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Abstract

In the regression-discontinuity (RD) design, units are assigned to treatment based on whether

their value of an observed covariate exceeds a known cutoff. In this design, local polynomial es-

timators are now routinely employed to construct confidence intervals for treatment effects. The

performance of these confidence intervals in applications, however, may be seriously hampered

by their sensitivity to the specific bandwidth employed. Available bandwidth selectors typically

yield a “large”bandwidth, leading to data-driven confidence intervals that may be severely bi-

ased, with empirical coverage well below their nominal target. We propose new, more robust,

theory-based confidence interval estimators for average treatment effects in sharp RD, kink RD,

fuzzy RD and fuzzy kink RD designs. Our proposed confidence intervals rely on a recentered

RD estimator together with a novel standard-error estimator. For practical implementation,

we propose a consistent standard-error estimator that does not require an additional band-

width choice, as well as valid bandwidth choices compatible with our underlying large-sample

theory. In a simulation study, we find that our novel data-driven confidence intervals exhibit

close-to-correct empirical coverage and good empirical interval length on average, remarkably

improving upon the alternatives available in the literature. We illustrate the performance of

our proposed methods with household data from Progresa/Oportunidades, a conditional cash

transfer program in Mexico. All the results in this paper are readily available in STATA using

our companion package (rdrobust) described in Calonico, Cattaneo, and Titiunik (2013).
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1 Introduction

The regression discontinuity (RD) design has become one of the leading non-experimental empirical

strategies in Economics, Political Science and many other social and behavioral sciences.1 In this

design, units are assigned to treatment based on their value of an observed covariate, with the

probability of treatment assignment jumping discontinuously at a known cutoff. For example, in

its original application, Thistlethwaite and Campbell (1960) used this design to study the effects of

receiving an award on future academic achievement, where the award was given to students whose

test scores were above a certain cutoff. The idea of the RD design is to study the effects of the

treatment using only observations near the cutoff to control for smoothly varying unobserved con-

founders. Flexible estimation of RD treatment effects approximates the outcome’s (and treatment

status’) regression function given the score near the cutoff for control and treated groups separately,

and computes the estimated effect as the difference (or ratio of differences) of the appropriate values

of the regression functions at the cutoff for each group.

Nonparametric local polynomial estimators have received great attention in the recent RD

literature, and have become the standard choice for estimation of RD average treatment effects.

This estimation strategy involves approximating the regression functions above and below the cutoff

by means of weighted local polynomial regressions, typically of order one, with weights computed

by applying a kernel function on the distance of each observation’s score to the cutoff. These kernel-

based estimators require a choice of bandwidth for implementation, and several bandwidth selectors

are now available in the literature. These bandwidth selectors are obtained by balancing squared-

bias and variance of the RD estimator, a procedure that typically leads to bandwidth choices that

are too “large”to ensure the validity of the distributional approximations usually invoked; that is,

these bandwidth selectors lead to a non-negligible bias in the distributional approximation of the

estimator. As a consequence, the resulting data-driven confidence intervals for RD treatment effects

may be biased, having empirical coverage well below their nominal target. This implies that, for

example, these conventional confidence intervals may substantially over-reject the null hypothesis

of no treatment effect in empirical applications.

To address this drawback in conventional RD inference, we propose new confidence intervals for

RD treatment effects that offer robustness to “large”bandwidths such as those usually obtained

from cross-validation or asymptotic mean-square-error minimization. Our proposed confidence in-

tervals are constructed as follows. We first bias-correct the RD estimator to account for the effect

of a “large” bandwidth choice; that is, we recenter the usual t-statistic with an estimate of the

leading bias. As it is well-known in the literature, however, conventional bias-correction alone

delivers very poor finite-sample performance because it relies on a low-quality distributional ap-

proximation. Thus, to improve the quality of the distributional approximation of the bias-corrected

t-statistic, we also introduce a novel standard-error formula to account for the additional variabil-

ity introduced by the estimated bias; that is, we rescale the bias-corrected t-statistic. The new

1See, among others, van der Klaauw (2008), Imbens and Lemieux (2008), Lee and Lemieux (2010) and Dinardo
and Lee (2011) for recent reviews.
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standard-error formula is theoretically justified by a non-standard large-sample distributional ap-

proximation of the bias-corrected estimator, which explicitly accounts for the potential contribution

that bias-correction may add to the finite-sample variability of the usual t-statistic. Altogether,

our proposed confidence intervals are more robust to the bandwidth choice (“small” or “large”),

as they are not only valid when the usual bandwidth conditions are satisfied (being asymptotically

equivalent to the conventional confidence intervals in this case; e.g., see Remark 2 below), but also

continue to offer correct coverage rates in large samples even when the conventional confidence

intervals do not (e.g., see Remark 1 below).

