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Abstract

Three approaches to the analysis of main and interaction effect hypotheses in

nonorthogonal designs were compared in a 2 2 design for data that was neither normal‚

in form nor equal in variance. The approaches involved either least squares or robust

estimators of central tendency and variability and/or a test statistic that either pools or

does not pool sources of variance.  Specifically, we compared the ANOVA F test which

used trimmed means and Winsorized variances, the Welch-James test with the usual least

squares estimators for central tendency and variability and the Welch-James test using

trimmed means and Winsorized variances.  As hypothesized, we found that the latter

approach provided excellent Type I error control, whereas the former two did not.
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ROBUST NONORTHOGONAL ANALYSES REVISITED:

 AN UPDATE BASED ON TRIMMED MEANS 

Introduction

Testing for mean equality in the presence of unequal variances has a long history

in the statistical literature, dating back to the time of Behrens (1929) and Fisher (1935).

Numerous solutions to what is now defined as the "Behrens-Fisher problem" have

appeared in the literature (e.g., Alexander & Govern, 1994; Box, 1954; Brown &

Forsythe, 1974; James, 1951; Welch, 1938).  Extensive empirical evidence suggests that

all of these methods can generally control the rate of Type I errors when the data are

normally distributed, even under extreme degrees of variance heterogeneity in the

underlying population distributions (e.g., Alexander & Govern, 1994; Wilcox, 1995a,

1995b).  However, the literature also indicates that these tests can become liberal when

the data are both heterogeneous and nonnormal, particularly when the design is

unbalanced.  Thus, these solutions to the "Behrens-Fisher problem" have limitations,

namely their sensitivity to the nature of the population distributions.

The deleterious effects of nonnormality are predictable on theoretical grounds.

Cressie and Whitford (1986) have shown that, unless population variances or group sizes

are equal, Student's two-sample  test is not asymptotically correct when the groupt

distributions have unequal third cumulants; therefore, Type I error inflation is expected.

It is well known that the usual population mean and variance, which are the basis

for all of the previously enumerated Behrens-Fisher type solutions, are greatly influenced

by the presence of extreme observations in a distribution of scores.  Moreover, as Wilcox

(1994a) notes, the appropriateness of the population mean as a measure of location is

questionable when the underlying distribution is skewed.  Adopting a nonrobust measure,

such as the usual mean, “can give a distorted view of how the typical individual in one
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group compares to the typical individual in another, and about accurate probability

coverage, controlling the probability of a Type I error, and achieving relatively high

power" (Wilcox, 1995a, p. 66).  However, by substituting robust measures of location,

and a corresponding robust measure of scale, it should be possible to obtain test statistics

which are insensitive to the combined effects of variance heterogeneity and

nonnormality.

While a wide range of robust estimators have been proposed in the literature (see

Gross, 1976), the trimmed mean and Winsorized variance are intuitively appealing

because of their computational simplicity and good theoretical properties (Wilcox,

1995a).  In particular, while the standard error of the usual mean can become seriously

inflated when the underlying distribution has heavy tails (Tukey, 1960), the standard

error of the trimmed mean is less affected by departures from normality because extreme

observations, that is, observations in the tails of a distribution, are censored or removed.

Furthermore, as Gross (1976) notes, “the Winsorized variance is a consistent estimator of

the variance of the corresponding trimmed mean" (p. 410).  In computing the Winsorized

variance, the most extreme observations are replaced with less extreme values in the

distribution of scores.  While the trimmed mean has been shown to be highly effective,

we caution the reader that this measure should only be adopted if one is interested in

testing for treatment effects across groups using a measure of location that more

accurately reflects the typical score within a group when working with heavy-tailed

distributions.  As an illustration of how a trimmed mean may provide a better estimate of

the typical score than the usual mean, consider the example given by Wilcox (1995a,  p.

57) in which a single score in a chi-square distribution with four df (hence 4) is. œ

multiplied by 10 (with probability .1).  Because this single deviant score causes a shift in

the distribution, the usual mean now equals 7.6, a value closer to the upper tail of the

distribution.  A trimmed mean based on censoring 20% of the data in each tail of the
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distribution however, equals 4.2, a value that is closer to the bulk of scores, hence closer

to the typical score in the distribution. Nonetheless, readers should note that the

hypothesis tested when the usual mean is used as an estimate of location is not the same

as that tested when the trimmed mean is employed.  Consequently, we stress that the

researcher needs to be clear on the goals of data analysis prior to choosing a particular

method of statistical inference.

Wilcox (1994b) has shown that in the two-sample case, by substituting trimmed

means and Winsorized variances for the usual least squares estimators, the degree of bias

due to skewness can indeed be reduced, compared to the results that would be expected

based on Cressie and Whitford's (1986) theoretical derivation. That is, the results in

Wilcox can be used to show that the theoretical results due to Cressie and Whitford can

be extended to trimmed means.  It is also apparent that these findings can be generalized

to multi-group designs.  Lix and Keselman (1995, 1997) found that in one-way designs,

tests of mean equality based on the usual mean and variance (i.e., Alexander & Govern,

1994; Box, 1954; Brown & Forsythe, 1974; James, 1951; Welch, 1951) were indeed

biased by the effects of skewness when group sizes were unequal; the degree of bias was

reduced when trimmed means and variances based on Winsorized data were used in the

computation of these solutions (see also Wilcox, 1994a).

The negative consequences of conducting tests of mean equality in the presence

of variance heterogeneity and nonnormality have also been examined within the context

of nonorthogonal factorial designs. That is, Keselman, Carriere and Lix (1995, 1996)

demonstrated how a Welch (1947, 1951)-James (1951, 1954) (WJ) type statistic due to

Johansen (1980) generally could provide a robust test of various hypotheses and/or model

comparisons in unbalanced factorial designs when cell variances were heterogeneous,

while the usual analysis of variance (ANOVA) F test could not.  Though these authors

recommended the WJ test, they also noted that it occasionally resulted in a liberal test of
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significance when variance heterogeneity occurred in combination with nonnormality.

