
Robust Nonlinear State Feedback Under 
Structured Uncertainty 

This work follows the global input /output linearization approach for 
the design of control systems for nonlinear plants of Kravaris and 
Chung. A robust nonlinear state feedback is proposed for uncertainties 
considered as a class of bounded perturbations to the state model. A 
Liapunov-based approach is used to guarantee uniform ultimate 
boundedness. 

Introduction 
For all but the simplest control schemes to be effective, some 

description of the process to be controlled must be available. 
Usually this description is a mathematical model. However a 
series of difficulties may be encountered while developing a 
meaningful and realistic mathematical description of the chemi- 
cal process. Thus for most processes, a “reasonable model” with 
some “good” values for the model parameters is employed for 
control purposes. The mismatch between the mathematical 
model and the true process can lead to serious stability problems 
for the process, especially when the process is nonlinear. Thus 
the design of robust control strategies that take care of model 
uncertainty is of paramount importance for the design of good 
and efficient control systems for a chemical process. 

One of the most important contributions in control theory in 
the past decade has been the development of robust linear con- 
troller design methodologies for linear plants in the presence of 
unstructured uncertainty (Doyle and Stein, 1981). This ap- 
proach can be applied to the control of nonlinear plants as well, 
with the understanding that the uncertainty will contain the 
error introduced by the linear approximation. The key issue is 
whether the linear approximation error will be small or not. In 
the case of mild nonlinearities, the uncertainty introduced by 
the linearization approximation is small enough so that it can 
successfully be rejected by a robust linear controller without too 
much sacrifice in performance. In the case of a highly nonlinear 
process, the frequency domain bounds corresponding to the 
linear approximation error will be very loose; they will contain 
not only the nonlinear uncertainties but also a very large class of 
unstructured uncertainties that fall within these bounds. This 
will lead to conservativism and therefore poor performance. 
Thus robust linear control theory is insufficient for highly non- 
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linear processes. A nonlinear control theory that provides robust 
controllers is needed. 

For nonlinear state feedback synthesis under the assumption 
of a perfect model, geometric methods that provide closed-loop 
linearity characteristics have received considerable attention 
(Su, 1983; Hunt et al., 1983a, b; Kravaris and Chung, 1987; Gil- 
bert and Ha, 1984; Ha and Gilbert, 1987) and lead to relatively 
simple control laws. We use this framework to address the fol- 
lowing robust design problem: 

Given upper bounds on the modeling error of the nonlin- 
ear process, design a nonlinear state feedback law that 
guarantees stability and performance for all perturba- 
tions within the given bounds. 

Our work considers the case of structured model uncertainty. 
The uncertainty need not be parametric but must be represent- 
able as a class of perturbations to the state model to which upper 
bounds (in general state-dependent) are available. At this point, 
our theory does not include unmodeled higher order dynamics. 

The robust design problem is approached in two steps: 
1. Under the assumption of a perfect model, do a nominal 

design of the state feedback (to meet the appropriate closed-loop 
linearity requirements and minimize some design criterion) 

2. Introduce robustness corrections in accordance with the 
size of the modeling error 
Throughout this paper we will follow the input/output lineariza- 
tion approach (Kravaris and Chung, 1987) to obtain the nomi- 
nal design. We will first provide the necessary background (pre- 
vious work and notation), and a brief survey of input/output 
linearizing feedback. Then we will present our robust design 
methodology. The application of the proposed method is illus- 
trated in two examples. The Appendix provides a brief outline 
for computing Liapunov functions numerically. This may be 
useful in applying the proposed methodology. 
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Previous Work 
Nonlinear state feedback synthesis by means of differential 

geometric methods has received considerable attention in the lit- 
erature. In all methods, linearity of the closed-loop system is 

state equations (Su, 1982; Hunt et al., 1983a, b) or linearity of 
the input/output map (Kravaris and Chung), or linearity of 

1984; Ha and Gilbert, 1987) or linearity and decoupling at  the 
same time (Isidori et al., 1981). Once the necessary state feed- 

Previous Results on Input/Output Linearization 

nonlinear systems of the form 
We restrict ourselves to single-input/single-output (SISO) 

sought in some sense: for example, linearity of the closed-loop x = f ( x )  + g(x)u  

Y = h ( x )  (1) 

both state equations and input/output map and Ha* where R", R, R,  and to nonlinear static state feed- 
back 

back is computed, the natural question that arises is how robust 
it is with respect to modeling errors. 

