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Robust non-fragile LQ controllers: the static state feedback case

DOMENICO FAMULARO{} , PETER DORATO{ , CHAOUKI T. ABDALLAH{ ,
WASSIM M. HADDAD} and ALI JADBABAIE{

This paper describes the synthesis of non-fragile or resilient regulators for linear systems. A general framework for
fragility is described using state-space methodologies, and the LQ/H 2 static state-feedback problem is examined in detail.
We discuss the multiplicative structured uncertainties case, and propose remedies of the fragility problem using an
optimization programming framework via matrix inequalities. A special case that leads to a convex optimization frame-
work via linear matrix inequalities (LMIs) will be considered. The benchmark problem is taken as an example to show
how special controller gain variations can a� ect the performance of the closed-loop system.

1. Introduction

In the literature there are di� erent theoretical
approaches and several computational techniques
which treat the classical problem shown in ® gure 1:

Given a linear plant P with additive uncertainties P,
® nd a feedback controller K which internally stabilizes the
family P ‡ P and satis® es a given performance measure.

In a recent paper, however, Keel and Bhattacharyya
(1997) have shown that, in the case of unstructured
uncertainties in the plant, the controllers resulting
from either weighted H 1 , Š or l1 synthesis techniques
exhibit a poor stability margin if not implemented
exactly. This so-called f̀ragility’ is displayed even
though these controllers are optimal when implemented
using their nominal parameters. Another example of a
compensator that cannot be exactly implemented is
from Rosenthal and Wang (1996) where a dynamic con-
troller is going to be designed in order to place the
closed loop poles of a linear plant: it can be easily
shown that, in one numerical example, the 15th digits
numerical implementation of the controller matrices
results in an unstable closed-loop system!

Keel and Bhattacharrya (1997) give the following
suggestions to overcome the fragility problem:

(1) Develop synthesis algorithms which take into
account the uncertainties in the controllers and
search for the `best’ solution that guarantees a
compromise between optimality and fragility;

(2) Parametrize the controller in an appropriate way
(lower-order or ® xed-structure controllers).

Haddad and Corrado (1997) address and solve a
special case of the fragility problem by considering a
structured uncertain dynamic compensator for a noise-
driven linear plant: with the use of classical quadratic
Lyapunov bounds (Bernstein and Haddad 1990),
Haddad and Corrado (1997) obtain a controller which
is proven to be r̀esilient’ in the sense that stability and
some measure of performance are maintained even when
the controller is not exactly implemented.

It is true that other authors have hinted at the prob-
lem of fragility (see, for example, Ackermann 1993, p.
75) and that many critics have dismissed the issue, since
robust controllers are not designed to be resilient. On
the other hand, the problem is reminiscent of the linear
quadratic Gaussian (LQG) optimal controllers which
were only useful when implemented on the exact plant,
and had no guaranteed robustness margins if the plant
was uncertain. This lack of robustness was corrected
using linear quadratic Gaussian synthesis with loop
transfer recovery (LQG/LTR) (Dorato et al. 1995). In
addition, even robust controllers will eventually have to
be implemented on an actual system using digital hard-
ware, and should be resilient both to implementation
errors and to tuning (Ackermann 1993).

The aim of this paper is to extend the ideas in Keel
and Bhattacharyya (1997), Haddad and Corrado (1997)
and, with reference to the scheme of ® gure 2, to analyse
the robust fragility problem for a static full-state feed-
back controller synthesis problem by considering the
combined e� ect of structured uncertainties in the plant
and in the compensator. Note that it is reasonable to
consider only structured uncertainties in the controller
since the designer can exactly choose the structure even
though he may not be able to implement that nominal
con® guration. The basic idea is that, instead of comput-
ing the controller as a single point in the parameters
space, we look for a set of controllers allowing the par-
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ameters to lie in a region of uncertainty. This is reminis-
cent of the design of Ackermann (1993) and Barmish et
al. (1992).

