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Robust non-fragile guaranteed cost control of uncertain large-scale

systems with time-delays in subsystem interconnections

JU H. PARK*

In this paper, the robust non-fragile guaranteed cost-control problem is studied for a
class of uncertain linear large-scale systems with time-delays in subsystem interconnec-
tions and given quadratic cost functions. The uncertainty in the system is assumed to
be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of
the large-scale system are assumed to have norm-bounded controller gain variations.
The problem is to design a state feedback control law such that the closed-loop
system is asymptotically stable, and the closed-loop cost function value is not more
than a specified upper bound for all admissible uncertainties. Sufficient conditions for
the existence of such controllers are derived based on the linear matrix inequality
(LMI) approach combined with the Lyapunov method. A parameterized characteriza-
tion of the robust non-fragile guaranteed cost controllers is given in terms of the feasible
solutions to a certain LMI. A numerical example is given to illustrate the proposed
method.

1. Introduction

There exist many real-world systems that can be
modelled as large-scale systems: examples are power sys-
tems, communication systems, economic systems, social
systems, transportation systems, and so on. It is also
well known that the control of such large-scale systems
can become very complicated owing to the high
dimensionality of the system equation, uncertainties,
and time-delays. So, it is standard practice to divide
such systems into a number of interconnected subsys-
tems (Siljak 1978, Mahmoud et al. 1985). In view of
reliability and practical implementation, the decentra-
lized stabilization of large-scale interconnected systems
becomes a very important problem and has been studied
extensively for more than two decades (see, for example,
Geromel and Yamakami 1982, Shi and Gao 1987, Chen
et al. 1991, Chen 1992, Ho et al. 1992, Yan et al. 1998).
Also, since time-delays are frequently introduced because
of computation of data, measurement of system vari-
ables, or signal transmission between subsystems,

many researchers have considered the problem of
stability analysis and control of various large-scale
systems with time-delays (see, for example, Lee and
Radovic 1988, Hu 1994, Jiang and Wang 2000,
Oucheriah 2000, Cheng et al. 2001, and references
therein). However, when controlling a real plant, it is
also desirable to design a control system which is
not only stable but also guarantees an adequate level
of performance. One way to address the robust perfor-
mance problem is to consider a linear quadratic cost
function. This approach is the so-called guaranteed
cost control (Chang and Peng 1972). The approach
has the advantage of providing an upper bound on a
given performance index, and thus the system perform-
ance degradation incurred by the uncertainties is
guaranteed to be less than this bound. Recently, there
have been considerable efforts to tackle the guaran-
teed-cost controller design problem (Petersen 1995,
Petersen et al. 1998, Guan et al. 1999, Yu and Chu
1999, Aliyu 2000, Arzelier and Peaucelle 2000).

While the above methods yield controllers that
are robust to uncertainties in the plant under control,
their robustness with respect to uncertainties in the
controllers themselves has not been considered. In a
recent study by Keel and Bhattacharyya (1997), it
is shown that the controllers may be very sensitive,
or fragile with respect to errors in the controller
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coefficients, although they are robust with respect to
plant uncertainty. This raises a new issue: how to
design a controller for a given plant with uncertainty
such that the controller is insensitive to some amount
of error with respect to its gain, i.e. the controller is
non-fragile. More recently, there have been some efforts
to tackle the non-fragile controller design problem
(Dorato 1998, Dorato et al. 1998, Famularo et al.
1998, Corrado and Haddad 1999). Unfortunately,
untill now, the topic of robust non-fragile control for
large-scale systems has received little attention. In this
paper, we consider a class of linear large-scale systems
with parametric uncertainties in the system matrices,
controller gain variations, and time-delays in subsystem
interconnections. The uncertainty is time-varying and is
assumed to be norm-bounded. Using the Lyapunov
functional technique combined with a linear matrix
inequality (LMI) technique, we develop a robust non-
fragile guaranteed cost control for this system via memo-
ryless state feedback, which makes the closed-loop
system robustly stable for all admissible uncertainties
and guarantees an adequate level of performance. A sta-
bility criterion for the existence of the guaranteed cost
controller is derived in terms of LMIs, and their solu-
tions provide a parameterized representation of the con-
trol. The LMIs can be easily solved by various efficient
convex optimization algorithms (Boyd et al. 1994).
Finally, a numerical example is given to illustrate the
proposed design method.