Consequently, the WJ test had its limitations in combatting assumption violations in

unbalanced fixed-effects factorial designs. Specifically, its ability to cope with the effects

of variance heterogeneity was diminished when the data were also nonnormal in shape.

Based on Wilcox's (1994b) results, one may, however, be able to improve the

performance of the WJ test by incorporating robust measures of location and variability

instead of relying on the usual least squares estimators of these statistics.  That is, using

trimmed means should result in a more accurate solution, when distributions have heavy

tails, because with this type of nonnormality they have smaller standard errors compared

to least squares means.  In the present paper, we were primarily concerned with

extending the WJ procedure for comparing treatment groups in the presence of variance

heterogeneity in order to also achieve robustness against nonnormality.  Yuen (1974)

initially suggested that trimmed means and variances based on Winsorized sums of

squares be used in conjunction with Welch's (1938) statistic.  For heavy-tailed symmetric

distributions, Yuen showed that the statistic based on these robust estimators could

adequately control the rate of Type I errors and resulted in greater power than a statistic

based on the usual mean and variance.  However to date, no study has applied her

approach to the analysis of nonorthogonal designs. Additionally, to date, no investigator

has quantified the reduction in the degree of bias that can be expected by replacing least

squares estimators with their robust counterparts, as Wilcox (1994b) has done in the one-

way two-sample case.

Background 

To reaquaint the reader with the issues related to the analysis of nonorthogonal

designs, as illustrated in a two-way J K design with disproportionate cell frequencies‚

(i.e., n s; 1,  , J, 1,  , K), we first enumerate the hypotheses and models45 4 œ á 5 œ á

that frequently are examined.  We adopt the notational scheme used by Keselman et al.
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(1995, 1996) where these sample sizes are associated with correspondingly notated

population cell means (i.e., s). The dependent scores (i.e., Y s) are modeled by.45 345

Y , with 1, , n .  For this model, the errors (i.e., s) are usually345 45 345 45 345œ  3 œ á. % %

assumed to be independent and identically distributed normal random variables with a

mean of zero and a variance of .52

Three hypotheses that researchers would typically be interested in testing are:

H : No row main effect,Row

H : No column main effect, andColumn

H : No interaction effect.R C‚

As Keselman et al. (1995, 1996) and others indicate there is no ambiguity concerning

how to test H  in a two-way design.  However, the proper way to test H  andR C Row‚

H  has received a great deal of discussion.  Most treatises on this topic indicate thatColumn

one can test hypotheses concerning unweighted or weighted marginal main effect means

and these tests correspond to different model comparisons.

Specifically, in a two-way design, the hypotheses that are typically associated

with tests of the marginal means are:

i. Unweighted:

H : /K /K 0 or 0 for all  and , andR . .D. D. . .
5 5

 œ  œ 4 445 4 5 4 4
w

w w

H : /J /J 0  or 0 for all  and .C . .D. D. . .
4 4

 œ  œ 5 545 45 5 5
w

w w

ii. Weighted:

H : n /n n /n 0 or 0 for all  and , and
_ _*

R . . . .D . D . . .
5 5

 œ  œ 4 445 45 4 4 5 4 5 4 4 4
w

w w w w

H : n /n n /n 0 or 0 for all  and ,
_ _*

C . . . .D . D . . .
4 4

 œ  œ 5 545 45 5 45 45 5 5 5
w

w w w w

where n n  and n n  and4 5 45 5 4 45. .œ œD D

iii. Weighted:

H :  n           0**
R jD . D D .

5 5
  œ

4 Á 4
   45 45 5w

n
n n

n n2

. .

45 4 5

5 5

45 w
w
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for 1, , J 1, and all  and  and4 œ á  4 4w

H :  n         0**
C D . D D .

4 4
  œ

5 Á 5
   45 45 45w

n
n n

n n2

. .

45 45

4 4

45 w  w

for 1, , K 1, and all  and .5 œ á  5 5w

From a model comparison perspective, tests of these respective sets of hypotheses

correspond to assessing each main effect by comparing: (i.) the residual sum of squares

(SS) for the full nonadditive model (Y ( ) ) to the residual345 4 5 45 345œ    . ! " !" %

SS for a model that does not contain the effect specified under the null hypothesis, (ii.) a

model that contains both the specified main effect and constant terms, to a model that

only contains the constant term (e.g., for H  the models that are compared are*
R

Y  vs. Y ) and, (iii.) a model that contains only main345 4 345 345 345œ   œ . ! % . %

effects to a model that excludes the main effect under investigation (e.g., for H  the**
R

models that are compared are Y  vs. Y ).  In345 4 5 345 345 5 345œ    œ  . ! " % . " %

terms of the eliminating/ignoring terminology, each main effect is assessed, respectively:

(i.) eliminating all other effects specified in the full nonadditive model, (ii.) ignoring all

other effects, and (iii.) eliminating the other main effect and ignoring the interaction

effect.

Robust Data Analysis Strategies

The customary approach to testing H , H , H , H , H , H  and H  is toR C R C
* * ** **
R C R C ‚

assume homogeneity of variances and, therefore, use a pooled estimate of within cell

variability as the denominator of an ANOVA F statistic.  Milligan, Wong and Thompson

(1987) and Keselman et al. (1995, 1996) have shown, however, that when variances are

heterogeneous, the ANOVA approach leads to seriously biased results.
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On the other hand, Keselman et al. (1995, 1996) demonstrated how one can

obtain generally robust tests of these hypotheses by employing a WJ type test.  For

completeness we present the WJ test again.  As these authors note, each of the previously

delineated hypotheses can, from a full model perspective, be expressed as H : ,0 C 0. œ

where  is the contrast matrix associated with the specific hypothesis,  is a vector ofC .

means and  is the null vector.   Therefore, one can test any of the previously enumerated0

hypotheses or models by specifying the appropriate contrast matrices and applying them

in a full rank model analysis of the data with a procedure (i.e., the WJ test) that can

handle unequal variances.

