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Figure 4: (a) NMAE of different γ: learned γ is 0 for multi-
channel CSI, 1 for 3G, and 10 for GÉANT under no anomalies.
(b) The learned γ under loss rates = 10%, 40%, 90%; anomaly
size s = 0.1, 1, 2; ratio of anomalies = 1%, 4%, 8%.

4.2 Performance Results
Self learned γ: LENS supports many types of domain knowledge
as described in Sec. 3.1. Our evaluation only considered temporal
stability for simplicity and γ reflects its importance. To illustrate
the benefit of self learning, Figure 4 (a) shows the performance
under different γ values and different traces. Figure 4 (b) shows the
best γ under different traces, loss rates, anomaly sizes, and ratio of
anomalies. There does not exist a single γ that works well for all
traces or conditions. Self tuning allows us to automatically select
the best γ for these traces and achieves low NMAE in all cases.

Varying dropping rates: We first compare different schemes in
terms of interpolation accuracy measured using NMAE. Figure 5
shows the interpolation error as we randomly inject anomalies to
5% elements with s = 1. For clarity of the graphs, we cap the
y-axis so that we can focus on the most interesting parts of the
graphs. We observe that LENS consistently out-performs the other
schemes. In terms of NMAE, LENS < SRMF + KNN < SRMF
< SVD Base + KNN < SVD Base. LENS reduces NMAE by
35.5% over SRMF, 27.8% over SRMF+KNN, 59.8% over SVD
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Figure 5: Interpolation performance under varying data loss
rates under 5% anomalies and s = 1.

Base, and 44.9% over SVD Base + KNN on average. Moreover,
the error is low for high-rank matrices. For example, the highest
rank matrices in our datasets are 1-channel CSI, CU RSSI, Abilene,
WiFi, 3G, and Cister RSSI matrices. Their corresponding NMAE
are 0.05, 0.05, 0.3, 0.69, 0.74, 0.1, respectively. Most of them have
low errors except WiFi and 3G. The error does not monotonically
increase with the loss rate because an increasing loss rate reduces
the number of anomalies, which may help reduce the error.

Figure 6 summarizes the results under varying data loss rates
and no anomaly. In most traces, LENS performs comparably to
SRMF+KNN, the best known algorithm under no anomaly. In
UCSB Meshnet, LENS already out-performs SRMF+KNN even
without injecting additional anomalies. This is likely because the
trace has more anomalies before our anomaly injection. In UCSB
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Figure 6: Interpolation performance under varying data loss
rates and no anomaly.

Meshnet trace, 3.2% of EWMA prediction errors are larger than
5 times standard deviation from mean, whereas the corresponding
numbers in other traces are 1.2%-2.4%. 3G trace has the second
largest number of EWMA prediction error where we can also see
LENS shows 7.7% improvement over SRMF+KNN.

Varying anomaly sizes: Figure 7 shows the interpolation per-
formance as we vary the anomaly size s. LENS significantly out-
performs all the other schemes. Its benefit increases with the anomaly
size. For example, when s = 1, the NMAE of LENS is 33.7%
lower than SRMF, 20.2% lower than SRMF+KNN, 61.8% lower
than SVD Base, and 34.8% lower than SVD Base+KNN. The cor-
responding numbers under s = 2 are 44.9%, 31.9%, 69.8%, and
45.8%, respectively. Moreover, as we would expect, NMAE of
all schemes tends to increase with the anomaly size in all traces,
though the NMAE of LENS increases more slowly than the other
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Figure 7: Impact of anomaly sizes when ratio of anomalies =
5% and loss rate = 50%.
schemes, since LENS explicitly separates anomalies before data
interpolation. These results highlight the importance of anomaly
detection in interpolation.

Varying the number of anomalies: Figure 8 shows the interpo-
lation performance as we vary the number of anomalies. As be-
fore, LENS out-performs SRMF and SVD based schemes. The
improvement ranges between 25.3-59.7% with 8% anomalies and
30.1-54.5% with 16% anomalies. In addition, the NMAE increases
with the number of anomalies. Among different schemes, the rate
of increase is slowest in LENS due to its explicit anomaly detection
and removal.

Varying noise sizes: Figure 9 shows the interpolation performance
as we vary the noise sizes. We inject noise to all the elements in the
original matrices. The size of the noise follows normal distribution
with mean 0 and standard deviation σ where σ is varied from 1%
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Figure 8: Impact of number of anomalies when the loss rate =
50% and s = 1.
to 64% of the maximal value in the matrix. As before, LENS out-
performs the other schemes.