The main discussion focuses on the construction of robust confidence intervals for the RD av-

erage treatment effect at the cutoff in four settings: sharp RD, kink RD, fuzzy RD and fuzzy kink

RD designs. In all cases, the bias-correction technique follows the standard approach in the non-

parametrics literature (e.g., Fan and Gijbels (1996, Section 4.4, p. 116)), but our standard-error

formulas are different because they incorporate additional terms not present in the conventional

ones. The new confidence intervals are demonstrably more robust because they are valid under

strictly weaker bandwidth conditions than those required by their conventional counterparts. In

addition, we find in an empirically motivated simulation study that our proposed data-driven con-

fidence intervals exhibit close-to-correct empirical coverage and good empirical interval length on

average, remarkably improving upon the alternatives available in the literature. We also illustrate

the performance of our proposed confidence intervals, as well as several of the conventional alterna-

tives, in an empirical application that studies the effects of Progresa/Oportunidades, a large-scale

anti-poverty conditional cash transfer program in Mexico, on households’consumption outcomes.

Our illustration shows that in some, but not all, cases the conclusions drawn from conventional

methods are not supported when our robust inference procedures are employed.

Our paper contributes to the emerging literature on inference for treatment effects in the RD de-

sign. Hahn, Todd, and van der Klaauw (2001) and Lee (2008) develop identification results, Porter

(2003) gives optimality results of local polynomial estimators, McCrary (2008) studies specification

testing, Imbens and Kalyanaraman (2012) develop bandwidth selection procedures for local-linear

estimators, Otsu and Xu (2011) study empirical likelihood methods applied to local-linear esti-

mators, Frandsen, Frölich, and Melly (2012) consider quantile treatment effects, Card, Lee, Pei,

and Weber (2012), Dong (2012) and Dong and Lewel (2012) study the so-called kink RD designs,

Marmer, Feir, and Lemieux (2012) discuss robust to weak-IV inference in fuzzy RD designs, and

Cattaneo, Frandsen, and Titiunik (2013) propose randomization-inference methods.2

The rest of the paper is organized as follows. Section 2 describes the basic sharp RD design,

reviews conventional results, provides simulation evidence to motivate our approach, and outlines

the details of our proposed robust confidence intervals. Section 3 discusses extensions of the ap-

proach to kink RD, fuzzy RD and fuzzy kink RD designs. Mean-square-error optimal bandwidths

and their theoretical validity when using our approach is discussed in Section 4 (e.g., see Remark

2From a more general perspective, our results also contribute to the literature on asymptotic approximations for
nonparametric local polynomial estimators (Fan and Gijbels (1996)), which are useful in econometrics (see, e.g.,
Ichimura and Todd (2007) and references therein).
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6 below), while valid standard-errors are proposed in Section 5. Results from the simulation study

and empirical illustration are given in Sections 6 and 7, respectively, while Section 8 concludes.

Our general theoretical results are summarized in the Appendix, but most technical details such as

proofs and other derivations are relegated to the online supplemental appendix. Our new confidence

intervals together with all other results presented in this paper are implemented in the companion

STATA package (rdrobust) described in Calonico, Cattaneo, and Titiunik (2013).3

2 Sharp RD Design: Local-Linear Estimator, Its Potential Pitfalls

and The New Robust Alternative

We first focus attention on constructing confidence intervals for the average treatment effect in

the sharp RD framework where the probability of treatment assignment changes from zero to one

at the threshold, but Section 3 discusses the extension of our main approach to other settings of

empirical interest.