To introduce the WJ test, consider the full rank model Y   where345 45 345œ . %

the s are independently and normally distributed within each combination of  and %345 4 5

and where cell variances are  required to be equal.  Suppose under these modelnot

assumptions that we wish to test the hypothesis:

H :   =  , (1)0 1C 0.

where  = ( , ... , ) ,  = (  , ... , ), and  is a contrast matrix of dimension r. . . .1 J j j1 K 1
w w w

4. . C ‚

JK with r = rank ( ).  Then from Johansen (1980) and Keselman et al. (1995, 1996), theC1

test statistic is

T  = ( ) ( ) ( ) , (2)WJ 1 1 11
1C Y C S C C Y

_ _
w w 

where  = ( ,  , ) , (Y ,  ,Y ) , Y Y /n , with  ( ) = ,
_ _ _

Y Y Y Y Y
_

w w w w
4 4 4 45 3 345 451 J 1 Ká œ á œ

   
D X .

and the sample variance matrix of  is  = diag(s /n   s /n ), where
_
Y S , ,11

2 2
11 JKJKá

s Y Y ) (n 1). This statistic, divided by a constant, c, has an
_

45
3 "

345 45 45
#2

=

n

œ Ð  Î !45
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approximate F distribution with degrees of freedom f r, and f  = r(r 2)/(3A).  The1 2œ 

constant c r 2A 6A /(r 2), withœ   

A = (1 P ) /( n 1) ,!
45

45 45 45 ,
2

where P  is the ( , )-th element of the matrix ( ) .45 45
w w 

, 1 11 1
145 45 I S C C S C C

Testing Hypotheses Under Unrestricted Models.  As previously indicated, HR

and H  (and H ) are assessed by eliminating all other effects in the full nonadditiveC R C‚

model. That is, the model that is postulated as being true is

Y , and H , H  and H  are evaluated against this345 4 5 45 345 ‚œ    Ð Ñ . ! " !" % R C R C

model.  As there are no restrictions placed on , , or  (except as side conditions! " !"4 5 45

for a full rank model), one can simply use the WJ statistic as given in Equation 2, with C1

equal to either ,  or , to test the respective null hypotheses.   One can alsoC C CR C R C‚

evaluate H , H , H , and H  assuming that the full nonadditive model is true in this* * ** **
R C R C

case substituting , , , or  for .C C C C C* * ** **
R C R C 1

Testing Hypotheses Under Restricted (R) Models.  As Keselman et al. (1995,

1996) indicate some authors would not recommend  substituting , , , or  forC C C CR C R C
** **‡ ‡

C1 in Equations 1 and 2 (e.g., Keren, 1982; Lewis & Keren, 1977;  Scheffe, 1959).  Their

view is that it is inappropriate to use the error term from the full nonadditive model to

test H , H , H , or H  because under the null hypothesis certain effects are assumed to* * ** **
R C R C

be zero.  For example, when testing H , one compares two models, neither of which**
R

contains .  In other words, one assesses H  assuming that all s 0.!" !"45 45
**
R œ

Accordingly, to test  H(R) , H(R) , H(R) , or H(R) , these authors would favor the use* * ** **
R C R C

of a procedure that restricts ignored effects to zero.

To test H(R) , H(R) , H(R) , or H(R)  under a restricted model, one tests each* * ** **
R C R C

hypothesis as in Equation 1 with the restrictions specified by  = , where the contrastC 00 .
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matrix  denotes the ignored effects that are restricted to zero.  As Keselman et al.C0

(1995, 1996) indicate, the contrast matrix can be constructed by forming a superC1 

matrix which contains rows for the effect that is being tested, as well as rows for each

effect that is being ignored under H .0

For restricted models, the test statistic in Equation 2 has the more general but

explicit form

T  = [( ( )  ) ( ( )  )]  
_

WJ 1 1 0 01 1 0 0
1Y S C C S C C S C C S C C   Sw w w  w w " w " ‚

[( ( )   ) ( ( )   )]  . (3)
_

S C C S C C S C C S C C Y1 1 0 01 1 0 0
w w " w w "

The test statistic in Equation 3 divided by c has an approximate F distribution  with

f r rank ( ) rank ( ) and f = r(r 2)/{3(A B)}, where c = r 2(A1 1 0 2œ œ     C C

B) 6(A B)/(r 2),  

A = (P P )[(1 P )/(n 1)],!
45 45 45 45 45 "45 45 450 , 1 , ,  

and

B = (P P )[(1 P )/(n 1)],!
45 45 45 45 45 !45 45 450 , 1 , ,  

where P  is the ( , )-th element of the matrix ( ) , for 0 or 1.3 45 45 3 33 3
w w "

, , 45 45  3 œI SC C SC C

For example, one would test H(R) , H(R) , H(R) and H(R)  in two-way* * ** **
R C R C

factorial designs by letting

C C C C C C  C1 0R C R C C R C R
*œ œc dw w w w w w w

‚ ‚   and  for H(R)  ,c d
C C C C C C  C1 0C R R C R R C C

*œ œc dw w w w w w w
‚ ‚   and  for H(R)  ,c d

C C C C  C1 0 R CR R C R
**œ œc d   and  for H(R)  andw w w

‚ ‚

C C C C  C1 0 R CC R C C
**œ œc dw w w

‚ ‚  and  for H(R) , respectively.
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Both  and  can be obtained in the manner described in Keselman et al. (1995, 1996).C C1 0

Applying Trimmed means and Winsorized variances to the WJ test.  As

previously indicated we hypothesized that by using trimmed means and Winsorized

variances with the WJ test one may be able to obtain a statistic that is robust to the

combined effects of nonnormality and variance heterogeneity in nonorthogonal designs.