Different dropping modes: Next we compare the interpolation
accuracy under different dropping modes. In the interest of brevity,
Figure 10 shows interpolation error for UCSB Meshnet traces. NMAE
is similar for the other traces. As we can see, LENS yields lowest
NMAE under all dropping modes. It out-performs SRMF-based
schemes by 52.9%, and out-perform SVD-based schemes by 60.0%.

Prediction: Prediction is different from general interpolation be-
cause consecutive columns are missing. SVD is not applicable in
this context. KNN does not work well either since temporally or
spatially near neighbors have missing values. Figure 11 shows the
prediction error as we vary the prediction length (i.e., prediction
length l means that the first 1 − l columns are used to predict the
remaining l columns). We include Base in the figure since [50]
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Figure 9: Impact of noise sizes when the loss rate = 50% and
no anomaly.

shows Base is effective in prediction. LENS out-performs SRMF,
which out-performs Base.

Figure 12 further compares Base, SRMF, and LENS as we vary
anomaly size. LENS continues to out-perform SRMF and Base.
On average, it improves SRMF by 17.7%, and improves Base by
30.4%. Figure 13 shows the performance as we vary the number
of anomalies. LENS continues to perform the best, out-performing
SRMF by 29.6% and Base by 34.6%.

Anomaly detection: We further compare the accuracy of anomaly
detection as we inject anomalies to 5% elements with s = 1.
SRMF detects anomalies based on the difference between the ac-
tual and estimated values, and consider the entry has an anomaly if
its difference is larger than a threshold. LENS considers all entries
whose Y values are larger than a threshold as anomalies. Follow-
ing [50], for each of the schemes, we choose a threshold to achieve
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Figure 10: UCSB Meshnet: interpolation performance under
various dropping models and 5% anomalies. xx and p in (a)-
(c) are defined in Section 4.1
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Figure 11: Prediction performance under 5% anomalies
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Figure 12: Prediction performance with various anomaly sizes,
5% anomalies, and 10% prediction length.

the false alarm probability within 10−5. As shown in Figure 14,
LENS consistently out-performs SRMF+KNN. In 3G and Cister
RSSI traces, its F1-score is 17.6% higher than that of SRMF+KNN.
This shows that LENS is effective in anomaly detection.

Computational time: Figure 15 compares the computation time
of LENS and SRMF when both use 500 iterations. As we can see,
LENS has much smaller computation time due to local optimiza-
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Figure 13: Prediction performance with various number of
anomalies when the prediction length = 10%
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Figure 14: Anomaly detection performance as we inject
anomalies to 5% elements with s = 1.

tion in ADM. This makes it feasible to perform efficient search over
different parameters. Figure 16 further shows that LENS converges
within 200-250 iterations.
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Figure 16: The interpolation performance of LENS under var-
ious number of iterations when the loss rate = 50% and s = 1.

5. RELATED WORK
Compressive sensing: LENS belongs to the realm of compres-

sive sensing, a generic methodology for extracting and exploiting
the presence of certain types of structure and redundancy in data
from many real-world systems. Compressive sensing has recently
attracted considerable attentions from statistics, approximation the-
ory, information theory, and signal processing [8, 14, 7, 37, 38, 50]
and is rapidly becoming a vibrant research area of its own.

Most existing compressive sensing works assume that the matri-
ces satisfy low-rank property. However, this assumption may not
hold in as we show in Section 2. Violation of such assumption
significantly limits the accuracy of these techniques.

Significant work has been done for solving under-determined lin-
ear inverse problems. Missing value interpolation, prediction, and
network tomography can be cast into the same formulation. As de-
scribed in [48], many solutions solve the regularized least-squares



problem: minx ‖y − Ax‖22 + λ2J(x), where ‖ · ‖2 denotes the
L2 norm, λ is a regularization parameter, and J(x) is a penaliza-
tion functional. In L2 norm minimization, which is a widely used
solution to linear inference problem, J(x) = ‖x‖22. In L1 norm
minimization, another commonly used scheme, J(x) = ‖x‖1 (i.e.,
the L1 norm of x). Other regularization terms include ‖X‖∗, the
nuclear norm of matrix X , and spatio-temporal terms ‖SX‖2F and
‖XTT ‖2F in [50]. Unique advantages of LENS formulation in-
clude (i) its general formulation to account for a low-rank compo-
nent, a sparse anomaly component, a dense but small noise term,
and domain knowledge, (ii) its effective optimization algorithm to
solve the general decomposition problem, and (iii) a data-driven
procedure to learn the parameters. Its formulation is more general
than existing work (e.g., [50]) in that [50] requires the original ma-
trix to be well approximated by the product of two low-rank ma-
trices, whereas LENS relaxes this constraint and allows the delta
between the original matrix and sparse anomaly matrix to be ap-
proximated by the product of two low-rank matrices. Moreover,
LENS allows a linear coefficient in each of the decomposed terms
and supports general forms of domain knowledge.