The use of Liapunov-based methods for robust controller 
design in conjunction with differential geometric methods was 
first introduced by Ha and Gilbert (1987). Their work 
addressed the case where the nominal state feedback provides 
linearity of both the state equations and the output. In this work 
we are going to solve the more general problem, where the nomi- 
nal state feedback linearizes the closed-loop system only in an 
input/output sense. Both our work and that of Ha and Gilbert, 
(1987) can be viewed as generalizations of work pioneered by 
Gutman (1979), Leitmann (1981). and Corless and Leitmann 
(1981) and later explored by many others. 

Standard Differential-Geometric Notation 

the Lie derivative of h with respect tofis defined as 
Givenf, a C"vector field on R", and h, a C" scalar field on R", 

where ( ., .) denotes the inner product in R" i.e., 

This Lie derivative is also a C" scalar field on R". Thus, one 
can inductively define higher order Lie derivatives as follows: 

L:(h) = L,(L$-'(h)) = (dLj-'(h),f), k = 2, 3 . .  . 

Givenf, g C" vector fields on R", the Lie bracket [f, g]  is a vec- 
tor field defined by 

where af/ax and ag/ax are the Jacobians. [A g]  is also a C" vec- 
tor field on R". One can define successive Lie brackets 
[f, [f, g ] ] ,  [& [f, [f, g ] ] ] ,  etc. We will use the standard nota- 
tion 

u = *(x, v )  (2) 

Consider now Eq. 1 and the problem of finding a static state 
feedback of the form of Eq. 2 such that the u-y input/output 
system is linear and of minimal order. This problem was posed 
and solved by Kravaris and Chung (1987). The results are sum- 
marized in the following theorem: 

Theorem 1 (Kravaris and Chung, 1987). The minimal order 
of the v-y system is the relative order of Eq. 1, i.e., the smallest 
integer r satisfying 

(dh,  ad;-' ( g ) )  # 0 

The necessary state feedback is given by 

where & are arbitrarily selected numbers. The corresponding 
closed-loop response is given by 

dky  
x P k z = v  k-0 (4) 

Main Results 
We will consider here the problem of designing a robust con- 

troller so that the process output y ( t )  will track a given set point 
y,. By introducing appropriate deviation variables we can 
rewrite our system so that y represents the tracking error, the 
problem therefore being to control y to zero. 

Consider the model, Eq. 1, with the nominal state feedback, 
Eq. 3, where v = 0. Also consider the "true" system 

x = f ' ( x )  + g'(x)u, x(0)  = x g  

Y - h'(x) ( 5 )  

We would like to design a robustness correction 

so that Eq. 5 with the state feedback, Eqs. 3 and 6, has tracking 
error that is uniformly ultimately bounded in the sense of the 
following definition: 

Definition 1 .  The output of a dynamic system y( t ) :  [0, m] - 
R is uniformly ultimately bounded with ultimate bound b > 0 if 
for every r > 0 there exists ~ ( b ,  r )  > 0 such that ]lxoll I r implies 
I y ( t )  I 5 b for all t 2 T .  
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In particular, we will design .?? so that the control system is 
robust in the following sense. Given suitable limitations on the 
modeling errors 

(7) Af = f' - J  A g =  g' - g , A h  = h' - h 

the tracking error is uniformly ultimately bounded, where 6 and 
7 are independent of the allowed AJ Ag, and Ah. 

Remark 1. T can be interpreted as the settling time and there- 
fore as a measure of performance. 

Before stating the main theorem we state a few assumptions. 
Assumption A f  .J g, and h are smooth. f I ,  g', and h' are Co. 

A f t Z ,, A g  t Z,, A h  t Z,, where Z,, Z,, and Z h  are specified 
sets. 