Notations: Throughout the paper, Rn denotes the
n-dimensional Euclidean space, and Rn�m is the set of
all n�m real matrices. I denotes the identity matrix
with appropriate dimensions. �Mð�Þ denotes the largest
eigenvalue of the given matrix. diagf� � �g denotes
the diagonal matrix. For symmetric matrices X and
Y, the notation X > Y (respectively, X � Y) means
that the matrix X � Y is positive definite, (respectively,
nonnegative).

2. Problem formulation

Consider a class of uncertain large-scale system com-
posed of N interconnected subsystems described by

Si : _xxiðtÞ ¼
h
Aiþ�AiðtÞ

i
xiðtÞþ

XN
j 6¼i

h
Aij þ�AijðtÞ

i
xjðt� �ijÞ

þBiuiðtÞ, i¼ 1,2, . . . ,N, ð1Þ

where xiðtÞ 2 Rni is the state vector, uiðtÞ 2 Rmi is the
control vector, and �ij is the time-delay between subsys-
tem i and j. The system matrices Ai,Bi, and Aij are
of appropriate dimensions, and �AiðtÞ and �AijðtÞ are

real-valued matrices representing time-varying param-
eter uncertainties in the system.

Assume that the pair ðAi,BiÞ, i ¼ 1, . . . ,N, is stabiliz-
able, and the time-varying uncertainties are of the form

�AiðtÞ ¼ DaiFaiðtÞEai, �AijðtÞ ¼ DaijFaijðtÞEaij, ð2Þ

where Dai,Daij,Eai, and Eaij are known constant real
matrices with appropriate dimensions, and FaiðtÞ and
FaijðtÞ are unknown matrix functions which are
bounded as

FT
ai ðtÞFaiðtÞ � I , FT

aijðtÞFaijðtÞ � I , 8i, j � 0: ð3Þ

Associated with each subsystem Si is the following quad-
ratic cost function

Ji ¼

ð1
0

h
xTi ðtÞQixiðtÞ þ uTi ðtÞRiuiðtÞ

i
dt ð4Þ

where Qi 2 Rni�ni and Ri 2 Rmi�mi are given positive-
definite matrices.

Now, although one finds the controller uiðtÞ ¼ KixiðtÞ
for each subsystem, the actual controller implemented is

uiðtÞ ¼ �½Ki þ�Ki�xiðtÞ, i ¼ 1, 2, . . . ,N, ð5Þ

where Ki 2 Rmi�ni is the nominal controller gain to be
designed, and �Ki represents the multiplicative gain
perturbations of the form

�Ki ¼ Hi�iðtÞEiKi, ð6Þ

with Hi and Ei being known constant matrices,
and uncertain parameter matrix �iðtÞ satisfying
�T

i ðtÞ�iðtÞ � I .
Here, the objective of this paper is to develop a

procedure to design a state feedback controller ui(t)
for uncertain system (1) and cost function (4), such
that the resulting closed-loop subsystem given by

_xixiðtÞ ¼ ½Ai þ�AiðtÞ � BiðI þHi�iðtÞEiÞKi� xiðtÞ

þ
XN
j 6¼i

½Aij þ�AijðtÞ�xjðt� �ijÞ ð7Þ

is asymptotically stable, and the closed-loop value of
the cost function (4) satisfies Ji � J�

i , where J�
i is some

specified constant.