This paper is organized as follows. In } 2, we present
the synthesis of static state feedback controllers for
linear systems while allowing structured uncertainties
in the feedback gain matrix. We then further restrict
our study to multiplicative structured uncertainties in
the plant. In } 3, a numerical example using linear matrix
inequalities as a computational tool is given. Our con-
clusions and directions for future research are given in
} 4.

2. Outline of the problem

Consider the following time-varying linear system

_x…t† ˆ A…t†x…t† ‡ B u…t† ; x…0† ˆ x0; t 0

z…t† ˆ Czx…t† ‡ Dzu…t†

8
<

:
…1†

where

. x…t† 2 R
n, is the state vector, u…t† 2 R

m , is the con-
trol input, z…t† 2 R

l is the objective measurements
vector,

. A…t† , t 0, contains a� ne uncertainties (see Gahi-
net et al. 1995) of the form

A…t† ˆ A0 ‡
Xq

rˆ1

¬ r…t†Ar ˆ A0 ‡ ¯A

. where the scalar coe� cients ¬r…t† , t 0, are
Lebesgue measurable functions on ‰0; 1 † repre-
senting unknown coe� cients grouped in the vector

a ˆ ¬1; . . . ; ¬q

. whose values belong to an uncertainty interval X

X ˆ ¬ r…t† ¬ r ¬ r…t† ¬r; 1 r q; t 0j gf …2†

In order to simplify the notation, we suppress the time
dependence of the ¬rs when no confusion arises. The
system (1) can then be written in the form

_x…t† ˆ …A0 ‡ ¯A†x… t† ‡ B u…t†

z…t† ˆ Czx…t† ‡ Dzu…t†

8
<

:
…3†

Now, we assume that the initial condition x…0† ˆ x0 is a
random variable with zero mean and covariance matrix
equal to In and proceed to ® nd a state-feedback com-
pensator u…t† ˆ Kx…t† which minimizes the linear quad-
ratic (LQ) performance index, given by

J ˆ E
… 1

0
zT…t†z…t† dt …4†

where E denotes the expectation with respect to the
initial state x0. As standard assumptions, we suppose
that the matrices Cz and Dz are such that CT

z Dz ˆ 0
and DT

z Dz > 0.

2.1. Non-fragile controller synthesis scheme
Although one ® nds a controller u ˆ Kx to minimize

(4), the controller actually implemented is

u… t† ˆ …K ‡ ¯K†x…t† …5†

where K is the nominal controller gain, and the term ¯K,
which belongs to a closed and bounded subset of R

m n,
D K, and contains the element ¯K ˆ 0, it represents con-
troller gain variations. In this case, the performance
index (4) is a function of K, the uncertain term ¯K,
and the uncertainties a in (3) and hence
J ˆ J …K; ¯K; a† .

The following standard robustness analysis pro-
cedure can then be applied to test the fragility of the
controller.

(1) Letting ¯K ˆ 0, a `nominal’ controller K is
designed so that the guaranteed-cost (Bernstein
and Haddad 1990)

J…K† ˆ sup
a 2 X

J …K; 0; a†

(1) is minimized.
(2) Suppose the controller to be `nominal’ , K, and

compute the LQ/H 2 guaranteed cost taking into
account the uncertainty in the controller.

160 D. Famularo et al.
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Figure 1. Robust control scheme.
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Figure 2. Robust fragility control scheme.
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The design which explicitly takes into account the
fragility issue is instead: compute a new controller ~K
by solving the new guaranteed cost problem

min
K 2 Rm n

~J…K† …6†

where

~J…K† ˆ sup
¯K 2 D K;a 2 X

J …K; ¯K; a†

With this scheme in mind, we now study the multi-
plicative uncertainty case of equation (5) in greater
detail.

2.2. Multiplicative structured uncertainties
Let the nominal state-feedback matrix K be an m n

…m < n† matrix. If we allow relative percentage drift
from the nominal entries of the matrices K and represent
each entry of the perturbed matrix as a multiplicative
scalar uncertainty, we have

…K ‡ ¯K† ˆ

k11…1 ‡ ¯11† k1n…1 ‡ ¯1n†

..

. . .
. ..