Assumption A2. The origin x = 0 is a uniformly asymptoti- 
cally stable equilibrium point of the unforced nominal system 

2 bkLj(h)(x) 
k-0 

g(x) (8) (- l)'-'& < dh, adj- '(g) > ( x )  
x = f ( x )  - 

In particular, there exists a C'  function KR" - R f  and contin- 
uous strictly increasing functions yi:R+ - R', i = 1, 2, 3 
satisfying 

y,(O) = 0, 

lim yi(r) = m, 

i = 1,2 ,  3 

i = 1, 2 -- 
such that 

In other words, there is a Liapunov function V for the unforced 
nominal system. 

Assumption A3. h(x)  vanishes a t  the origin x = 0. 
Assumption A4. For each Af t  Z, and A g  t Z, there exist map- 

pings A f *:R" - R and Ag*:R" - R satisfying 

(-l)'-'(dh,ad;-'(g))Af =gAf* ,  A g = g A g *  (10) 

for all x t R". 

that 
Assumption A5. There exists a Co function p:R"  -+ R such 

1 + Ag* 2 p(x )  > 0 (1 1) 

for every A g  t Z,. Moreover, p(x)  is bounded: 

po 2 p(x )  V x  t R" (12) 

Assumption A6. There exists a Co function +:R" - R such 
that 

for every Af t  Z,and A g  t 8,. 

Assumption A7. There exists bh > 0 such that 

for every A h  t Z,,. 
Assumption A1 is a technical assumption for mathematical 

completeness. Assumption A2 tells us that the nominal closed- 
loop system must be internally stable in the sense that there 
exists a Liapunov function. Note that this is a very natural 
assumption; unless the nominal system is internally stable, we 
cannot expect robustness properties. Assumption A3 implies 
that y represents the tracking error. A given system can easily be 
rewritten in this form by suitably defining appropriate deviation 
variables. Assumption A4 defines the matching conditions of 
our theory. The uncertainties Af and A g  have the structure 
defined by assumption A4. This condition restricts the class of 
perturbations for which the method is applicable. Note however 
that this condition is much weaker than the standard conicity 
assumption for A f of the small gain theorem method (Safonov, 
1980; Kantor, 1987) and the standard assumption of vanishing 
Ag. Assumptions A5-A1 define the uncertainty bands (in gen- 
eral state-dependent) for AJ Ag, and Ah. The following Theo- 
rem provides an explicit formula for the robustness correction 
(Eq. 17), which guarantees uniform ultimate boundedness of 
the output. For a proof, the reader is referred to Kravaris and 
Palanki (1988). 

Theorem 2. Assume that AI-A7 are satisfied. Consider 

where Af t Z,, A g e  2,, Ah t Z,,, and the state feedback 

where 

and where q is the saturation function 

with 

t < lim y,(r) 

Then for every A f t  Z,, A g  t Z, and Ah 6 Z h  the output is uni- 
formly ultimately bounded. More precisely, for every 6 > 
(7;' o yz o y;')(t/4), we have 
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where 

and llhllup is the Lipschitz norm of h in ( x  c R": llxll 5 b]. 

c - 0) of the discontinuous control law 
Remark 2. Equation 17 is a continuous approximation (as 

which, of course, cannot be implemented in practice (due to its 
discontinuity). 

Remark 3. From Eq. 17 we observe that we are feeding back 
the uncertainty band + ( x )  with a nonlinear gain. The theory 
indicates that we should choose as small an c as possible. How- 
ever too small an € may excite unmodeled higher order 
dynamics, which are not taken into account in the theory. In 
practice one will need to choose t either by simulation experi- 
ments or fine-tune 6 on-line. 

Illustrative Examples 
Example 1 

Consider a continuously stirred tank reactor (CSTR) in 
which an isothermal, liquid-phase, multicomponent chemical 
reaction is being carried out. The chemical reaction system is: 

A - B - C  

with the rates of reaction given by: 

rl = k,CA - k2C: 

r2 = k,C; 

There is an unmodeled first-order side reaction from B. Also 
there is an error in the flow-rate/valve-position relationship; this 
creates an error in measuring the molar feed rate of B. It is 
desired to control Ccas close as possible to the steady state value 
by adjusting the molar feed rate of B, Figure 1. 

NRF 
I 

CAF I , 

Figure 1. System for example 1. 