Definition 1: For an uncertain large-scale system (1)
and cost function (4), if there exist a control law u�i ðtÞ
and a positive J�

i such that for all admissible uncertain-
ties the closed-loop system (7) is asymptotically stable
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and the closed-loop value of the cost function (4) satis-
fies Ji � J�

i , then J�
i is said to be a guaranteed cost,

and u�i ðtÞ is said to be a guaranteed cost-control law of
system (1) and cost function (4).

Remark 1: The controller gain perturbation can result
from the actuator degradations, as well as from the
requirement for readjustment of controller gains
during the controller implementation state (Keel and
Bhatacharyya 1997, Dorato 1998). These perturbations
in the controller gains are modelled here as uncertain
gains that are dependent on uncertain parameters.
In the literature (Famularo et al. 1998, Haddad and
Corrado 1998, Corrado and Haddad 1999), the models
of additive uncertainties and multiplicative uncertainties
are used to describe the controller gain variation.
The uncertainty given in (6) is a class of multiplicative
uncertainties.
Before proceeding further, we will state a well-known

lemma (Boyd et al. 1994).

Lemma 1: The linear matrix inequality

QðxÞ SðxÞ

ST ðxÞ RðxÞ

" #
> 0,

is equivalent to

RðxÞ > 0, QðxÞ � SðxÞR�1ðxÞST ðxÞ > 0,

where QðxÞ ¼ QT ðxÞ,RðxÞ ¼ RT ðxÞ and S(x) depend
affinely on x.

3. Design of robust decentralized guaranteed

cost controller

In this section, we consider the problem of decentral-
ized robust non-fragile guaranteed cost control for the
uncertain closed-loop system described by (7) using the
Lyapunov method combined with the LMI technique.
For simplicity, we define

Adi ¼
XN
j 6¼i

AijA
T
ij

 !1=2

, Ddi ¼
XN
j 6¼i

DaijD
T
aij

 !1=2

,

Rdi ¼
XN
j 6¼i

I þ ET
ajiEaji

� � !1=2

, �i ¼ �1=2M ðHT
i RiHiÞ:

ð8Þ

Theorem 1: uiðtÞ ¼ �KixiðtÞ is a guaranteed cost con-
troller for each subsystems if there exist positive-definite
matrix Pi and positive scalars �i, "0i, and "i such that

for any admissible uncertain matrices FiðtÞ,FaijðtÞ, and
�iðtÞ, the following matrix inequality holds:

AT
i Pi þ PiAi þ "0iPiDaiD

T
aiPi þ "�1

0i E
T
aiEai � PiBiKi

� KT
i B

T
i Pi þ "�1

i KT
i E

T
i EiKi þ "iPiBiHiH

T
i B

T
i Pi

þ PiAdiA
T
diPi þ PiDdiD

T
diPi þ RT

diRdi þQi þ KT
i RiKi

þ ��1
i KT

i E
T
i EiKi þ �iK

T
i RiHiH

T
i RiKi

þ �2
i K

T
i E

T
i EiKi < 0 for i ¼ 1, 2, . . . ,N: ð9Þ

Proof: Consider a Lyapunov function candidate

V ¼
XN
i¼1

Vi

¼
XN
i¼1

 
xTi ðtÞPixiðtÞ þ

XN
j¼1, j 6¼i

ðt
t��ij

xTj ðsÞRijxjðsÞds

!

ð10Þ

where Rij is the positive definite matrix to be chosen
later.

The time derivative of V is given by

_VV ¼
XN
i¼1

(
_xxTi ðtÞPixiðtÞ þ xTi ðtÞPi _xxðtÞ

þ
XN

j¼1, j 6¼i

h
xTj ðtÞRijxjðtÞ � xTj ðt� �ijÞRijxjðt� �ijÞ

i)
:

ð11Þ

Substituting (7) into (11), we have

_VV¼
XN
i¼1

(
xTi ðtÞ

h
AT

i PiþPiAiþ2PiDaiFaiðtÞEai

�2PiBiKi�2PiBiHi�iðtÞEiKi

i
xiðtÞ

þ2xTi ðtÞPi

XN
j¼1, i 6¼j

ðAijþDaijFaijðtÞEaijÞxjðt��ijÞ

þ
XN

j¼1, j 6¼i

h
xTj ðtÞRijxjðtÞ�xTj ðt��ijÞRijxjðt��ijÞ

i)
:

ð12Þ

Using the well-known inequality that

U�VT þ V�UT � "UUT þ "�1VVT , " > 0 ð13Þ

for any matrices U,V and � with �T� � I , we can
eliminate the unknown factor, FaiðtÞ,FaijðtÞ and �iðtÞ,
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of parameter uncertainties. Then, the terms on the right-
hand side of (12) are bounded as

XN
i¼1

2xTi ðtÞPiDaiFaiðtÞEaixiðtÞ

�
XN
i¼1

"0ix
T
i ðtÞPiDaiFaiðtÞF

T
ai ðtÞD

T
aiPixiðtÞ

�
þ"�1

0i x
T
i ðtÞE

T
aiEaixiðtÞ

�
�
XN
i¼1

"0ix
T
i ðtÞPiDaiD

T
aiPixiðtÞþ"�1

0i x
T
i ðtÞE

T
aiEaixiðtÞ

� �

�
XN
i¼1

2xTi ðtÞPiBiHi�iðtÞEiKixiðtÞ

�
XN
i¼1

�
"�1
i xTi ðtÞK

T
i E

T
i EiKixiðtÞ

þ"ix
T
i ðtÞPiBiHi�iðtÞ�

T
i ðtÞH

T
i B

T
i PixiðtÞ

�

�
XN
i¼1

�
"�1
i xTi ðtÞK

T
i E

T
i EiKixiðtÞ

þ"ix
T
i ðtÞPiBiHiH

T
i B

T
i PixiðtÞ

�
XN
i¼1

2xTi ðtÞPi

XN
j 6¼i

Aijxjðt��ijÞ

�
XN
i¼1

xTi ðtÞPi

XN
j 6¼i

AijA
T
ij PixiðtÞþ

XN
j 6¼i

xTj ðt��ijÞxjðt��ijÞ

 !

¼
XN
i¼1

xTi ðtÞPiAdiA
T
diPixiðtÞþ

XN
j 6¼i

xTj ðt��ijÞxjðt��ijÞ

 !

XN
i¼1

2xTi ðtÞPi

XN
j 6¼i

DaijFaijðtÞEaijxjðt� �ijÞ

�
XN
i¼1

xTi ðtÞPi

XN
j 6¼i

DaijFaijðtÞF
T
aijðtÞD

T
aijPixiðtÞ

 

þ
XN
j 6¼i

xTj ðt� �ijÞE
T
aijEaijxjðt� �ijÞ

!

�
XN
i¼1

xTi ðtÞPi

XN
j 6¼i

DaijD
T
aijPixiðtÞ

 

þ
XN
j 6¼i

xTj ðt� �ijÞE
T
aijEaijxjðt� �ijÞ

!

¼
XN
i¼1

 
xTi ðtÞPiDdiD

T
diPixiðtÞ

þ
XN
j 6¼i

xTj ðt� �ijÞE
T
aijEaijxjðt� �ijÞ

!
, ð14Þ

where Adi and Ddi are defined in (8), and "0i and "i are
positive scalars to be chosen.

