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Abstract. Automated essay scoring (AES) is the task of automatically
assigning scores to essays as an alternative to human grading. Conven-
tional AES methods typically rely on manually tuned features, which
are laborious to effectively develop. To obviate the need for feature engi-
neering, many deep neural network (DNN)-based AES models have been
proposed and have achieved state-of-the-art accuracy. DNN-AES models
require training on a large dataset of graded essays. However, assigned
grades in such datasets are known to be strongly biased due to effects
of rater bias when grading is conducted by assigning a few raters in a
rater set to each essay. Performance of DNN models rapidly drops when
such biased data are used for model training. In the fields of educational
and psychological measurement, item response theory (IRT) models that
can estimate essay scores while considering effects of rater characteris-
tics have recently been proposed. This study therefore proposes a new
DNN-AES framework that integrates IRT models to deal with rater bias
within training data. To our knowledge, this is a first attempt at address-
ing rating bias effects in training data, which is a crucial but overlooked
problem.

Keywords: Deep neural networks · Item response theory · Automated
essay scoring · Rater bias

1 Introduction

In various assessment fields, essay-writing tests have attracted much attention
as a way to measure practical and higher-order abilities such as logical think-
ing, critical reasoning, and creative thinking [1,4,13,18,33,35]. In essay-writing
tests, examinees write essays about a given topic, and human raters grade those
essays based on a scoring rubric. However, grading can be an expensive and time-
consuming process when there are many examinees [13,16]. In addition, human
grading is not always sufficiently accurate even when a rubric is used because
assigned scores depend strongly on rater characteristics such as strictness and
inconsistency [9,11,15,26,31,43]. Automated essay scoring (AES), which utilizes
natural language processing (NLP) and machine learning techniques to automat-
ically grade essays, is one approach toward resolving this problem.
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Many AES methods have been developed over the past decades, and can
generally be classified as feature-engineering or automatic feature extraction
approaches [13,16].

The feature-engineering approach predicts scores using manually tuned fea-
tures such as essay length and number of spelling errors (e.g., [3,5,22,28]).
Advantages of this approach include interpretability and explainability. How-
ever, these approaches generally require extensive feature redesigns to achieve
high prediction accuracy.

To obviate the need for feature engineering, automatic feature extrac-
tion based on deep neural networks (DNNs) has recently attracted atten-
tion. Many DNN-AES models have been proposed in the last few years (e.g.,
[2,6,10,14,23,24,27,37,47]) and have achieved state-of-the-art accuracy. This
approach requires a large dataset of essays graded by human raters as train-
ing data. Essay grading tasks are generally shared among many raters, assign-
ing a few raters to each essay to lower assessment burdens. However, assigned
scores are known to be strongly biased due to the effects of rater character-
istics [8,15,26,31,34,39,40]. Performance of DNN models rapidly drops when
biased data are used for model training, because the resulting model reflects
bias effects [3,12,17]. This problem has been generally overlooked or ignored,
but it is a significant issue affecting all AES methods using supervised machine
learning models, including DNN, and because cost concerns make it generally
difficult to remove rater bias in practical testing situations.

In the fields of educational and psychological measurement, statistical models
for estimating essay scores while considering rater characteristic effects have
recently been proposed. Specifically, they are formulated as item response theory
(IRT) models that incorporate parameters representing rater characteristics [9,
29,30,38,42–45]. Such models have been applied to various performance tests,
including essay writing. Previous studies have reported that they can provide
reliable scores by removing adverse effects of rater bias (e.g., [38,39,41,42,44]).

This study therefore proposes a new DNN-AES framework that integrates
IRT models to deal with rater bias in training data. Specifically, we propose
a two-stage architecture that stacks an IRT model over a conventional DNN-
AES model. In our framework, the IRT model is first applied to raw rating data
to estimate reliable scores that remove effects of rater bias. Then, the DNN-
AES model is trained using the IRT-based scores. Since the IRT-based scores
are theoretically free from rater bias, the DNN-AES model will not reflect bias
effects. Our framework is simple and easily applied to various conventional AES
models. Moreover, this framework is highly suited to educational contexts and
to low- and medium-stakes tests, because preparing high-quality training data
in such situations is generally difficult. To our knowledge, this study is a first
attempt at mitigating rater bias effects in DNN-AES models.