The modeling equations for this system in terms of dimen- 
sionless variables are (see the Notation for explanation of sym- 
bols): 

dX1 - = 1 - x1 - Dalxl  + Da,x: 
dt 

dx2 
dt 
- = Da,x, - x2 - Da,xg - Da,xf + u 

Da3x: - x3 dx3 
dt 
-=  

Y = x3 

where u = NBF/FCAF. 
The steady state values xlD, x , ~ ,  X3DI uD are defined by 

- Defining the deviation variables 3, = x I  - x I D ,  x2 = x2 - xZD, 
x3 = x3  - X j D ,  u = u - uD, the model becomes: - 

dSZ, 
- = - (1  + Dal)Xl + (2Da2x,)E2 + (Da2)% dt 

dF2 
dt 

d32, 
- = Da3E: + (2Da,x,)X2 - X, 
dt 

- = Da& - (1 + ~ D U ~ X ~ D  + 2Da3X&2 

- (Da, + Da3)Fi + U 

7 = 2, 

Thus we have: 

True system 

Modeled system 
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where 

Af  = -erlx2 and A g =  1 :j 
g(x) = 1 , h ( x )  = x 3  i:I 

tgl ::I 
The values of the various constants are as follows: 

Da, = 3.0 Da, = 0.5 Da, = 1.0 

err = 0.05 tg, = 0.3 U D  = 1.0 

The steady state values of the states are: 

x ,D  = 0.3467 xu, = 0.8796 x ~ D  = 0.8796 

To Develop a Robust Controller Based on the Modeled Sys- 

1 .  Calculation of relative order. 
It can be easily verified that ( d h ,  g )  = 0 and (dh,  ad)(g) )  # 

0 and thus the relative order of the system is 2. 
2. Calculation of state feedback control law. 
From Eq. 16, 

tem. 

where 

Making this substitution in the modeled system we have 

d x ,  
dt 

dT2 
dt P2(2Da& + ~ D U ~ X ~ D )  @,(2Da3Z2 + 2Da3xzD) 

-- - - ( 1  + Dal)Xl + ( ~ D U ~ X ~ D ) S Z ,  + (DazT::) 

V 823 - _  - - 

[Da3Y$ + (2Da3xm)x2 - X 3 ]  
+ - I )  

82(2Da3y2 + 2Da3x2D) 

-- f i 3  - Da3x: + (2Da3x,)Z2 - Z3 
dt 

y = x, 
We obtain the “unforced system” by putting v = 0. It is obvious 
that the origin is an equilibrium point of the unforced system. 

Pick Do = 1 .O, 8, = 1 .O, p2 = 1 .O. 
3. Lyapunov function for the unforced system. 
It can easily be verified that the following positive definite 

function: 

V =  842: + 681(Y; + 1.759231, - Z3), + 1,01252: 

+ 20Y,(52; + 1.759252, - X3) + 16XlX3 

+ 680sT3(X: + 1.7592y2 - 2 3 )  

has the time derivative: 

V = -672[X: + (F: + 1.759252, - 52,)’ + 52:] 

which is negative definite. Thus Vis a desirable Lyapunov func. 
tion. 

4. Calculation of AY, Ag* (Eq. 10): 

A Y  = -O.O5X2(2sZ2 + 1.7592) 
Ag* = 0.3 

5. Calculation of p ( x ) ,  po (Eq. 12): 

1 + Ag* 5 p ( x )  2 0 

Po 2 F ( X )  

As Ag* = 0.3 set ~ ( x )  = po = 0.3. 
6. Calculation of +(x) (Eq. 13). Set: 

1 
+(x)  = - 1  -0.05X2(2522 + 1.7592) - 0.3 

0.3 
. [3X1 + (252, + 1.7592)(352, - 3.6388X2 - 152;)]1 

Then: 

D 5 -+(x)qe(0:3[l,362(X: + 1.759222 - 523)  

+ 202, + 68OX,]+(x)} 

Pick t = 0.005. 
The control of the process was simulated using the “true” pro- 

cess, Eq. 21, and the robust controller. It is observed, Figure 3, 
that the output of the true process is ultimately bounded, as pre- 
dicted. 
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with the rates of reaction given by: 

Figure 2. System for example 2. 