Anomaly detection: Anomaly detection has been extensively stud-
ied. PCA (e.g., [19, 22, 23]) has been widely used for anomaly
detection. PCA has several well known limitations: it is sensitive
to how many principal components are used [39] and vulnerable
to data poisoning [40]. Barford et al. [5] uses wavelets to decom-
pose an original signal into low-, mid-, and high-frequency com-
ponents and use the high-frequency components for anomaly de-
tection. [46] presents a framework that incorporates a variety of
anomaly detectors. [50] uses SRMF for anomaly detection based
on the difference between estimated and actual matrix values. [26]
proposes a multi-scale robust subspace algorithm to identify changes
in performance. NICE [29] uses statistical correlation to detect
chronic network problems. Mercury [28] detects persistent behav-
ior changes using the time-alignment for distributed triggers. [27]
combines different anomaly detection methods, such as EWMA,
FFT, Holt-Winters, and Wavelets to boost the performance. [17]
uses both customer call dataset and network crash log in IPTV
to detect anomalies. It first finds heavy hitters where there might
be anomalies with high probability and then use EWMA to detect
anomalies. We complement the above work by developing a gen-
eral framework that explicitly accounts for anomalies during miss-
ing value interpolation to avoid contamination.

6. CONCLUSION
This paper presents LENS decomposition to decompose a net-

work matrix into a low-rank matrix, a sparse anomaly matrix, an
error matrix, and a dense but small noise matrix. Our evaluation
shows that it can effectively perform missing value interpolation,
prediction, and anomaly detection and out-perform state-of-the-art
approaches. As part of our future work, we plan to apply our frame-
work to network tomography (e.g., traffic matrix estimation based
on link loads and link performance estimation based on end-to-end
performance). As part of our future work, we plan to apply LENS
to enable several important wireless applications, including spec-
trum sensing, channel estimation, and localization.
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APPENDIX

A. DETAILS OF THE ALTERNATING DI-
RECTION METHOD

Each iteration of the Alternating Direction Method involves the following steps:

1. Find X to minimize the augmented Lagrangian function
L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other variables fixed. Re-
moving the fixed terms, the objective is:

minimize: α‖X‖∗ +
µ

2

K
∑

k=0

‖Xk + Mk/µ − X‖
2

F .

Let J = 1
K+1

∑K
k=0

(Xk + Mk/µ), and t =
α/µ
K+1

. We can simplify the
objective to the following:

minimize: t‖X‖∗ + 1/2‖X − J‖
2

F .

According to matrix completion literature, this is a standard nuclear norm mini-
mization problem and can be solved by applying soft thresholding on the singular
values of J . Specifically, we have:

X = SVSoftThresh(J, t).

For a given J and t, let J = USV T be the singular value decomposition of J .

We have: SVSoftThresh(J, t)
△
= USoftThresh(S, t)V T , where

SoftThresh(S[i, j], t)
△
= sign(S[i, j])max(0, |S[i, j]| − t).

2. Find Xk to minimize L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other
variables fixed (k = 1, 2, ...,K). This gives:

minimize:
γ

2σ
‖PkXkQ

T
k − Rk‖

2

F +
µ

2
‖Xk + Mk/µ − X‖

2

F .

This is a least square problem with respect to Xk . The optimal solution can be
obtained by forcing the gradient of the objective to be zero. That is,

γ

σ
P

T
k (PkXkQ

T
k − Rk)Q

T
k + µ(Xk + Mk/µ − X) = 0. (20)

Let J = X − Mk/µ, and R = PT
k RkQk + µσ

γ J . Eq. (20) simplifies to

P
T
k PkXkQ

T
k Qk +

µσ

γ
Xk = R. (21)

Perform eigendecomposition on PT
k Pk and QT

k Qk and let USUT = PT
k Pk;

V TV T = QT
k Qk , where U and V are orthogonal matrices, S and T are diago-

nal matrices. We have: S(UTXkV )T + µσ
γ (UTXkV ) = UTRV . Through

a change of variable, let H = UTXkV , Eq. (21) becomes:

SHT +
µσ

γ
H = U

T
RV. (22)

Let s = diag(S), t = diag(T ) be the diagonal vector of S and T , respectively.
Eq. (22) is equivalent to (stT + µσ

γ ). ∗ H = UTRV . Since U and V are

orthogonal matrices, we can easily find Xk from H as Xk = UHV T . So we
have: H = (UTRV )./(stT + µσ

γ ), where ./ is an operator for element-wise
division. Thus,

Xk = UHV
T

= U

(

(U
T
RV )./(st

T
+

µσ

γ
)

)

V
T
.