Substituting (14) into (12) gives

_VV �
XN
i¼1

(
xTi ðtÞ

h
AT

i Pi þPiAi þ "0iPiDaiD
T
aiPi þ "�1

0i E
T
aiEai

þ "�1
i KT

i E
T
i EiKi � 2PiBiKi þ "iPiBiHiH

T
i B

T
i Pi

þPiAdiA
T
diPi þPiDdiD

T
diPi

i
xiðtÞ

þ
XN

j¼1, j 6¼i

h
xTj ðtÞRijxjðtÞ�xTj ðt� �ijÞ

�

�
Rij � I �ET

aijEaij

�
xjðt� �ijÞ

i)
: ð15Þ

Now, let us choose Rij as I þ ET
aijEaij and note that

XN
i¼1

XN
j¼1, i 6¼j

xTj ðtÞRijxjðtÞ ¼
XN
i¼1

xTi ðtÞ

 XN
j 6¼i

Rji

!
xiðtÞ: ð16Þ

Then (15) is simplified as

_VV ¼
XN
i¼1

Vi

�
XN
i¼1

(
xTi ðtÞ

h
AT

i Pi þ PiAi þ "0iPiDaiD
T
aiPi þ "�1

0i E
T
aiEai

� 2PiBiKi þ RT
diRdi þ "�1

i KT
i E

T
i EiKi

þ "iPiBiHiH
T
i B

T
i Pi þ PiAdiA

T
diPi

þ PiDdiD
T
diPi

i
xiðtÞ

)

�
XN
i¼1

xTi ðtÞ�xiðtÞ

¼
XN
i¼1

(
xTi ðtÞ

h
�þQþ KT

i RiKi þ 2KT
i Ri�Ki

þ�KT
i Ri�Ki

i
xiðtÞ

� xTi ðtÞ
h
Qi þ uTi ðtÞRiuiðtÞ

i
xiðtÞ

)
: ð17Þ

Again, using the inequality (13), for �i > 0, we have

2xTi ðtÞK
T
i Ri�KixðtÞ

� ��1
i xTi ðtÞK

T
i E

T
i EiKixiðtÞ þ �ix

T
i ðtÞK

T
i RiHiH

T
i RiKixðtÞ

xTi ðtÞ�
TKiRi�KixðtÞ � �2

i x
T
i ðtÞK

T
i E

T
i EiKixiðtÞ:

ð18Þ

236 J. H. Park



By substituting (18) into (17), the matrix inequality (9)
implies that

_VV ¼
XN
i¼1

_VVi < �
XN
i¼1

xTi ðtÞ Qi þ uTi ðtÞRiuiðtÞ
� �

xiðtÞ < 0:

ð19Þ

Noting Qi > 0 and Ri > 0, this implies that the system
(7) is asymptotically stable by Lyapunov stability
theory. Furthermore, from (19), we have

xTi ðtÞðQi þ KT
i RiKiÞxiðtÞ < _VVi:

Integrating both sides of the above inequality from 0
to T leads to

ðT
0

xTi ðtÞðQi þ KT
i RiKiÞxiðtÞ dt

< xTi ð0ÞPixið0Þ � xTi ðTÞPixiðTÞ

þ
XN
j 6¼i

ð0
��ij

xjðsÞ
TRijxjðsÞ ds

�
XN
j 6¼i

ðT
T��ij

xjðsÞ
TRijxjðsÞ ds:

As the closed-loop system (7) is asymptotically stable,
when T ! 1,

xTi ðTÞPixiðTÞ ! 0 and

ðT
T��ij

xjðsÞ
TRijxjðsÞ ds ! 0:

Hence we get

ð1
0

xTi ðtÞðQi þ KT
i RiKiÞxiðtÞ dt < xTi ð0ÞPixið0Þ

þ
XN
j 6¼i

ð0
��ij

xjðsÞ
TRijxjðsÞ ds¼

�
J�
i , ð20Þ

which completes the proof. œ

In the following, we will show that the above sufficient
condition for the existence of guaranteed cost control-
lers is equivalent to the feasibility of LMI.