.

km1…1 ‡ ¯m1† kmn…1 ‡ ¯mn†

2

6

6

6

6

4

3

7

7

7

7

5

ˆ

k11 k1n

..

. . .
. ..

.

km1 kmn

2

6

6

6

6

4

3

7

7

7

7

5

‡

k11¯11 k1n¯1n

..

. . .
. ..

.

km1¯m1 kmn¯mn

2

6

6

6

6

4

3

7

7

7

7

5

…7†

where ¯ij 2 ˆ f¯ij j ¡ 1 < ¯ ij ¯ij ¯ ij < 1; i ˆ 1; . . . ; m;

j ˆ 1; . . . ; ng . Equation (7) can be rewritten as

K ‡ ¯K ˆ
Xm

iˆ1

ei 1 ‡ ¯i1 1 ‡ ¯ in‰ Š

ki1

. .
.

kin

2

6

6

4

3

7

7

5

ˆ
Xm

iˆ1
eiv

T
i K i …8†

where ei , i ˆ 1; . . . ; m, is the canonical basis column vec-
tor of R

m and vT
i , i ˆ 1; . . . ; m is an n-dimensional row

vector which collects the terms 1 ‡ ¯i1 . . . 1 ‡ ¯in‰ Š. In
this case, the closed-loop system is given by

_x…t† ˆ A0 ‡
Xq

iˆ1

¬ iAi ‡ B
Xm

iˆ1

eiv
T
i K i… †x…t†

ˆ A0 ‡
Xq

rˆ1

¬rAr ‡
Xm

iˆ1

biv
T
i K i… †x…t† …9†

where bi is the ith n-dimensional column of the matrix B.
The product biv

T
i can be arranged as

B i0 ‡ ¯i1B i1 ‡ ‡ ¯i2B in ˆ B i0 ‡
Xn

jˆ1

¯ ijB ij

where B i0 ˆ bi . . . bi‰ Š and B ij ˆ bie
T
j . Finally, the

closed-loop system matrix has the following structured
uncertainty form

A0 ‡
Xq

rˆ1

¬rAr ‡
Xm

iˆ1

B i0 ‡
Xn

jˆ1

¯ijB ij… †K i

ˆ ~A …a† ‡
Xm

iˆ1

~B i…di†K i …10†

where a ˆ ¬1; . . . ; ¬q and di ˆ ¯i1; . . . ; ¯in‰ Š, i ˆ
1; . . . ; m. The same scheme is applied to the expression
of the objective measurements z…t†

z…t† ˆ Czx…t† ‡
Xm

iˆ1

D z;i0 ‡
Xn

jˆ1

¯ijD z;ij… †K ix…t†

ˆ Czx…t† ‡
Xm

iˆ1

~D z;i…di†K ix…t†

If the ®̀ ctitious’ set of inputs ~ui…t† ˆ K ix…t† 2 R
n,

i ˆ 1; . . . ; m, is introduced, the LQ/H 2 synthesis prob-
lem can be restated as: given the linear uncertain system

_x…t† ˆ ~A …a†x…t† ‡
Xm

iˆ1

~B i…di† ~ui…t†

z…t† ˆ Czx…t† ‡
Xm

iˆ1

~D z;i…di† ~ui…t†

8
>>>>><

>>>>>:

…11†

where ~A …a† and ~B i…di† are from …10† , ® nd diagonal
matrices K 1; . . . ; K m, such that, if ~ui…t† ˆ K ix…t† , the
guaranteed cost

~J ˆ sup
a 2 X ; di 2

E x0

… 1

0
zT…t†z…t† dt …12†

attains its minimum value.
A matrix inequality formulation (Boyd et al. 1994) of

this problem is as follows.

Problem MI: Find matrices O > 0, Q > 0, and
Y 1; . . . ; Y m such that tr …O † is minimized and (see (13),
bottom of page 162), for all ~a and ~di such that

Robust non-fragile L Q controllers 161

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 M

ex
ic

o]
 a

t 0
8:

48
 0

7 
A

pr
il 

20
12

 



~a 2 ~X ˆ f ¬1; ¬1f g f ¬q; ¬qg g

~di 2 ~ ˆ ¯ i1; ¯ i1 ¯ in; ¯ in

O I

I Q

" #
> 0 …14†

…Y 1Q
¡ 1† i;j ˆ 0

..