Example 2 
Consider a CSTR in which an isothermal, liquid-phase, mul- 

ticomponent chemical reaction is being carried out, Figure 2. 
The chemical reaction system is: 

P - - + Q - + R  

1 

-0.1 I I I I 1 

0 20 40 60 80 x)O 
T 

-0.02 

>- -0.06 * . O I  

-0.00 I I I I 

0 20 40 60 80 (00 

T 

Figure 3. Closed-loop response obtained with robust 

Figure 3a. Initial conditions: x ,  = 0.5, x, - 0.5, x, = 0.5. 
Figure 3b. initial conditions: x, = 0.6533, x, - -0.5, x, = 

nonlinear state feedback for example 1. 

0.0. 

There is an unmodeled first-order side reaction from P. Also 
there is an error in measuring the molar feed rate of P. P and Q 
are highly acidic in nature, while R is neutral. To avoid corro- 
sion problems for the downstream equipment the concentration 
of P and Q must be kept at a given concentration C,. Thus the 
control objective is to keep the total concentration of P and Q as 
close as possible to a concentration C,  by adjusting the molar 
feed rate of P. 

The modeling equations for this system in terms of dimen- 
sionless variables are (see the Notation for explanation of sym- 
bols): 

- _  - -(I + DaS)xS + u dx5 
dt 

dt 
dx6 - - Da5~5 - x6 - Da6.X; 

Y = x5 + x6 
where u = NpF f FC,. 

Defining the deviation variables as before we have: 
True system 

x = [fb) + Afl + [gb) + Aglu 

Y - h ( x )  + Ah 

Modeled system 

x = f ( x )  + g(x )u  

Y = h ( x )  

where 

Af = [ -'rX5] and A g  = b] 
The values of the various constants are as follows: 

Da5 = 1.0 Da6 = 1.0 €fz = 0.04 

~~2 = 0.25 U D  = 4.0 

The steady state values of the states are: 

x5D 2.0 x6D = 1.0 
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To Develop a Robust Controller Based on the Modeled Sys- 

1 .  Calculation of relative order. 
It can easily be verified that (dh, g) # 0 and thus the relative 

2.  Calculation of state feedback control law: 

tem. 

order of the system is 1 .  

- 
U =  

- 80(sz5 + 516) - 8l(fI +f2) 
81 

where 

Making this substitution in the modeled system we have 

We obtain the “unforced system” by putting v = 0. It is obvious 
that the origin is an equilibrium point of the unforced system. 

Pick Do = 1 .O, PI = 1 .O. 
3 .  Lyapunov function for the unforced system. 
Remark 4. We could not find a Liapunov function analyti- 

cally for the unforced nominal system, so this function was 
generated numerically using the method of Vannelli and Vi- 
dyasagar (1985). The Appendix provides a brief outline of their 
algorithm; further details may be obtained from their paper. 

Using the method of Vannelli and Vidyasagar we computed 
the following Liapunov function: 

; e = 6.93 x R2 + RI + R4 V =  
1 + QI + Q2 

where 

R2 - 0.3500752; + 0.451526 + 0.2998551; 

R ,  = 0.0836651: + 0.21 1 12Ys6 + 0.22889X5?; + 0.0766851: 

Rd = 0.00132g + 0.0140852:526 + 0.02379XgX; 

+ 0.0144Z552: + 0.0024552: 

QI = 0.2323525 + 0.30004516 

Q2 = 0.00301X: + 0.0283951551, + 0.0017751; 

The optimization problem was solved using the subroutine 
MINOS 5.0. 

I/ has the time derivative: 

which is negative definite. Thus Vis a desirable Lyapunov func- 
tion. 

7 
2.5 4 

0 

Figure 4. 