In addition, as a base of comparison we also investigated the use of robust estimators

with the ANOVA F test as well as applying the WJ test with the usual least squares

estimators.

Trimmed means and Winsorized sums of squares (variances) are based on order

statistics. Specifically, let Y Y Y  represent the ordered(1) (2) ( )45 45 8 45Ÿ Ÿ á Ÿ
45

observations associated with the th cell.  When trimming symmetrically, let g [  jk 45 œ #

n ], where  represents the proportion of observations that are to be trimmed in each tail45 #

of the distribution and [ ] is the greatest integer . The effective sample size for theB Ÿ B

jkth cell becomes h 2g .  The prevalent method of trimming is to remove45 45 45œ 8 

outliers from each tail of the distribution of scores; furthermore, it is recommended that

20 percent of the observations be removed from each tail.  (see Wilcox, 1995 and the

references he cites for a justification of the 20 percent rule.)  Under symmetric trimming,

the th sample trimmed mean isjk

Y      Y  , (4)q
œt ( )45 3 45

1
h

g 1

n g

45
45

4 45

  !
3œ 



and the th sample Winsorized mean is45

Y   X  , (5)q
œW45 345

1
n

1

n

45

45

 !
3œ

where
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X Y   if  Y Y
Y   if  Y Y Y
Y   if  Y Y  .

345  45 345  45

345  45 345  45

 45 345  45

œ Ÿ

œ  

œ 

(g 1) (g 1)

(g 1) (n g )

(n g ) (n g )

45 45

45 45 45

45 45 45 45

Based on Yuen's (1974) work, a variance based on Winsorized data may be defined as

s  (X Y ) . (6)W
2 2

W45 345 45œ 
q1

h  145
 !
3œ1

n45

Thus, with robust estimation, the trimmed cell means and Winsorized cell variances were

substituted for their least squares counterparts into the WJ statistic.  In addition, f  and f" #

were based on the effective sample sizes (i.e., the h s).45

Method

In our study we compared three approaches to testing H , H , H , H , H , H ,R C
* * ** **
R C R C

H(R) , H(R) , H(R) , H(R) , and H : (a) the ANOVA F test with trimmed means* * ** **
R C R C R C‚

and Winsorized variances [F(TM)], (b) the WJ test with least squares estimators [WJ],

and (c) the WJ test with robust estimators [WJ(TM)].  In particular, we compared these

three approaches by varying three factors: (a) degree of variance heterogeneity, (b)

pattern of directional pairing of variances and sample sizes, and (c) distributional shape

of the data.

To build on the results provided by Keselman et al. (1995, 1996), we investigated

many of their conditions.  In particular, we studied a 2 2 design in which cell variances‚

were in the ratio of 1:1:1:9.  This degree of heterogeneity has been shown to produce

liberal tests in the one-way design (Wilcox, 1987, pp. 30-32).  However, we also chose to

investigate a more disparate case, specifically, one in which cell variances were in a ratio
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of 1:1:1:16.  We included this second case of variance heterogeneity because, according

to Wilcox, Charlin, and Thompson (1986) and Fenstad (1983), it is not uncommon to

have populations with standard deviations that are in a 4:1 ratio.  Moreover, Lix, Cribbie

and Keselman (1996) found instances in the education literature in which cell standard

deviations exceeded a ratio of 20:1.

We chose two patterns of these variances, both of which were also examined by

Keselman et al. (1995, 1996), in which the smallest variance was associated with the cell

having either the smallest size (Pattern 1 [P ]) or largest size (Pattern 2 [P ]).  These+ 

patterns are known to produce conservative and liberal results, respectively, with many

test procedures.

As the WJ procedure has also been shown to be affected by distributional shape in

other contexts (Algina, Oshima & Tang, 1991; Keselman, Carriere & Lix, 1993;

Keselman et al., 1995), we collected Type I error rates when sampling from both normal

and nonnormal distributions.  In addition to generating data from a  distribution, we;2
3

also used the method described in Hoaglin (1985) to generate a distribution with more

extreme degrees of skewness and kurtosis. These particular types of nonnormal

distributions were selected because educational and psychological research data typically

have skewed distributions (Micceri, 1989; Wilcox, 1994a).  Furthermore, Sawilowsky

and Blair (1992) investigated the effects of eight nonnormal distributions identified by

Micceri on the robustness of Student's  test and found that only distributions with thet

most extreme degree of skewness which were investigated (e.g., 1.64) were found#1 œ

to affect the Type I error control of the independent sample t statistic.  For the ;2
3

distribution, skewness and kurtosis values are 1.63 and 4.00, respectively. The# #1 2œ œ

other nonnormal distribution was generated from the g- and h-distribution (Hoaglin,

1985).  Specifically, we chose to investigate the g 1 and h 0 (notated throughout theœ œ

remainder of the paper as g 1/h 0) distribution.  To give meaning to these values itœ œ
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should be noted that for the standard normal distribution g h 0.  Thus, when g 0 aœ œ œ

distribution is symmetric and the tails of a distribution will become heavier as h increases

in value. Values of skewness and kurtosis corresponding to the investigated values of g

and h are 6.2 and 114.  Finally, it should be noted that though the selected# #1 2œ œ

combinations of g and h result in an extremely skewed distribution, these values,

according to Wilcox (1990, 1994a, p. 296), are representative of psychometric measures.

Thus, we included the g 1/h 0 distribution as an exemplar of a “worst case"œ œ

distribution that, according to Wilcox (1994a), researchers may encounter.