. ..
. ..

.

…Y mQ¡ 1† i;j ˆ 0

…15†

i ˆ 1; . . . ; n; j ˆ 1; . . . ; n; i 6̂ j:

The entries kij of the controller K are obtained from

…Y 1Q
¡ 1† i;i ˆ k1i

..

. ..
. ..

.

Y mQ¡ 1¡
i;i ˆ kmi

i ˆ 1; . . . ; n

Note that the 2q‡ m n convex constraints (13) take into
account all the possible combinations between the upper
and lower values of the uncertainty intervals. The above
formulation does not precisely correspond to the
dynamic optimization problem expressed by equations
(11) and (12). This formulation is a computational para-
digm that gives an upper bound to the performance
index (12) because of the su� ciency criterion expressed
by the evaluation of the inequalities (13) over the upper
and lower values of the sets where the uncertainties ¬r

and ¯ ij are de® ned. This means that if the constraints are
found not to be fully satis® ed during a particular search
algorithm nothing can be said about a possible solution
of the problem.

The most important fact on this optimization prob-
lem relies on its non-convexity characteristics. This
observation can be argumented by observing the set of
constraints (15), a matrix product between Y 1; . . . ; Y m

and the inverse of Q which imposes that the o� -diagonal
terms of K i must be zero. The matrix product (15)
between independent variables of the optimization pro-
cess (see Boyd et al. (1994) for a comprehensive classi® -
cation of convex constraints and functions) is no longer
a convex function in its arguments (see, as a simple ex-
ample, the scalar function f …x; y† ˆ x=y, where x and y
are scalars that belong to an arbitrary R

2 box) and this
means that the feasible set of the optimization problem
MI is non-convex. The obvious consequence of this fact
is that algorithms based on the linear matrix inequalities
computational paradigm (Boyd et al. 1994) cannot treat
this problem.

When a single input system is considered …m ˆ 1† , we
have only one diagonal matrix K whose diagonal ele-
ments represent the controller coe� cients ki ; i ˆ 1; . . . ; n
but the structure of the problem MI still holds.

2.2.1. A special case. The only case when the problem
MI can be reduced to a set of linear matrix inequalities
is when the relative drifts from the nominal entries of
the controller matrix K are the same

¯ij ˆ ¯; i ˆ 1; . . . ; n; j ˆ 1; . . . ; m

as was assumed in Haddad and Corrado (1997). The
optimization problem can be stated as follows.

Problem LMI1: Find matrices O > 0, Q > 0 and Y
such that tr …O † is minimized and (see (16))

O I
I Q

> 0 …17†

Finally, the controller K is equal to K ˆ Y Q¡ 1. Note
that ~¬r 2 ~X , ~̄ 2 ~ ˆ ¯; ¯ . In this case, the number of
convex constraints (16) is equal to 2q‡ 1 because an a� ne
uncertainties structure with q ‡ 1 parameters in the
closed loop system is obtained.

It must be noted that in Haddad and Corrado (1997)
the non-fragile design of reduced order dynamic com-
pensators was discussed and, as a ® nal computational
result, a guaranteed cost problem which turned out to be
a non-convex optimization problem has been obtained.

162 D. Famularo et al.

Q ~AT…~a† ‡ ~A …~a†Q ‡
Xm

iˆ 1
Y T

i ~BT
i …~di† ‡ ~B i…~di†Y i

¡
CzQ ‡

Xm

iˆ 1

~D z;i…~di†Y i… †
T

CzQ ‡
Xm

iˆ 1

~Dz;i…~di†Y i… † ¡ I

2

6

6

6

6

6

4

3

7

7

7

7

7

5

0 …13†

Q A0 ‡
Xq

rˆ 1

~¬rAr… †
T

‡ A0 ‡
Xq

rˆ 1

~¬rAr… †Q ‡ …1 ‡ ~̄† Y TBT ‡ BY
¡

CzQ ‡ …1 ‡ ~̄†DzY
¡ T

CzQ ‡ …1 ‡ ~̄†DzY
¡

¡ I

2

6

6

6

4

3

7

7

7

5

0 …16†
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In our approach instead, we considered only full state
static feedback compensator but it has been shown that
the non-fragile synthesis problem reduces to a simpler
and easier computational paradigm based on linear
matrix inequalities.