2 Data

We assume the training dataset consists of essays written by J examinees and
essay scores assigned by R raters. Let ej be an essay by examinee j ∈ J =
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{1, · · · , J} and let Ujr represent a categorical score k ∈ K = {1, · · · , K} assigned
by rater r ∈ R = {1, · · · , R} to ej . The score data can then be defined as
U = {Ujr ∈ K ∪ {−1} | j ∈ J , r ∈ R}, with Ujr = −1 denoting missing data.
Missing data occur because only a few graders in R can practically grade each
essay ej to reduce assessment workload. Furthermore, letting V = {1, · · · , V } be
a vocabulary list for essay collection E = {ej | j ∈ J }, essay ej ∈ E is definable
as a list of vocabulary words ej = {wjt ∈ V | t = {1, · · · , Nj}}, where wjt is a
one-hot representation of the t-th word in ej , and Nj is the number of words in
ej . This study aimed at training DNN-AES models using this training data.

3 Neural Automated Essay Scoring Models

This section briefly introduces the DNN-AES models used in this study.
Although many models have been proposed in the last few years, we apply
the most popular model that uses convolution neural networks (CNN) with long
short-term memory (LSTM) [2], and an advanced model based on bidirectional
encoder representations from transformers (BERT) [7].

3.1 CNN-LSTM-Based Model

A CNN-LSTM-based model [2] proposed in 2016 was the first DNN-AES model.
Figure 1(a) shows the model architecture. This model calculates a score for a
given essay, which is defined as a sequence of one-hot word vectors, through the
following multi-layered neural networks.

Lookup table layer: This layer transforms each word in a given essay into a D-
dimensional word-embedding representation, in which words with the same
meaning have similar representations. Specifically, letting A be a D × V -
dimensional embeddings matrix, the embedding representation correspond-
ing to wjt ∈ ej is calculable as the dot-product A · wjt.

Convolution layer: This layer extracts n-gram level features using CNN from
the sequence of word embedding vectors. These features capture local textual
dependencies among n-gram words. Zero padding is applied to outputs from
this layer to preserve the word length. This is an optional layer, often omitted
in current studies.

Recurrent layer: This layer is a LSTM network that outputs a vector at
each timestep to capture long-distance dependencies of the words. A single-
layer unidirectional LSTM is generally used, but bidirectional or multilayered
LSTMs are also often used.

Pooling layer: This layer transforms outputs of the recurrent layer H = {hj1,
hj2, · · · , hjNj

} into a fixed-length vector. Mean-over-time (MoT) pooling,
which calculates an average vector Mj = 1

Nj

∑Nj

t=1 hjt, is generally used
because it tends to provide stable accuracy. Other frequently used pooling
methods include the last pool, which uses the last output of the recurrent
layer hjNj

, and a pooling-with-attention mechanism.
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Fig. 1. Architectures of DNN-AES models.

Linear layer with sigmoid activation: This layer projects pooling-layer out-
put to a scalar value in the range [0, 1] by utilizing the sigmoid function as
σ(W Mj + b), where W is a weight matrix and b is a bias. Model training
is conducted by normalizing gold-standard scores to [0, 1], but the predicted
scores are rescaled to the original score range in the prediction phase.

3.2 BERT-Based Model

BERT, a pretrained language model released by the Google AI Language team,
has achieved state-of-the-art results in various NLP tasks [7]. BERT has been
applied to AES [32] and automated short-answer grading (SAG) [19,21,36] since
2019, and provides good accuracy.

BERT is defined as a multilayer bidirectional transformer network [46].
Transformers are a neural network architecture designed to handle ordered
sequences of data using an attention mechanism. Specifically, transformers con-
sist of multiple layers (called transformer blocks), each containing a multi-head
self-attention and a position-wise fully connected feed-forward network. See
Ref. [46] for details of this architecture.

BERT is trained in pretraining and fine-tuning steps. Pretraining is con-
ducted on huge amounts of unlabeled text data over two tasks, masked language
modeling and next-sentence prediction, the former predicting the identities of
words that have been masked out of the input text and the latter predicting
whether two given sentences are adjacent.

Using BERT for a target NLP task, including AES, requires fine-tuning
(retraining), which is conducted from a task-specific supervised dataset after
initializing model parameters to pretrained values. When using BERT for AES,
input essays require preprocessing, namely adding a special token (“CLS”) to
the beginning of each input. BERT output corresponding to this token is used
as the aggregate sequence representation [7]. We can thus score an essay by
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inputting its representation to a linear layer with sigmoid activation, as illus-
trated in Fig. 1(b).