The sample cell sizes used in this study were n 8, n 20, n 20 and11 12 21œ œ œ

n 32. The unequal cell sizes follow from Wilcox's (in press) recommendation that, in22 œ

the equal cell size case, sizes should not be less than 20 when statistics are based on

trimmed means and Winsorized variances.  The degree of cell size inequality, as indexed

by a coefficient of variation, equalled .424, and corresponds with a case investigated by

Keselman et al. (1995, 1996), though our N is larger than those investigated by these

authors; sample size was increased since observations would be deleted due to trimming.

It is also important to note, that according to Lix et al. (1996) unbalanced designs are the

norm, rather than the exception, in educational research and that the degree of sample

size disparity that we investigated does occur in this research field as well.

To generate pseudo-random normal variates, we used the SAS generator

RANNOR (SAS Institute, 1989). If Z  is a standard normal variate, then345

Y Z  is a normal variate with mean equal to  and variance equal to345 45 45 345 45œ  ‚. 5 .

545
2 .

To generate pseudo-random variates having a distribution with three degrees;2 

of freedom, three standard normal variates were squared and summed.  The variates were

standardized, and then transformed to  variates having mean  (when investigating; .2
3 45

tests based on least squares estimates) or (when investigating tests based on trimmed.t  45
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means) and variance  [see Hastings & Peacock (1975), pp. 46-51, for further details52
45

on the generation of data from these distributions].

To generate data from a g- and h-distribution, standard unit normal variables

(Z s) were converted to the random variable345

] œ345
exp (g Z ) 1

g
345 

expŒ h Z
2
345
2

,

according to the values of g and h selected for investigation.  To obtain a distribution

with standard deviation , each Y  ( 1,  , JK) was multiplied by a value of .5 545 345 45 œ á jk

It is important to note that this does not affect the value of the null hypothesis when

g 0 (see Wilcox, 1994, p. 297).  However, when g 0, the population mean for a g-œ 

and h-distributed variable is

.gh
2œ  

1
g(1 h)

"
#

(exp{g /2(1 h)} 1)

(see Hoaglin, 1985, p. 503).  Thus, because g 0 in our investigation,  was first .gh

subtracted from Y  before multiplying by .  When working with trimmed means, 345 45 455 .t

was first subtracted from each observation.  Lastly, it should be noted that the standard

deviation of a g- and h-distribution is not equal to one, and thus the values enumerated

previously reflect only the amount that each random variable is multiplied by and not the

actual values of the standard deviations (see Wilcox, 1994a, p. 298).  As Wilcox notes,

the values for the variances (standard deviations) more aptly reflect the ratio of the

variances (standard deviations) between the groups.
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Five thousand replications of each condition were performed using a .05

significance level.

 Results

To evaluate the particular conditions under which a test was insensitive to

assumption violations, Bradley's (1978) liberal criterion of robustness was employed.

According to this criterion, in order for a test to be considered robust, its empirical rate

of Type I error ( ) must be contained in the interval 0.5 1.5 .  Therefore, for! ! ! !s sŸ Ÿ

the five percent level of significance used in this study, a test was considered robust in a

particular condition if its empirical rate of Type I error fell within the interval

.025 .075.  Correspondingly, a test was considered to be nonrobust if, for aŸ Ÿs!

particular condition, its Type I error rate was not contained in this interval.  In the tables,

bolded entries are used to denote these latter values.  We chose this criterion because we

feel that it provides a reasonable standard by which to judge robustness.  That is, in our

opinion, applied researchers should be comfortable working with a procedure that

controls the rate of Type I error within these bounds, if the procedure limits the rate

across a wide range of assumption violation conditions.   Nonetheless, the reader should

be aware that there is no universal standard by which tests are judged to be robust; with

other standards, different interpretations of the results are possible.

Normally distributed data.  Table 1 contains empirical rates of Type I error (%)

for the three approaches to the analyses of  H , H , H , H , H , H , H(R) , H(R) ,R C
* * ** ** * *
R C R C R C

H(R) , H(R) , and H  in the 2 2 nonorthogonal design for the two cases of** **
R C R C‚ ‚

variance heterogeneity (1:1:1:9 and 1:1:1:16) and two patterns of variances and sample

sizes (P : positive pairing and P : negative pairing).  Most evident from this table is that+ 

WJ and WJ(TM) effectively controlled Type I error rates for all hypotheses across all

conditions while F(TM) never did.  WJ and WJ(TM) had rates which occasionally

exceeded five percent, and thus could be described as slightly liberal, however, averaged
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over all tabled values their respective rates were only 5.15% and 5.54%.  For F(TM), the

empirical rates ranged from a low of 0.56% to a high of 26.48%.  Thus, for normally

distributed data, the two approaches involving a statistic that does not pool heterogeneous

sources of variation (i.e., WJ) provided effective Type I error control regardless of the

type of estimators for location and scale, while the use of robust (trimmed) estimators

with a nonrobust statistic (F), did not.

 ---------------------------------------------

Insert Table 1 About Here

---------------------------------------------

;$
# distributed data.  The combined effects of variance heterogeneity and

nonnormality can be gleaned from Table 2.  The empirical rates reported in Table 2 were

obtained when data were  distributed.   Once again F(TM) resulted in very;$
#

conservative and liberal rates when sample sizes and variances were positively and

negatively paired, respectively.  On the other hand, rates for WJ were only occasionally

liberal in condition P .  For the less disparate case of variance heterogeneity (1:1:1:9)

only three of the 11 values exceeded 7.50% and occurred for tests of  H  (8.50%), HR C

(8.04%) and H  (8.24%). However, when the variances were in a 1:1:1:16 ratio, fiveR C‚

of the 11 values exceeded 7.50%, ranging in value from 7.68% to 8.30%, and were

associated with the tests of unrestricted hypotheses.  Using robust estimators with WJ

[WJ(TM)] was effective in combating the combined effects of nonnormality and variance

heterogeneity.  That is, for   distributed data, the rates of error for WJ(TM) were;$
#

always within Bradley's (1978) interval.  The average rates of error for the P  condition+

for the less and more disparate cases of heterogeneity were 5.21% and 5.44%,

respectively, while the corresponding P  values were 6.09%, and 6.22%.