Theorem 2: For given Ri > 0 and Qi > 0, if there exist
a matrix Mi, positive-definite matrices Xi, and positive
scalars, �i, c"0i, and "i, such that for i ¼ 1, 2, . . . ,N, the

following LMI is feasible:

�1 XiE
T
ai MT

i E
T
i XiR

T
di Xi �2

� �"0iI 0 0 0 0

� � �"iI 0 0 0

� � � �I 0 0

� � � � �Q�1
i 0

� � � � � ��3

2
66666664

3
77777775
< 0

ð21Þ

where Xi ¼ P�1
i and

�1 ¼ XiA
T
i þ AiXi þ "0iDaiD

T
ai � BiMi �MT

i B
T
i

þ "iBiHiH
T
i B

T
i þ AdiA

T
di þDdiD

T
di,

�2 ¼ MT
i MT

i E
T
i �iM

T
i RiHi �iM

T
i E

T
i

� �
,

�3 ¼ diagfR�1
i ,�iI ,�iI , Ig,

then the state feedback control law

uiðtÞ ¼ �KixiðtÞ ¼ �MiX
�1
i xiðtÞ ð22Þ

is a non-fragile guaranteed cost control law for robust
decentralized stabilization of the uncertain large-scale
systems (7), and the corresponding closed-loop value
of the cost function satisfies Ji � J�

i , in which J�
i is

given in (20).

Proof: By premultiplying and postmultiplying Xi

onto (9), we get

XiA
T
i þ AiXi þ "0iDaiD

T
ai þ "�1

0i XiE
T
aiEaiXi � BiKiXi

� XiK
T
i B

T
i þ "�1

i XiK
T
i E

T
i EiKiXi þ "iBiHiH

T
i B

T
i

þ AdiA
T
di þDdiD

T
di þ XT

i R
T
diRdiXi þ XiQiXi

þ XiK
T
i RiKiXi þ ��1

i XiK
T
i E

T
i EiKiXi

þ �iXiK
T
i RiHiH

T
i RiKiXi þ �2

i XiK
T
i E

T
i EiKiXi < 0:

ð23Þ

Using a change of variable, Mi ¼ KiXi, and Lemma 1,
the inequality (23) is equivalent to (21). This completes
the proof. œ

Remark 2: Since the inequality (21) is a linear matrix
inequality in Xi,Mi, "0i, "i,�i, the inequality (21) defines
a convex solution set of ðXi,Mi,�i, "0i, "iÞ, and therefore
various efficient convex optimization algorithms can be
used to check whether the LMI is feasible. Moreover,
the decentralized gain matrix Ki can be calculated
from the relation Mi ¼ KiP

�1
i after finding the LMI

solutions, Xi ð¼ P�1
i Þ and Mi from (21). In this paper,

in order to solve the LMI, we utilize Matlab’s LMI
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Control Toolbox (Gahinet et al. 1995), which imple-
ments state-of-the-art interior-point algorithms, which
is significantly faster than classical convex optimization
algorithms (Boyd et al. 1994).
Theorem 2 presents a method of designing a state

feedback guaranteed cost controller. The following
theorem presents a method of selecting a controller
minimizing the upper bound of the guaranteed cost (20).

Theorem 3: Consider system (7) with cost function (4).
If the following optimization problem

min
Xi ,Mi , "0i , "i , �i , �i

�i

ðiÞ LMI ð21Þ ð24Þ

ðiiÞ
�ð�i � �iÞ xTi ð0Þ

xið0Þ �Xi

" #
< 0, for i ¼ 1, 2, . . . ,N

ð25Þ

has a solution set (�i,�i,Xi,Mi, "0i, "i), then the control
law (22) is an optimal non-fragile guaranteed cost control
law which ensures the minimization of the guaranteed cost
(20) for the uncertain large-scale system (7), where
�i ¼

PN
j 6¼i

Ð 0
��ij

xjðsÞ
TRijxjðsÞ ds.

Proof: By Theorem 2, (i) in (24) is clear. Also, it
follows from the Lemma 1 that (ii) in (24) is equiva-
lent to xTi ð0ÞX

�1
i xið0Þ þ �i < �i. So, it follows from

(20) that

J�
i < �i, for i ¼ 1, 2, . . . ,N:

Thus, the minimization of �i implies the minimization of
the guaranteed cost for the subsystem (7). The convexity
of this optimization problem ensures that a global
optimum, when it exists, is reachable. œ

To illustrate the application of the proposed method,
we present the following example.