In the canonical sharp RD design, we assume that (Yi(0), Yi(1), Xi)
′, i = 1, 2, . . . , n, is a random

sample from the triplet of random variables (Y (0), Y (1), X)′ with f(x) the Lebesgue density of

Xi. Given a known threshold x̄, which we set to x̄ = 0 without loss of generality, the observed

“score”or “forcing”variable Xi determines whether unit i is assigned treatment (Xi ≥ 0) or not

(Xi < 0), while the random variables Yi(1) and Yi(0) denote the potential outcome with and

without treatment, respectively. As a consequence, the observed random sample is {(Yi, Xi)
′ :

i = 1, 2, . . . , n} with

Yi = Yi(0) · 1(Xi < 0) + Yi(1) · 1(Xi ≥ 0) =

{
Yi(0) if Xi < 0

Yi(1) if Xi ≥ 0
,

where 1(·) denotes the indicator function.
The population parameter of interest is τSRD = E[Y (1) − Y (0)|Xi = x̄], the average treatment

effect at the threshold. As discussed in Hahn, Todd, and van der Klaauw (2001), under a mild conti-

nuity condition, this parameter is nonparametrically identifiable as the difference of two conditional

expectations evaluated at the (induced) boundary point x̄ = 0, that is,

τSRD = µ+ − µ−, µ+ = lim
x→0+

µ(x), µ− = lim
x→0−

µ(x), µ(x) = E[Yi|Xi = x],

where here, and elsewhere, we drop the evaluation point of functions whenever possible to simplify

notation. Estimation in RD designs naturally focuses on the flexible approximation of the regression

functions µ−(x) = E[Yi(0)|Xi = x] and µ+(x) = E[Yi(1)|Xi = x] near the cutoff x̄ = 0. Section A.1

in the Appendix describes the conventional assumptions on the basic RD model employed in this

paper. In particular, near the cutoff, for all x ∈ [−κ0, κ0] with κ0 > 0, we assume continuity of f(x)

(which rules out discrete-valued running variables; see, e.g., Lee and Card (2008)) and smoothness

3Computer code in R is also available upon request.
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of the underlying regression functions µ−(x) and µ+(x). Since the higher-order derivatives of these

unknown regression functions are closely related to the bias of the RD estimators considered, we

also introduce notation to describe these derivatives at either side of the threshold:

µ
(ν)
+ = lim

x→0+
dν

dxν
µ+(x) and µ

(ν)
− = lim

x→0−
dν

dxν
µ−(x).

(By definition, µ+ = µ
(0)
+ and µ− = µ

(0)
− .)

Following Hahn, Todd, and van der Klaauw (2001) and Porter (2003), we consider confidence

intervals based on the popular local-linear estimator of τSRD, which is simply the difference in inter-

cepts of two first-order local polynomial estimators, one from each side of the threshold. Formally,

τ̂SRD(hn) = µ̂+,1(hn)− µ̂−,1(hn),

(µ̂+,1(hn), µ̂
(1)
+,1(hn))′ = arg min

b0,b1∈R

n∑
i=1

1(Xi ≥ 0)(Yi − b0 −Xib1)
2 k

(
Xi

hn

)
,

(µ̂−,1(hn), µ̂
(1)
−,1(hn))′ = arg min

b0,b1∈R

n∑
i=1

1(Xi < 0)(Yi − b0 −Xib1)
2 k

(
−Xi

hn

)
,

where hn denotes the bandwidth chosen and k(x) denotes the kernel function supported on [0, κ]

for some κ > 0. Indeed, we will employ local polynomial regression estimators of various orders

to approximate unknown regression functions throughout the paper, as these estimators are par-

ticularly well-suited for inference in the RD design (Fan and Gijbels (1996) and Cheng, Fan, and

Marron (1997)). Section A.2 in the Appendix describes these estimators in detail. Our results

cover all commonly used kernels, including the triangular kernel k(u) = (1 − u)1(0 ≤ u ≤ 1) and

uniform kernel k(u) = 1(0 ≤ u ≤ 1).

In the sharp RD design, the local-linear estimator τ̂SRD(hn) is arguably the preferred and most

common choice in practice. Conventional approaches to constructing confidence intervals for τSRD
using this estimator rely on the following large-sample approximation for the standardized t-statistic

(see Lemma A1 in the Appendix for the general result):

Lemma 1. Suppose Assumptions A1—A2 hold with S ≥ 3. If nh5n → 0 and nhn →∞, then

TSRD(hn) =
τ̂SRD(hn)− τSRD√

VSRD(hn)
→d N (0, 1), VSRD(hn) = V[τ̂SRD(hn)|X1, X2, · · · , Xn].