 ---------------------------------------------

Insert Table 2 About Here
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---------------------------------------------

g 1/h 0 distributed data.œ œ   The effect of combining heterogeneous cell

variances with nonnormal data which was also very skewed and kurtotic is evident from

the values presented in Table 3.  Once again F(TM) was substantially affected by

variance heterogeneity though the values for the P  condition were not as conservative as+

those reported in Tables 1 and 2. The WJ rates, however,  were substantially larger than

the values reported in Tables 1 and 2.  Thus, though the values reported by Keselman et

al. (1995, 1996) suggest that WJ with the usual least squares estimators for central

tendency and variability was somewhat effected by data that is neither normal in form

nor equal in variability, the data reported in Table 3 clearly indicate the limitations of WJ

to the combined violations.  Indeed, for g 1/h 0 data, rates of error were always inœ œ

excess of Bradley's (1978) upper bound for the P  condition, typically attaining values

between 10 and 15 percent.  Furthermore, the empirical rates were even liberal under the

P  condition.  On the other hand,  of the 44 WJ(TM) rates were contained within+ all

Bradley's interval.  The average rates of error for the P  condition for the less and more+

disparate cases of heterogeneity were 4.96% and 5.04%, respectively, while the

corresponding P  values were 6.23%, and 6.55%.  Thus, WJ(TM) proved very effective

in controlling the rate of Type I error.

 ---------------------------------------------

Insert Table 3 About Here

---------------------------------------------

Discussion

Three approaches to the analysis of nonorthogonal designs were compared in a

2 2 design when data were nonnormal and variances were nonhomogeneous.‚

Specifically, we compared the usual ANOVA F test which used trimmed means and

Winsorized variances, the WJ test using the usual least squares estimators of central



Robust Nonorthogonal Analyses
19

tendency and variability, and the WJ test based on trimmed means and Winsorized

variances.  Thus, the first approach involved robust estimators with a nonrobust statistic,

the second approach a robust statistic with nonrobust estimators, while the third approach

was robust with respect to estimators as well as statistic.  Not surprisingly, based on the

theoretical results presented by Cressie and Whitford (1986) and Wilcox (1994b), we

hypothesized that our third approach would provide the best opportunity for controlling

the rate of Type I errors when the data were both nonnormal in form and

nonhomogeneous in variability.

The results reported in this investigation support the conclusions of Keselman et

al. (1995, 1996).  That is, for moderate degrees of skewness (e.g., ) and variance;$
#

heterogeneity ( ratio of 1:1:1:9), the WJ test with the usual least squares estimators for545
#

central tendency and variability typically is robust in nonorthogonal designs.  However,

the data reported in this investigation support our hypothesis regarding the best overall

method of analysis.  That is, the WJ test using trimmed means and Winsorized variances

provided excellent Type I error control over  the investigated conditions, while theall

other two approaches did not.  This finding is particularly impressive in light of the fact

that the conditions that were varied in this investigation were extreme.  That is, the

degrees of skewness, kurtosis, variance heterogeneity, and sample size disparity were

large and thus probably represent the most extreme conditons that applied researchers are

ever likely to encounter with actual data.  However, as we have indicated previously, the

conditions we investigated, including the extreme assumption violation cases, according

to other researchers working in the area, have occurred, or are likely to occur, in

behavioral science experiments (Fenstad, 1983; Lix et al., 1996; Micceri, 1989; Wilcox,

1994a, 1995a, 1995b; Wilcox et al., 1986).  Thus, WJ with trimmed means and

Winsorized variances appears to us to be the more versatile procedure in that it controls

rates of Type I error when conditions are moderately as well as substantially unfavorable.
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Moreover, as Wilcox (1995a) notes, procedures that perform well over a wide range of

simulation conditions, including extreme conditions, encouragingly suggests that the

positive operating characteristics of the procedure might hold over conditons not

considered in the simulation and thus positively reflect on the procedures versatility.

Consequently, we are most comfortable in recommending this approach for the analysis

of effects in nonorthogonal designs.

Furthermore, though our investigation was limited to tests of effects with one df,

results presented elsewhere suggest one can expect comparable findings with tests of

effects involving more than one df (see Lix & Keselman, 1995, 1997).  At the same time,

we must emphasize that the hypotheses tested when trimmed means are used are not

equivalent to those tested when the usual means are adopted. Nonetheless, we feel it is

most reasonable to use these estimators when one is interested in determining if there has

been an effect due to a treatment variable and one wants to compare the groups on a

measure of location that is insensitive to nonnormality.

As a post script to our recommendation we want to acknowledge that the results

presented in this paper and the paper by Keselman et al. (1995) provide a great deal of

assurance that the WJ test with least squares estimators works reasonably well under

many conditions, that is, when assumptions are minimally violated.  Accordingly,

researchers may be tempted to use least squares estimators with the robust WJ solution.

The consequence of adopting this approach is that spurious findings may result, as

applied researchers will, in all likelihood, encounter data that are markedly skewed

and/or contains outliers.  Unfortunately, sample estimates of the third and fourth

moments of a distribution are prone to large sampling variability and thus are not likely

to be useful to researchers attempting to select one approach over the other.  This two-

stage approach therefore can not be recommended without further investigation.  Another

strategy that might be considered by some researchers is to detect and remove outliers

and then proceed with the a WJ solution; Wilcox (in press) indicates the pitfalls of this
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strategy.  Accordingly, we recommend uniform adoption of a single testing strategy, in

this case, the WJ solution with trimmed means.  This approach, according to the present

study, is most likely to result in control of Type I errors.