0 1 2 3 4 5 6 7 8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(sec)

S
ta

te
s

x11(t)
x12(t)

Figure 1. State responses of subsystem 1.
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Example 1: Consider a large-scale system which is com-
posed of the following two interconnected subsystems

_xx1ðtÞ ¼
0 1

1 �2

" #
x1ðtÞ

þ
1 �0:1 0:5

�0:5 0:5 1

" #
x2ðt� 1Þ þ�A1ðtÞx1ðtÞ

þ�A12ðtÞx2ðt� 1Þ þ
2

0

" #
u1ðtÞ,

_xx2ðtÞ ¼

1 1 0

0 0 1

1 1 �3

2
64

3
75x2ðtÞ

þ
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Figure 2. State responses of subsystem 2.
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and the initial conditions of each subsystem are as fol-
lows:

x1ðtÞ ¼ ½0 0�T , x2ðtÞ ¼ ½0 0 0�T , for � 1 � t < 0

x1ðtÞ ¼ ½1 � 1�T , x2ðtÞ ¼ ½0:5 2 � 2�T , for t ¼ 0:

(

Also, the following multiplicative controller uncertain-
ties of the form (6) are considered:

H1 ¼ 1 1
� �

, E1 ¼
0:2

0:2

" #

H2 ¼
0:5 0

0 0:5

" #
, Ee ¼

0:5 0

0 0:5

" #
:

Associated with this system is the cost function of (4)
with Q1 ¼ I ,Q2 ¼ I ,R1 ¼ 0:2 I and R2 ¼ 0:2 I .
Here, solving the optimization problem of Theorem 3,

we find the positive solutions of the LMIs for the sub-

system 1 as

X1 ¼
1:3380 �0:6686

�0:6686 0:7932

� �
, M1 ¼ 5:1725 0:0000

� �
,

"01 ¼ 2:1854, "1 ¼ 0:5173,

�1 ¼ 108 � 7:3832, �1 ¼ 9:5426:

Similarly, the solutions for the subsystem 2 are as
follows:

X2 ¼

0:1193 0:3397 �0:1337

0:3397 1:1078 �0:6813

�0:1337 �0:6813 2:0792

2
64

3
75,

M2 ¼
3:5294 3:5294 0:0000

�0:0000 1:7647� 3:5295

" #
,
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�2 ¼ 108 � 3:5267, �2 ¼ 6:4915:
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Figure 3. Control inputs for subsystems 1 and 2.
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Therefore, the gain matrices, Ki, of the stabilizing
controller, ui, for two subsystems are

K1 ¼ M1X
�1
1 ¼ 6:6788 5:6296

� �
K2 ¼ M2X

�1
2 ¼

200:0072 �62:9207 �7:7596

�63:8996 24:6793 5:6763

� �
,

and the optimal guaranteed costs of the uncertain closed-
loop system are as follows:

J�
1 ¼ �1 ¼ 9:5426

J�
2 ¼ �2 ¼ 6:4915:

For computer simulation, the following control laws
are employed:

u1ðtÞ ¼ �ðI þH1�1ðtÞE1ÞK1x1ðtÞ

u2ðtÞ ¼ �ðI þH2�2ðtÞE2ÞK2x2ðtÞ,

where

�1ðtÞ ¼
sinðtÞ 0
0 cosðtÞ

� �
, �2ðtÞ ¼

cosð2tÞ 0
0 sinðtÞ

� �
:

The simulation results are shown in figures 1–3. In the
figures, one can see that the system is indeed well
stabilized irrespective of uncertainties and controller
gain variations.

4. Conclusion

In this paper, a robust non-fragile guaranteed
cost-controller design method for uncertain large-scale
interconnected systems with time-delays in subsystem
interconnections is presented by the LMI framework.
Using the Lyapunov method, the controller is obtained
through a convex optimization problem. Finally, a
numerical example is given for illustration of controller
design, and simulation results show that the system
is well stabilized in spite of controller gain variations
and uncertainties.
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