5 m 20 is SO 

Closed-loop response obtained with robust 
nonlinear state feedback for example 2. 
Initial conditions: 
-x~-1.O,xg-1.0 

T 

.-. XI  - -0.5, ~6 - -0.5 
----- XS - 0.5, x6 - 0.5 

4. Calculation of Af*, Ag* (Eq. 10): 

Af* = -0.04515 

Ag* = 0.25 

5. Calculation of p(x) ,  po (Eq. 12): 

As Ag* = 0.25 set p(x)  = po = 0.25. 
6 .  Calculation of 4(x )  (Eq. 13) .  Set: 

1 
0.25 

4(x) = - I -0.04X5 - 0.25(51: + E6)I 

Then: 

Pick t = 0.003. 
The control of the process was simulated using the “true” pro- 

cess, Eq. 22, and the robust controller. It is observed, Figure 4, 
that the output of the true process is ultimately bounded, as pre- 
dicted. 

Acknowledgment 
Financial support from the Ammo Foundation is gratefully acknowl- 

edged. 
The authors are thankful to K. G.  Murthy and S. Y. Chang for their 

help in using the optimization routine MINOS 5.0. 

Notation 
C, - concentration of species A in reactor, mol m-’ 

C,, - feed concentration of species A, mol - m-’ 
C, = concentration of species B in reactor, mol - m-’ 
C, - concentration of species C in reactor, mol . m-’ 
C, - concentration of species p i n  reactor, mol - m-3 
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Cm = desired concentration of species P and Q, mol . m-’ 
CQ = concentration of species Q in reactor, mol . m-3 
C, = concentration of species R in reactor, mol - m-’ 

Da, = k,V/F 

Da, - k,vcAF/F 
Da, = k5V/F 
Da, = k,VCm/F 

F = volumetric feed rate, m3 . s-’  
NBF = molar feed rate of species B, mol s-‘ 
NpF = molar feed rate of species P, mol s-’ 

Da, = ~ , V C A F / F  

k , ,  k ,  = first-order rate constants, s-’ 
k,, k3, k6 = second-order rate constants, m3 - mol-’ . s-I 

t = t’F/V 
t‘ = time, s 
V = volume of reactor, m3 

xi = CAICAF 
x2 = CBICAF 

xs = CdCm 
= c C / c A F  

x6 - = cQ/cFQ 
-crlx2 = unmcdeled side reaction for example 1 
-cnx5 = unmcdeled side reaction for example 2 

eg, = ANBF/FCA, = dimensionless error in measuring molar feed 

cg2 = ANpF/FCm = dimensionless error in measuring molar feed 
rate of B 

rate of P 

Appendix: Numerical Generation of Liapunov 
Functions 

The method of Vannelli and Vidyasagar (1985) can be used 
to generate a Liapunov function numerically. Their algorithm is 
summarized below. 

1. Given 

wherefis an analytic function and it is known that x = 0 is an 
asymptotically stable equilibrium point. 

2. Asfis analytic, expressf(x) as 

where Fi( - )  is a homogeneous function of degree i. Thus 

F ~ ( x )  = AX, A C R ~ ’ ’  

3. Define a Liapunov function candidate V(x) as: 

2 Ri(x) 

1 + 2 Qi(X) 
V(x) = i-2 

i-l 

where Ri and Qi are polynomials of degree i. 
For V(x) to be a Liapunov function, V(x) should be positive 

definite and v(x) should be negative definite over some region. 
By definition, P(x)  is negative definite i f  

V(X) = [VV(x)]‘k = [VY(x)]’f(x) = -x’Qx 

where Q is positive definite. 
4. Find the time derivative of V(x) and equate it to -x’Qx 

and obtain: 

n 

i -  I 

5. Assume a positive definite matrix Q (usually the identity 
matrix is suitable) and find a positive definite matrix P such 
that 

A’P + PA = -Q 

Then V2(x) = R2 = X’PX 
6. For n 2 3, compare coefficients of like powers of the equa- 

tion in step 4. This gives m equations as the coefficients of the 
polynomials R,, and are unknown. Find the linear system 
representation of these m equations; that is find Ay = 6. 

Define e = 11 coefficients of terms of degree 2 n + 1 I( ’. 
7. Solve the following constrained minimization problem: 

Min e 

such that Ay = 6 

Let y* be the solution. Use y* to find the coefficients of R, and 
If e is sufficiently small go to step 8; otherwise, increment 

the value of n by I and repeat steps 6 and 7. 

i- I 

and 

(terms of degree 2 n + 1) 
V = -x’Qx + 

(1  + Z Q i r  

If e = 0, V = -x’Qx. 
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