3.3 Problems in Model Training

Training of CNN-LSTM-based AES models and fine-tuning of BERT-based AES
models are conducted using large datasets of essays by graded human raters.
For model training, the mean-squared error (MSE) between predicted and gold-
standard scores is used as the loss function. Specifically, letting yj be the gold-
standard score for essay ej and letting ŷj be the predicted score, the MSE loss
function is defined as 1

J

∑J
j=1(yj − ŷj)2.

The gold-standard score yj is a score for essay ej assigned by a human rater
in a set of raters R. When multiple raters grade each essay, the gold-standard
score should be determined by selecting one score or by calculating an average or
total score. In any case, such scores depend strongly on rater characteristics, as
discussed in Sect. 1. The accuracy of a DNN model drops when such biased data
are used for model training, because the trained model inherits bias effects [3,
12,17]. In educational and psychological measurement research, item response
theory (IRT) models that can estimate essay scores while considering effects of
rater characteristics have recently been proposed [9,29,30,38,42–44]. The main
goal of this study is to train AES models using IRT-based unbiased scores. The
next section introduces the IRT models.

4 Item Response Theory Models with Rater Parameters

IRT [20] is a test theory based on mathematical models. IRT represents the
probability of an examinee response to a test item as a function of latent exami-
nee ability and item characteristics such as difficulty and discrimination. IRT is
widely used for educational testing because it offers many benefits. For example,
IRT can estimate examinee ability considering effects of item characteristics.
Also, the abilities of examinees responding to different test items can be mea-
sured on the same scale, and missing response data can be easily handled.

Traditional IRT models are applicable to two-way data (examinees × test
items), consisting of examinee test item scores. For example, the generalized par-
tial credit model (GPCM) [25], a representative polytomous IRT model, defines
the probability that examinee j receives score k for test item i as

Pijk =
exp

∑k
m=1 [αi(θj − βi − dim)]

∑K
l=1 exp

∑l
m=1 [αi(θj − βi − dim)]

, (1)

where θj is the latent ability of examinee j, αi is a discrimination parameter
for item i, βi is a difficulty parameter for item i, and dik is a step difficulty
parameter denoting difficulty of transition between scores k − 1 and k in the
item. Here, di1 = 0, and

∑K
k=2 dik = 0 is given for model identification.

However, conventional GPCM ignores rater factors, so it is not applicable to
rating data given by multiple raters as assumed in this study. Extension models
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that incorporate parameters representing rater characteristics have been pro-
posed to resolve this difficulty [29,30,38,42–45]. This study introduces a state-
of-the-art model [44,45] that is most robust for a large variety of raters. This
model defines the probability that rater r assigns score k to examinee j’s essay
for a test item (e.g., an essay task) i as

Pijrk =
exp

∑k
m=1 [αrαi(θj − βr − βi − drm)]

∑K
l=1 exp

∑l
m=1 [αrαi(θj − βr − βi − drm)]

, (2)

where αr is the consistency of rater r, βr is the strictness of rater r, and drk is
the severity of rater r within category k. For model identification, we assume∑I

i=1 log αi = 0,
∑I

i=1 βi = 0, dr1 = 0, and
∑K

k=2 drk = 0.
This study applies this IRT model to rating data U in training data. Note

that DNN-AES models are trained for each essay task. Therefore, rating data
U are defined as two-way data (examinees × raters). When the number of tasks
is fixed to one in the model, the above model identification constraints make αi

and βi ignorable, so Eq. (2) becomes

Pjrk =
exp

∑k
m=1 [αr(θj − βr − drm)]

∑K
l=1 exp

∑l
m=1 [αr(θj − βr − drm)]

. (3)

This equation is consistent with conventional GPCM, regarding use of item
parameters as the rater parameters. Note that θj in Eq. (3) represents not only
the ability of examinee j but also the latent unbiased scores for essay ej , because
only one essay is associated with each examinee. This model thus provides essay
scores with rater bias effects removed.

5 Proposed Method

We propose a DNN-AES framework that uses IRT-based unbiased scores θ =
{θj | j ∈ J } to deal with rater bias in training data.