Also worth noting is that inferential and descriptive procedures based on these

robust estimators will also provide better probability coverage for interval estimation and

better estimates of effect size (see Wilcox, 1996, Sections 8.8 and 8.9).  Furthermore, as

is the case with omnibus test statistics which compare the usual treatment group means,

researchers can choose to follow-up significant omnibus tests of trimmed means with

multiple comparison procedures which also employ trimmed means and Winsorized

variances (see Keselman, Lix & Kowalchuk, in press; Wilcox, 1994b, 1996).  And lastly,

test statistics utilizing trimmed means and Winsorized variances are available for other

research paradigms as well; specifically, the procedures have been extended to repeated

measures designs (see Wilcox, 1995a).

Finally, it is important that we note that although we have not compared the WJ

test with trimmed means and Winsorized variances with the WJ test based on least

squares estimators with regard to power, theory and prior work indicates that this was not

necessary.  That is, as previously indicated, theory tells us that procedures based on

sample means result in poor power because the standard error of the mean is inflated

when distributions have heavy tails; however, this is less of a problem when working

with trimmed means (see Tukey, 1960; Wilcox, 1995b).  This phenomenon is illustrated

in a number of sources.  For example, Wilcox (1994b, 1995b) has presented results

indicating that in the two sample and one-way problem, tests (i.e.,  and ) based on thet F

usual least squares estimators lose power when data contains outliers and/or is heavy

tailed.  Specifically, in the two sample problem, Wilcox (1994b) compared the Welch

(1938) and Yuen (1974) procedures and found that when data were obtained from

contaminated normal distributions (distributions that have thicker tails compared to the
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normal) the power of Welch's test was considerably diminished compared to its

sensitivity to detect nonnull effects when data were normally distributed and, as well,

was less sensitive than Yuen's test.  Indeed, the power of Welch's test to detect nonnull

effects went from .931 when distributions were normally distributed to .278 and .162 for

the two contaminated normal distributions that were investigated; the corresponding

power values for Yuen's test were .890, .784, and .602, respectively.  Wilcox (1995b)

presented similar results for four independent groups. To complement these results we

illustrate how power can be affected in nonorthogonal designs when the data contains

outliers and/or is heavy-tailed, by modifying Wilcox's (1994a; Wilcox, in press) one way

hypothetical data set (see his Table 7), letting his four groups correspond to the four cells

{[Group 1 (1,1)-cell], [Group 2 (1,2)-cell], [Group 3 (2,1)-cell], and [Group´ ´ ´

4 (2,2)-cell]} of a´

2(R) 2(C) design (see Table 4).  For simplicity of presentation we use this balanced‚

data set and thus the various nonorthogonal solutions provide identical results.

Additionally, we remind the reader that the example data set contains 20 observations per

cell because this is the minimum size recommended in order to obtain good Type I error

control (see Wilcox, in press).

 ---------------------------------------------

Insert Table 4 About Here

---------------------------------------------

Also contained in Table 4 are summary statistics for the four cells based on least

squares and robust estimators.  The striking feature about this data set is the one extreme

observation, outlier, (n 40) in cell (2,2); boxplots of the data clearly flag this20,2,2 œ

outlier.  To better understand the nature of the data, measures of skewness ( b ) andÈ 1

kurtosis (b ) were computed for each cell (see D'Agostino, Belanger & D'Agostino,2

1990). The reader should note that b 0 indicates a symmetric distribution withÈ 1 œ

È Èb 0 indicating skewness to the right and b 0 indicating skewness to the left.1 1 
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On the other hand, values of b 3(n 1)/(n 1) indicate heavy tails while2   

b 3(n 1)/(n 1) is indicative of light tailed distributions.  Thus, cell (2,2) is2   

extreme with regard to these two measures (see Table 4).

Results based on least squares estimators are: (a) WJ 2.23 ( 21.6583),R œ œ/

p .150; (b) WJ 2.56 ( 21.6583), p .124; and (c) WJ 1.12 ( 21.6583),œ œ œ œ œ œC RC/ /

p .302.  Accordingly, treatment effects are not detected for any of the investigatedœ

effects. On the other hand, the results based on robust estimators are: (a)

WJ(TM) 4.07 ( 39.3104), p .050; (b) WJ(TM) 6.73 ( 39.3104),R Cœ œ œ œ œ/ /

p .013; and (c) WJ(TM) 0.0 ( 39.3104),  p 1.0.  Thus, based on trimmedœ œ œ œRC /

means and Winsorized variances, one would conclude that there are main effect

differences, though effects were not detected for the interaction.
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Table 1. Percentages of Type I Error (Normal/n jk=8, 20, 20, 32)

F (TM) WJ WJ (TM)

P+ P- P+ P- P+ P-

H0 Variance Ratio=1:1:1:9

Row

H 0.94 22.98 4.78 5.22 5.34 5.82

H* 1.98 11.42 4.68 5.08 4.66 5.54

H** 2.26 12.42 4.70 5.32 4.68 5.58

H(R)* 1.66 8.46 4.76 4.80 6.26 5.56

H(R)** 2.28 11.24 5.08 5.16 5.96 5.70

Column

H 1.06 22.84 4.96 5.38 4.74 5.68

H* 2.30 11.94 5.00 5.20 5.20 5.42

H** 2.46 12.88 5.08 5.32 5.06 5.46

H(R)* 1.86 8.92 5.40 5.32 5.60 5.86

H(R)** 2.46 11.50 5.42 5.60 5.60 5.92

HRXC 0.96 22.38 5.10 5.36 5.46 5.62



Table 1, continued

F (TM) WJ WJ (TM)

P+ P- P+ P- P+ P-

H0 Variance Ratio=1:1:1:16

Row

H 0.70 26.32 5.48 5.30 5.38 5.92

H* 2.08 14.72 5.10 5.64 5.06 6.08

H** 2.38 15.78 5.20 5.40 5.14 6.08

H(R)* 1.54 10.82 5.56 4.92 5.74 6.20

H(R)** 2.40 14.22 5.46 5.54 5.78 5.94

Column

H 0.56 26.46 4.70 4.88 4.84 5.34

H* 1.88 14.32 4.62 4.88 5.38 5.40

H** 2.20 15.52 4.76 5.02 5.38 5.34

H(R)* 1.54 10.02 4.82 5.70 5.64 6.08

H(R)** 2.08 13.40 5.30 5.58 5.18 6.34

HRXC 0.64 26.48 4.90 5.00 5.24 5.78

Note: F(TM)=ANOVA F test with trimmed means and Winsorized
variances; WJ=Welch-James test with usual least squares estimators;
WJ (TM)=Welch-James test with trimmed means and Winsorized
variances; P+/P-=positive/negative pairings of sample sizes and
variances.