Conventional (infeasible) 100(1− α)-percent confidence intervals for τSRD are theoretically jus-

tified from this result, and take the familiar form

ISRD(hn) =
[
τ̂SRD(hn)± Φ−11−α/2

√
VSRD(hn)

]
,

where Φ−1α is the upper α-quantile of the standard normal distribution (e.g., Φ−10.95 ≈ 1.96). In

practice, of course, a standard-error estimator is needed to construct feasible confidence intervals
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Figure 1: Regression Functions for Models 1—3 in simulations.

because VSRD(hn) involves unknown quantities, but here we assume VSRD(hn) is known and postpone

the issue of standard-errors until Section 5.4 Even in this simplified case, the choice of the bandwidth

hn is crucial. The condition nh5n → 0 is explicitly imposed to eliminate the contribution of the

leading bias to the distributional approximation, which depends on the unknown second derivatives

µ
(2)
+ and µ(2)− as described in Lemma A1 in the Appendix. Thus, in general, the confidence intervals

ISRD(hn) will have correct asymptotic coverage only if the bandwidth hn is chosen to be “small”

enough so that the bias-condition nh5n → 0 is satisfied.

Several approaches are available in the literature to select hn, including plug-in rules and cross-

validation procedures. Imbens and Kalyanaraman (2012) give a recent account of the state-of-the-

art in bandwidth selection for RD designs. Unfortunately, most (if not all) of these approaches

lead to bandwidths that are too “large” because they do not satisfy the bias-condition just de-

scribed. For example, minimizing the asymptotic mean squared error (MSE) of τ̂SRD(hn) gives the

optimal plug-in bandwidth choice hMSE = CMSE n
−1/5 with CMSE a constant, which by construction

implies that n(hMSE)
5 → c ∈ (0,∞) and hence leads to a first-order bias in the distributional ap-

proximation.5 Moreover, implementing this MSE-optimal bandwidth choice in practice is likely to

introduce additional variability in the chosen bandwidth that may lead to “large”bandwidths as

well. Similarly, cross-validation bandwidth selectors tend to have low convergence rates, and thus

also typically lead to “large”bandwidth choices; see, e.g., Ichimura and Todd (2007) and references

therein. These observations suggest that commonly used local-linear RD confidence intervals may

not exhibit correct coverage in applications due to the presence of a potentially first-order bias in

their construction.

To illustrate the potential pitfalls of the conventional RD confidence intervals based on the

t-statistic TSRD(hn) presented above and its data-driven version TSRD(ĥn) with ĥn a bandwidth

estimate, we briefly summarize some results from a Monte Carlo study further discussed in Section

4Note that because τ̂ SRD(hn) is a linear weighted least-squares estimator, an estimator of VSRD(hn) takes the familiar
form of Eicker-Huber-White heteroskedasticy-robust standard-errors after “plugging in”estimated residuals.

5This is a well-known problem in the nonparametric curve estimation literature (see, e.g., Fan and Gijbels (1996)).
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Table 1: Empirical Coverage of different 95% Confidence Intervals

Conventional Robust Approach Bandwidths
EC (%) EC (%) hn bn

Model 1
TSRD(hMSE) 93.9 T rbcSRD (hMSE, bMSE) 94.7 0.166 0.319
TSRD(ĥIK) 84.4 T rbcSRD (ĥIK, b̂IK) 93.3 0.335 0.337
TSRD(ĥCV) 83.1 T rbcSRD (ĥCV, ĥCV) 93.1 0.381 0.381

T rbcSRD (hMSE, hMSE) 94.9 0.166 0.166
T rbcSRD (ĥIK, ĥIK) 94.7 0.335 0.335

Model 2
TSRD(hMSE) 92.5 T rbcSRD (hMSE, bMSE) 94.9 0.082 0.191
TSRD(ĥIK) 24.1 T rbcSRD (ĥIK, b̂IK) 91.2 0.185 0.296
TSRD(ĥCV) 79.1 T rbcSRD (ĥCV, ĥCV) 94.8 0.119 0.119

T rbcSRD (hMSE, hMSE) 94.8 0.082 0.082
T rbcSRD (ĥIK, ĥIK) 94.8 0.185 0.185

Model 3
TSRD(hMSE) 85.8 T rbcSRD (hMSE, bMSE) 95.0 0.260 0.292
TSRD(ĥIK) 87.1 T rbcSRD (ĥIK, b̂IK) 95.1 0.231 0.340
TSRD(ĥCV) 93.9 T rbcSRD (ĥCV, ĥCV) 95.2 0.166 0.166

T rbcSRD (hMSE, hMSE) 94.9 0.260 0.260
T rbcSRD (ĥIK, ĥIK) 95.0 0.231 0.231

Notes: (i) EC = Empirical Coverage in percentage points, and (ii) columns under “Bandwidths” report the population and
average estimated bandwidths choices, as appropriate, for main bandwidth hn and pilot bandwidth bn.