Also, if the structure of the controller in this par-
ticular case is going to be examined

…1 ‡ ¯†K

where K is going to be found using LMI1, the non-
fragile synthesis problem can be viewed as a guaranteed
cost synthesis with respect to the uncertainties in the
plant but with an imposed gain margin on the controller
entries. Moreover, this synthesis problem is strictly simi-
lar to the mathematical problem shown in Chang and
Peng (1972) where a guaranteed cost approach for a
quadratic performance index was studied for a linear
system of the type

_x ˆ A…q†x ‡ B…q†u

where A…q† ˆ A0 ‡
Pn 0

iˆ1 qi…t†Ai , ¡ 1 qi…t† 1, i ˆ
1; 2; . . . ; n 0 and B…q† ˆ qb…t†B, 1 qb…t† b. It is easy
to see that the scalar uncertainty in the controller can be
regarded as a scalar uncertainty of the input matrix of
the linear system (1) when the closed loop equations are
considered.

The following numerical experiments compare the
controller designed using the computational paradigm
LMI1 with respect to that obtained by using the robust
LQ/H 2 synthesis.

3. Numerical experiments

Consider the mechanical system shown in ® gure 3,
known as the `benchmark problem’ (Gahinet et al.
1995), where

(1) u…t† is the control input and x1…t† ; x2…t† are the
positions, with respect to a reference system, of
the masses m1; m2, respectively;

(2) the masses{ m1; m2 are equal to 1 and the sti� -
ness{ p…t† , t 0, is an uncertain parameter
whose values belong to the interval 0:5; 2‰ Š.

The linear time-varying model which describes the
behaviour of the system is given by

_x1…t†

_x2…t†

_x3…t†

_x4…t†

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ˆ

0 0 1 0

0 0 0 1

¡ p…t† p…t† 0 0

p… t† ¡ p… t† 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

x1…t†

x2…t†

x3…t†

x4…t†

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

‡

0

0

1

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

u… t†

z…t† ˆ
0 1 0 0

0 0 0 0

" #

x1… t†

x2… t†

x3… t†

x4… t†

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

‡
0

1

" #
u…t†

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

…18†

It is easy to see that we can represent (18) as an a� ne
uncertain model where the matrix A…t† , t 0, is given by

A…t† ˆ

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

‡ p…t†

0 0 0 0

0 0 0 0

¡ 1 1 0 0

1 ¡ 1 0 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ˆ A0 ‡ p…t†A1

and the matrices B, Cz and Dz are constant.
Using the MATLABTM LMI toolbox, the lmiedit

editor and the mincx function, we designed a nominal
LQ/H 2 static state-feedback controller by solving the
problem LMI1 with ¯ ˆ 0, q ˆ 1, ¬ ˆ 2 and ¬ ˆ 0:5.
We found that the guaranteed LQ/H 2 performance
was equal to 7:1913 and the controller gain vector

K ˆ k1 k2 k3 k4‰ Š

ˆ ¡ 4:1066 3:1081 ¡ 2:8628 ¡ 1:4067‰ Š …19†

3.1. First experiment
As a ® rst experiment, we tested the fragility of the

nominal controller: an a� ne family of uncertain con-
trollers given by

…1 ‡ ¯†K …20†

Robust non-fragile L Q controllers 163

{ Note that all quantities are measured in appropriate
units.