Table 2. Percentages of Type I Error (P2
3/njk=8, 20, 20, 32)

F (TM) WJ WJ (TM)

P+ P- P+ P- P+ P-

H0 Variance Ratio=1:1:1:9

Row

H 1.38 21.66 4.98 8.50 4.64 6.06

H* 2.66 10.94 5.52 6.48 4.94 5.56

H** 2.96 12.06 5.88 6.70 5.02 5.74

H(R)* 2.16 8.34 5.68 6.34 5.50 6.98

H(R)** 2.98 10.80 6.22 7.30 5.40 6.86

Column

H 1.30 21.68 5.10 8.04 4.96 5.84

H* 2.66 10.58 5.62 6.26 5.34 5.06

H** 3.06 11.76 5.62 6.76 5.36 5.30

H(R)* 2.40 7.80 5.88 6.40 5.82 6.48

H(R)** 3.08 10.12 5.88 7.28 5.60 6.64

HRXC 0.88 22.28 5.38 8.24 4.76 6.50



Table 2, continued

F (TM) WJ WJ (TM)

P+ P- P+ P- P+ P-

H0 Variance Ratio=1:1:1:16

Row

H 1.14 26.54 5.74 8.16 5.56 6.20

H* 2.68 13.22 6.04 7.06 5.84 5.66

H** 3.22 14.64 6.06 7.12 5.92 5.72

H(R)* 2.10 9.02 6.26 6.26 5.60 6.18

H(R)** 3.06 12.66 6.82 6.82 5.80 6.30

Column

H 1.04 27.78 5.30 8.30 5.08 7.00

H* 2.10 14.50 5.66 7.68 5.30 6.26

H** 2.50 15.76 5.76 7.82 5.46 6.34

H(R)* 1.70 9.98 5.86 6.46 5.20 6.42

H(R)** 2.42 13.80 6.64 7.12 5.36 6.00

HRXC 0.52 26.36 5.52 8.26 4.72 6.36

Note: See the note from Table 1.



Table 3. Percentages of Type I Error (g=1/h=0/n jk=8, 20, 20, 32)

F (TM) WJ WJ (TM)

P+ P- P+ P- P+ P-

H0 Variance Ratio=1:1:1:9

Row

H 2.06 22.54 4.64 13.96 4.28 6.80

H* 3.02 10.50 5.68 9.66 4.84 5.58

H** 3.38 11.60 6.08 10.22 4.88 5.72

H(R)* 2.70 7.70 7.12 10.58 6.28 6.86

H(R)** 3.34 10.24 7.98 11.94 5.56 6.52

Column

H 1.96 22.18 4.56 13.84 4.00 6.60

H* 2.90 10.82 5.90 9.48 4.62 5.28

H** 3.20 11.76 6.38 10.14 4.66 5.50

H(R)* 2.40 7.44 6.66 10.22 5.98 6.80

H(R)** 3.24 10.44 7.18 11.76 5.02 6.34

HRXC 1.52 22.30 6.52 13.62 4.48 6.56



Table 3, continued

F (TM) WJ WJ (TM)

P+ P- P+ P- P+ P-

H0 Variance Ratio=1:1:1:16

Row

H 1.88 26.70 6.28 14.54 5.10 7.08

H* 3.14 13.56 7.80 10.68 5.30 6.28

H** 3.54 15.30 8.52 11.70 5.34 6.32

H(R)* 2.62 9.10 6.80 9.56 5.28 6.44

H(R)** 3.52 13.04 7.90 11.32 5.34 6.86

Column

H 1.44 26.24 5.88 14.48 4.66 6.90

H* 2.68 12.94 7.46 11.44 5.16 5.78

H** 3.00 14.22 8.44 11.90 5.28 5.96

H(R)* 2.20 8.54 6.16 9.74 4.86 6.86

H(R)** 2.96 12.24 7.86 11.48 4.50 6.84

HRXC 0.94 26.20 8.04 14.46 4.64 6.76

Note: See the note from Table 1.



       Table 4. Hypothetical Data Set and Summary
  Statistics

(1,1) (1,2) (2,1) (2,2)

2 5 3 6

2 4 6 3

2 4 4 6

3 4 3 5

5 6 5 4

3 2 2 5

3 5 5 6

6 4 4 5

3 4 4 4

3 3 4 4

4 6 2 4

6 2 3 6

4 5 4 4

3 3 4 3

3 4 3 4

4 4 2 5

3 3 6 4

3 4 6 4

3 3 3 5

5 5 5 40



    Table 4, continued

Statistic
s

(1,1) (1,2) (2,1) (2,2)

njk 20 20 20 20

X6 jk 3.50 4.00 3.90 6.35

s2
jk 1.4211 1.2632 1.6737 63.6079

%b1 .8607 0 .1886 4.0354

b2 2.8601 2.5000 2.0789 17.5633

hjk 12 12 12 12

X6 tjk 3.25 4.00 3.83 4.58

s2
wjk .4136 1.0909 1.2545 1.2500

     Note: %b1=sample estimate of the third moment
    (skewness). b2= sample estimate of the fourth moment
    (kurtosis) (See D’Agostino, Belanger & D’Agostino (1990).