6.6 Table 1 presents the results. We consider three alternative models for the regression function

µ(x) illustrated in Figure 1. The first two models are motivated by empirical RD problems: Model

1 corresponds to a regression function implied by Lee (2008)’s dataset, and Model 2 corresponds

to a regression function implied by Ludwig and Miller (2007)’s data. Model 3 is chosen to exhibit

a different regression function with more curvature. All other features of the simulation study are

held fixed, matching exactly the data generating process in Imbens and Kalyanaraman (2012).

Table 1 reports the empirical coverage of different 95% confidence intervals for each model under

two distinct approaches. The first group of columns, labeled “Conventional”, corresponds to the

conventional approach based on Lemma 1. We consider three different bandwidth choices: (i) the

infeasible MSE-optimal choice hMSE, (ii) a data-driven, regularized choice ĥIK proposed by Imbens

and Kalyanaraman (2012), and (iii) a data-driven, cross-validation (CV) choice ĥCV proposed by

Ludwig and Miller (2007). The robust approach column in Table 1 is discussed further below.

The simulation results indeed show that the conventional confidence intervals constructed using

Lemma 1 may have poor empirical coverage. In Models 1 and 2, the infeasible confidence intervals

that use the MSE-optimal bandwidth (hMSE = 0.166 and hMSE = 0.082, respectively) have reason-

ably good empirical coverage (93.9% and 92.5%, respectively), but their data-driven counterparts

that employ an estimated bandwidth exhibit substantial undercovering (e.g., for Model 1 the 95%

confidence intervals based on TSRD(ĥIK) and TSRD(ĥCV) have empirical coverage of 84.4% and 83.1%,

6We use these simulation results for motivational purposes only. Our results, presented in the upcoming sections,
are theory-based and enjoy certain demostrably superior theoretical properties when compared to the conventional
ones.
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respectively). In Model 3, which has a regression function with more curvature, even the infeasible

confidence interval constructed using the MSE-optimal bandwidth (hMSE = 0.260) is biased, showing

an empirical coverage of 85.8%.

These simulations illustrate that Lemma 1 may not give a good approximation whenever the

bandwidth employed is “large”. Since applied researchers often estimate RD treatment effects

employing MSE-optimal bandwidths in local-linear regressions and implicitly ignore the large-

sample bias of the estimator, the poor coverage of conventional confidence intervals we highlight

potentially affects many RD empirical applications. There are two main approaches to deal with

this problem, neither of which is commonly used in practice. One is to undersmooth the estimator,

that is, choose an ad-hoc “smaller” bandwidth. This approach, however, is not systematic and

its effectiveness unavoidably relies on the unknown features of the underlying data generating

process (i.e., it is diffi cult to know how much undersmoothing is needed in a given application).

Moreover, from a theoretical perspective, it has the unsatisfactory effect of leading to a suboptimal

rate of convergence for the resulting estimator, thereby affecting the local power properties of the

associated hypothesis test. Practically, this means that less observations are effectively used for

inference, leading to longer confidence intervals on average.

The second approach is to bias-correct the estimator. This approach is systematic and easy to

justify theoretically, but is believed to have poor performance in finite samples. The basic idea of

bias-correction is to remove the leading bias term by subtracting off a plug-in consistent estimator

of it. As described in detail below, our contribution takes bias-correction as a starting point, and

corrects this poor performance by providing a different asymptotic approximation that accounts for

the added variability introduced by the bias estimate. Before turning to our results, however, we

describe the details of bias-correction in the context of the RD estimate. The leading asymptotic

bias of the local-linear estimator is

E[τ̂SRD(hn)|X1, X2, · · · , Xn]− τSRD = h2nBSRD(hn) {1 + op(1)}

with

BSRD(hn) =
µ
(2)
+

2!
B+,SRD(hn)−

µ
(2)
−
2!
B−,SRD(hn),

where B+,SRD(hn) and B−,SRD(hn) are observed quantities (function of X1, X2, · · · , Xn, k(·) and hn),
which are asymptotically bounded. The exact forms of B+,SRD(hn) and B−,SRD(hn) are given in