Figure 2 shows the architectures of the proposed method. As that figure
shows, the proposed method is defined by stacking an IRT model over a conven-
tional DNN-AES model. Training of our models occurs in two steps:

1. Estimate the IRT scores θ from the rating data U .
2. Train AES models using the IRT scores θ as the gold-standard scores. Specifi-

cally, the MSE loss function for training is defined as 1
J

∑J
j=1(θj − θ̂j)2, where

θ̂j represents the AES’s predicted score for essay ej . Since scores θ are esti-
mated while considering rater bias effects, a trained model will not reflect
bias effects. Note that the gold-standard scores must be rescaled to the range
[0, 1] for training because sigmoid activation is used in the output layer. In
IRT, 99.7% of θj fall within the range [−3, 3] because a standard normal dis-
tribution is generally assumed. We therefore apply a linear transformation
from the range [−3, 3] to [0, 1] after rounding the scores lower than −3 to −3,
and those higher than 3 to 3.
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Fig. 2. Proposed architectures.

Note that the increase in training time for the proposed method compared with
a conventional method is the time for IRT parameter estimation.

In the testing phase, the score for new essay ej′ is predicted in two steps:

1. Predict the IRT score θj′ from a trained AES model, and rescale it to the
range [−3,3].

2. Calculate the expected score Ûj′ , which corresponds to an unbiased original-
scaled score of ej′ [39], as

Ûj′ = 1
R

R∑

r=1

K∑

k=1
k · Pj′rk. (4)

6 Experiments

This section describes evaluation of the effectiveness of the proposed method
through actual data experiments.

6.1 Actual Data

These experiments used the Automated Student Assessment Prize (ASAP)
dataset, which is widely used as benchmark data in AES studies. This dataset
consists of essays on eight topics, originally written by students from grades 7
to 10. There are 12,978 essays, averaging 1,622 essays per topic. However, this
dataset cannot be directly used to evaluate the proposed method, because despite
its essays having been graded by multiple raters, it contains no rater identifiers.

We therefore employed other raters and asked them to grade essays in the
ASAP dataset. We used essay data for the fifth ASAP topic, because the number
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Fig. 3. Score statistics (average
and SD) for each rater.

Table 1. Category usage rates.

Rater Rating category
ID 1 2 3 4 5
1 4% 23% 27% 28% 17%
2 4% 3% 36% 48% 10%
3 2% 6% 7% 32% 54%
4 2% 4% 10% 22% 62%
5 3% 20% 35% 30% 12%
6 6% 16% 33% 25% 21%
7 3% 22% 41% 23% 12%
8 12% 8% 11% 10% 58%
9 1% 11% 33% 43% 12%

10 9% 24% 28% 23% 17%

of essays in that topic is relatively large (n = 1805). We recruited 38 native
English speakers as raters through Amazon Mechanical Turk and assigned four
raters to each essay. Each rater graded around 195 essays. The assessment rubric
used the same five rating categories as ASAP. Average Pearson’s correlation
between the collected rating scores and the original ASAP scores was 0.675.

To confirm any differences in rater characteristics, we plotted averaged score
values and standard deviations (SD) for each rater, as shown in Fig. 3. In that
figure, each plot represents a rater, and horizontal and vertical axes respectively
show the average and SD values. In addition, Table 1 shows appearance rates in
the five rating categories for 10 representative raters. The figure and table show
extreme differences in grading characteristics among the raters, suggesting that
consideration of rater bias is required.

6.2 Experimental Procedures

This subsection shows that the proposed method can provide more robust scores
than can conventional AES models, even when the rater grading each essay in
the training data changes. The experimental procedures, which are similar to
those used in previous studies examining IRT scoring robustness [39–42], were
as follows:
1. We estimated IRT parameters by the Markov chain Monte Carlo (MCMC)

algorithm [30,42] using all rating data.
2. We created a dataset consisting of (essay, score) pairs by randomly selecting

one score for each essay from among the scores assigned by multiple raters.
We repeated this data generation 10 times. Hereafter, the m-th generated
dataset is represented as U ′

m.
3. From each dataset U ′

m, we estimated IRT scores θ (referred to as θm) given
the rater parameters obtained in Step 1, and then created a dataset U ′′

m

comprising essays and θm values.
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Table 2. Evaluations of prediction robustness.

Kappa Weighted Kappa RMSE Correlation
Prop. Conv. Prop. Conv. Prop. Conv. Prop. Conv.