Figure 3. Benchmark problem.
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was generated, where ¯ 2 ¡ ¯; ¯ is a parameter which
corresponds to a drift in the nominal values ki ,
i ˆ 1; . . . ; 4. In this case each component of K was con-
sidered to have same relative uncertainty range (Haddad
and Corrado 1997). A gain margin analysis (Anderson
and Moore 1990, Dorato et al. 1995), by varying ¯ has
been performed using MATLABTM LMI Toolbox stan-
dard routines quadstab and pdlstab: the values of ¯ for
which the closed-loop system is no longer quadratically
stable (Boyd et al. 1994, Gahniet et al. 1994, 1995) or,
less conservatively, does not admit a parameter-depen-
dent Lyapunov function (Boyd et al. 1994, Gahinet et al.
1994, 1995) were checked. With reference to the closed-
loop system

_x…t† ˆ A0 ‡ pA1 ‡ …1 ‡ ¯†BK… †x…t†

p 2 0:5; 2‰ Š; ¯ 2 ¡ ¯; ¯

we observed that quadratic stability is lost if ¯ > 0:49,
and the system does not admit a parameter-dependent
Lyapunov function if ¯ > 0:88.

3.2. Second experiment
The aim of the second experiments was to compare

the guaranteed performance of the nominal controller
with the performance of a controller designed by taking
explicitly into account the fragility issue. We computed
the guaranteed LQ/H 2 cost for 100 uncertainty intervals
¡ ¯; ¯ where ¯ 2 0; 0:01; 0:02; . . . ; 0:98; 0:99f g . The fol-

lowing computational procedure for each value of ¯ was
realized:

(1) the controller K was ® xed to its nominal value
(19), K, and the guaranteed H 2 performance was
computed by solving the following convex opti-
mization problem;

Problem LMI2: Find matrices O > 0, Q > 0 such that
tr …O † is minimized and (see (21))

O I

I Q

" #
> 0 …22†

(1) where ~̄ 2 ~ and ~p 2 0:5; 2f g . This problem has
been solved using the mincx function.

(2) A `non-fragile’ controller and the corresponding
guaranteed H 2 performance was computed using
the convex optimization paradigm LMI1 and the
function mincx. Figure 4 shows a plot of the

guaranteed cost versus ¯ for the nominal and
the `non-fragile’ controller.

Obviously the guaranteed cost for case (1) can be
computed until the convex constraints (21), (22) are fea-
sible; this means the the closed loop system is quadrati-
cally stable. On the other hand, for ¯ ˆ 0:49 the
controller computed using the convex optimization for-
mulation LMI1 given by equations (16) and (17) was

K ˆ ¡ 6:0620 5:3883 ¡ 4:3872 ¡ 0:1621‰ Š

and the guaranteed LQ/H 2 performance in this case was
equal to 16:8341.

It is easy to observe from ® gure 4 that a design which
takes into account the uncertainties in the controller
guarantees quadratic stability and àcceptable’ guaran-
teed performance in a wider range of regulator par-
ameter variations.

4. Conclusions

In this paper the e� ect of LQ/H 2 robust synthesis of
uncertain, static state feedback controllers, for linear
systems with structured uncertainties in the dynamic
matrix was considered. A simple but signi® cant result
regarding the computational equivalence with a non-
convex problem has been obtained when multiplicative
structured uncertainties are allowed in the controller.
A guaranteed-cost approach which turned out to be a
worst-case gain margin optimal synthesis problem was
formulated in a particular case using a linear matrix

164 D. Famularo et al.

Q A0 ‡ ~pA1 ‡ …1 ‡ ~̄†BK
¡ T

‡ A0 ‡ ~pA1 ‡ …1 ‡ ~̄†BK
¡

Q Cz ‡ …1 ‡ ~̄†DzK
¡ T

Q

Q Cz ‡ …1 ‡ ~̄†DzK
¡

¡ I

2

4

3

5 0 …21†

Figure 4. LQ=H 2 guaranteed cost vs. ¯ : nominal controller !
dashed line; non-fragile controller ! solid line.
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inequalities computational paradigm, and used in the
numerical experiments involving the benchmark control
problem. The results show that the non-fragile control-
ler exhibits a larger stability margin and there exists a
trade-o� between controller resilience and system per-
formance.
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