Lemma A1 in the Appendix. Therefore, an easy to implement plug-in bias-corrected estimator is

given by

τ̂bcSRD(hn, bn) = τ̂SRD(hn)− h2nB̂SRD(hn, bn),

where

B̂SRD(hn, bn) =
µ̂
(2)
+,2(bn)

2!
B+,SRD(hn)−

µ̂
(2)
−,2(bn)

2!
B−,SRD(hn),

with µ̂(2)+,2(bn) and µ̂(2)+,2(bn) denoting conventional local-quadratic estimators of µ(2)+ and µ(2)− , as

7



described in Section A.2 in the Appendix. Here, bn is the so-called pilot bandwidth sequence, usually

larger than hn. (We employ the same kernel function k(·) to form all estimators for simplicity.)

As mentioned above, bias-correction is theoretically appealing because, for example, it allows for a

MSE-optimal choice of bandwidth hn and hence leads to a faster convergence rate of τ̂SRD(hn).

Under weaker conditions, allowing in particular for “larger”bandwidths hn, the bias-corrected

(infeasible) t-statistic satisfies

T bcSRD(hn, bn) =
τ̂bcSRD(hn, bn)− τSRD√

VSRD(hn)
→d N (0, 1), (1)

which justifies theoretically confidence intervals for τSRD of the form:

IbcSRD(hn, bn) =
[
τ̂bcSRD(hn)± Φ−11−α/2

√
VSRD(hn)

]
=

[(
τ̂SRD(hn)− h2nB̂SRD(hn, bn)

)
± Φ−11−α/2

√
VSRD(hn)

]
.

That is, the confidence intervals are re-centered to account for the presence of the (smoothing)

bias. In practice, bn may also be selected using an MSE-optimal choice, denoted bMSE, which can be

implemented by a plug-in estimate, denoted b̂MSE (see Section 4 for details). As discussed in Section

6, these confidence intervals do not exhibit better empirical coverage than the conventional ones

based on TSRD(hn), and they do underperform in many cases. Bias-correction is not particularly

popular in empirical work, even though the bias-corrected statistic T bcSRD(hn, bn) may be preferred to

the classical statistic TSRD(hn) due to its demonstrably better theoretical (asymptotic) properties.

Our simulations are consistent with this empirical view on conventional bias-correction.

2.1 Robust Local-Linear RD Inference

While bias correction is an appealing theoretical idea, a natural concern with the conventional

large-sample approximation for the bias-corrected local-linear RD estimator is that it does not ac-

count for the additional variability introduced by the bias-estimates µ̂(2)+,2(bn) and µ̂(2)−,2(bn). In other

words, this large-sample approximation relies on carefully tailored assumptions on the bandwidth

sequences hn and bn that make the variability of the bias-correction estimate disappear asymp-

totically. We propose an alternative asymptotic approximation for bias-corrected local polynomial

estimators that leads to confidence intervals for RD treatment effects capturing this additional

sampling variability. This is the main contribution of our paper.

To highlight the differences in our approach, note that the conventional approach to bias-

correction assumes that the bias-estimate is a consistent estimator of the asymptotic bias, and thus

forces B̂SRD(hn, bn) to be a “consistent” estimator of BSRD(hn) (i.e., B̂SRD(hn, bn)/BSRD(hn) →p 1).

Specifically, under the usual regularity conditions, if

nh5n

(
B̂SRD(hn, bn)− BSRD(hn)

)2
→p 0 (2)

8



then (1) holds. This approach allows for potentially “larger”bandwidths hn because the leading

asymptotic bias is manually removed from the distributional approximation, but the resulting dis-

tributional approximation for this bias-corrected estimator tends to provide a poor characterization

of the finite sample variability of the statistic. The approximation does not account for the bias-

correction component: condition (2) makes researchers proceed “as if” the leading bias is known.

In finite samples, however, the bias-correction component will affect the sampling distribution of

the estimator τ̂bcSRD(hn, bn), which implies that the conventional distributional approximation may

not accurately represent the finite-sample distribution of T bcSRD(hn, bn).