CNN+LSTM (MoT) 0.749 0.624 0.778 0.727 0.191 0.301 0.937 0.931
CNN+LSTM (Last) 0.696 0.459 0.701 0.551 0.212 0.400 0.829 0.783
LSTM (MoT) 0.831 0.697 0.845 0.779 0.142 0.237 0.965 0.958
LSTM (Last) 0.612 0.371 0.624 0.514 0.300 0.518 0.804 0.775
BERT 0.790 0.629 0.808 0.743 0.159 0.311 0.960 0.935

4. Using each dataset U ′′
m, we conducted five-fold cross validation to train AES

models and to obtain predicted scores θ̂m for all essays.
5. We calculated metrics for agreement between the expected scores calcu-

lated by Eq. (4) given θ̂m and those calculated given θ̂m′ for all unique
m, m′ ∈ {1, · · · , 10} pairs (10C2 = 45 pairs in total). As agreement metrics,
we used Cohen’s kappa, weighted kappa, root mean squared error (RMSE),
and Pearson correlation coefficient.

6. We calculated average metric values obtained from the 45 pairs.

High kappa and correlation and low RMSE values obtained from the experiment
indicate that score predictions are more robust for different raters.

We conducted a similar experiment using conventional DNN-AES models
without the IRT model. Specifically, using each dataset U ′

m, we predicted essay
scores from a DNN-AES model through five-fold cross validation procedures as
in Step 4. We then calculated the four agreement metrics among the predicted
scores obtained from different datasets U ′

m, and averaged them.
These experiments were conducted with several DNN-AES models. Specifi-

cally, we examined CNN-LSTM models using MoT pooling or last pooling, those
models without a CNN layer, and the BERT model. These models were imple-
mented in Python with the Keras library. For the BERT model, we used the
base-sized pretrained model. The hyperparameters and dropout settings were
determined following Refs. [2,7,46].

6.3 Experimental Results

Table 2 shows the results, which indicate that the proposed method sufficiently
improves agreement metrics as compared to the conventional models in all cases.
The results indicate that the proposed method provides stable scores when the
rater allocation for each essay in training data is changed, thus demonstrating
that it is highly robust against rater bias. Note that the values in Table 2 are
not comparable with the results of previous AES studies because our experiment
and previous experiments evaluated different aspects of AES performance.

In addition, as in previous AES studies, we evaluated score (θ) prediction
accuracy of the proposed method through five-fold cross-validation. We mea-
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Table 3. Prediction accuracy for IRT score θ by the proposed method

MAE RMSE Correlation R2

CNN+LSTM (MoT) 0.431 0.546 0.719 0.499
CNN+LSTM (Last) 0.580 0.717 0.417 0.161
LSTM (MoT) 0.408 0.519 0.749 0.557
LSTM (Last) 0.509 0.640 0.584 0.340
BERT 0.400 0.511 0.763 0.562

sured accuracy using mean absolute error (MAE), RMSE, the correlation coeffi-
cient, and the coefficient of determination (R2), because θ is a continuous vari-
able. Table 3 shows the results, which indicate that the CNN-LSTM and LSTM
models with MoT pooling achieved higher performance than did those with last
pooling. The table also shows that the CNN did not effectively improve accu-
racy. These tendencies are consistent with a previous study [2]. In addition, the
BERT provided the highest accuracy, which is also consistent with current NLP
studies.

Tables 2 and 3 show that the score prediction robustness in Table 2 tends to
increase with score prediction accuracy. This might be because scores in low-
performance DNN-AES models are strongly biased not only by rater character-
istics, but also by prediction errors arising from the model itself. With increasing
accuracy of DNN-AES models, rater bias effects as a percentage of overall error
increases, suggesting that the impact of the proposed method increases.

7 Conclusion

We showed that DNN-AES model performance strongly depends on the char-
acteristics of raters grading essays in training data. To resolve this problem, we
proposed a new DNN-AES framework that integrates IRT models. Specifically,
we formulated our method as a two-stage architecture that stacks the IRT model
over a conventional DNN-AES model. Through experiments using an actual
dataset, we demonstrated that the proposed method can provide more robust
essay scores than can conventional DNN-AES models. The proposed method is
simple but powerful, and is easily applicable to any AES model. As described
in the Introduction, our method is also highly suited to situations where high-
quality training data are hard to prepare, including educational contexts.

In future studies, we expect to evaluate effectiveness of the proposed method
using various datasets. Although this study mainly focused on robustness against
rater bias, the proposed method might also improve prediction accuracy for each
rater’s score. In future studies, the accuracy should be evaluated. Our method
is defined as a two-stage procedure for separately training IRT models and
DNN-AES models. However, conducting end-to-end optimization would further
improve the performance. This extension is another topic for future study.
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