3. Find X0 to minimize L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other
variables fixed (k = 1, 2, ..., K). This gives:

minimize: 〈M,D − AX0 − BY0 − CZ − W 〉

+〈M0, X0 − X〉

+µ/2‖D − AX0 − BY0 − CZ − W‖
2

F

+µ/2‖X0 − X‖
2

F

That is,

minimize: ‖X0 − X + M0/µ‖
2

F

+‖D − BY0 − CZ − W + M/µ − AX0‖
2

F

Let J0 = X −M0/µ and J = D −BY0 −CZ −W +M/µ. It becomes:

minimize:‖X0 − J0‖
2

F + ‖AX0 − J‖
2

F

Letting the gradient be zero leads to: X0−J0+AT (AX0−J) = 0. Therefore,
X0 = inv(ATA + I)(AT J + J0).

4. Find Y to minimize L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other
variables fixed. This gives:

minimize:β‖Y ‖1 + 〈N, Y0 − Y 〉 + µ/2‖Y0 − Y ‖
2

F

That is:

minimize:β/µ‖Y ‖1 + 1/2‖Y0 + N/µ − Y ‖
2

F .

Let J = Y0 + N/µ. t = β/µ. It becomes: t‖Y ‖1 + 1/2‖J − Y ‖2
F . This

can be easily solved as Y = SoftThresh(J, t). To see why, the problem can
be solved for each element of Y separately. So we just need to find Y [i, j] that
minimizes: t|Y [i, j]| + 1/2(J[i, j] − Y [i, j])2.

5. Find Y0 to minimize L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other
variables fixed. This gives:

minimize: 〈M,D − AX0 − BY0 − CZ − W 〉

+〈N, Y0 − Y 〉

+µ/2‖D − AX0 − BY0 − CZ − W‖
2

F

+µ/2‖Y0 − Y ‖
2

F

Let J0 = Y − N/µ, J = D − AX0 − CZ − W + M/µ. It becomes
minimize: ‖Y0 − J0‖

2
F + ‖BY0 − J‖2

F Letting the gradient = 0, we obtain:
Y0 − J0 + BT (BY0 − J) = 0. So Y0 = inv(BTB + I)(BT J + J0).

6. Find Z to minimize L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other
variables fixed. This gives:

minimize:
1

2σ
‖Z‖

2

F + 〈M,D − AX0 − BY0 − CZ − W 〉

+
µ

2
‖D − AX0 − BY0 − CZ − W‖

2

F .

Let J = D − AX0 − BY0 − W + M/µ, it becomes:

1

2µσ
‖Z‖

2

F +
1

2
‖CZ − J‖

2

F .

Letting the gradient = 0 yields: Z = inv( 1
µσ I + CTC)(CT J).

7. Find W to minimize L(X, {Xk}, Y, Y0, Z,W,M, {Mk}, N, µ) with other
variables fixed. This gives:

minimize: 〈M,D − AX0 − BY0 − CZ − W 〉

+µ/2‖D − AX0 − BY0 − CZ − W‖
2

F .

That is:

minimize: ‖D − AX0 − BY0 − CZ − W + M/µ‖
2

F

So W = E.∗ (D−AX0 −BY0 −CZ+M/µ) (recall that W = E.∗W ).
8. Update estimate for σD as follows. Let J = D−AX0 −BY0 −W . We then

compute σD as the standard deviation of J[E = 0] and update σ = θσD . In
our implementation, we fix θ = 10.

9. Update estimates for the Lagrangian multipliers M , Mk and N according to:
M = M+µ ·(D−AX0−BY0−CZ−W ), Mk = Mk +µ ·(Xk−X)
(k = 0, · · · , K), N = N + µ · (Y0 − Y ).

10. Update µ = µ · ρ. In our implementation, initially µ = 1.01 and ρ = 1.01.
Every 100 iterations, we multiply ρ by 1.05.