We propose an alternative asymptotic theory that accounts for the potential contribution of the

bias-correction estimate to the large sample distributional approximation of the sampling distrib-

ution of T bcSRD(hn, bn). The idea is to allow for bandwidth sequences, entering in the bias-estimate

B̂SRD(hn, bn), that potentially make the bias-correction term in τ̂bcSRD(hn, bn) as important as the

main estimator τ̂SRD(hn), even asymptotically. These bandwidth sequences weaken the condition

(2) in an intuitive way, and lead to an alternative distributional approximation for τ̂bcSRD(hn, bn) with

a different asymptotic variance in general. The resulting distributional approximation therefore po-

tentially includes both the contribution of the main estimator τ̂SRD(hn) as well as the contribution

of the bias-correction estimate.

The intuition behind our result is quite simple. We have

T bcSRD(hn, bn) =
τ̂bcSRD(hn, bn)− τSRD√

VSRD(hn)
= ΥSRD(hn)−Υbc

SRD(hn, bn),

where

ΥSRD(hn) =
τ̂SRD(hn)− τSRD − h2nBSRD(hn)√

VSRD(hn)
and Υbc

SRD(hn, bn) =
h2n

(
B̂SRD(hn, bn)− BSRD(hn)

)
√

VSRD(hn)
.

It is easy to see that ΥSRD(hn)→d N (0, 1). In addition, under appropriate conditions,

Υbc
SRD(hn, bn) =

√
nh5nOp

(
1√
nb5n

+ bn

)
= Op

((
hn
bn

)5/2
+
√
nh5nb

2
n

)
,

implying that Υbc
SRD(hn, bn) is asymptotically negligible if (and only if)

hn
bn
→ 0 and nh5nb

2
n → 0. (3)

The conditions in (3) specialize the high-level condition (2) underlying the classical approach

to bias-correction. Specifically, the restriction hn/bn → 0 controls the additional variability that

the bias-correction term introduces to τ̂bcSRD(hn, bn), while the condition nh5nb
2
n → 0 ensures that the

bias-correction term is asymptotically unbiased after proper scaling. In finite samples, however,

hn/bn is never zero. Thus, to capture the (possibly first-order) effect of the bias-correction to the

9



distributional approximation, we study the alternative large-sample approximation for the (properly

centered and scaled) estimator τ̂bcSRD(hn, bn) based on the condition

ρn =
hn
bn
→ ρ ∈ [0,∞],

which in particular allows for a pilot bandwidth bn of the same order of (and potentially equal to)

the main bandwidth hn. This approach implies that the bias-correction term will not be consistent

for its population counterpart in general, and whenever inconsistent will converge in distribution

to a centered at zero normal random variable, provided the asymptotic bias is small enough.

This idea is formalized in the following theorem.

Theorem 1. Suppose Assumptions 1—2 hold with S ≥ 3. If nmin{h5n, b5n}max{h2n, b2n} → 0 and

nmin{hn, bn} → ∞, then

T rbcSRD (hn, bn) =
τ̂bcSRD(hn, bn)− τSRD√

VbcSRD(hn, bn)
→d N (0, 1),

where

VbcSRD(hn, bn) = VSRD(hn) + CbcSRD(hn, bn)

provided κmax{hn, bn} < κ0. The exact variance formula VbcSRD(hn, bn) is notationally cum-

bersome and thus given in the Appendix in equation (A-1).

Theorem 1 shows that by standardizing the bias-corrected estimator by its (conditional) vari-

ance, the asymptotic distribution of the resulting bias-corrected statistic T rbcSRD (hn, bn) is Gaussian

even when the condition hn/bn → 0 is violated. This leads to a different asymptotic variance for

the bias-corrected estimator τ̂bcSRD(hn, bn) in general, which depends on the behavior of ρn = hn/bn.

In the new variance VbcSRD(hn, bn) provided in this theorem, CbcSRD(hn, bn) may be interpreted as a

standard-error correction to account for the variability of the estimated bias-correction term.

The key practical implication of Theorem 1 is that it justifies the more robust, theory-based

100(1− α)-percent confidence intervals:

IrbcSRD (hn, bn) =

[(
τ̂SRD(hn)− h2nB̂SRD(hn, bn)

)
± Φ−11−α/2

√
VSRD(hn) + CbcSRD(hn, bn)

]
.

The group of columns in Table 1 labeled “Robust Approach”exhibits the performance of the

new confidence intervals employing T rbcSRD (hn, bn) for different bandwidth choices, which perform

remarkably well when compared to the other alternatives. We also present results for the choice

hn = bn (i.e., ρ = 1) because, as mentioned in Remark 3 below, in this special case T rbcSRD (hn, hn)

coincides with the statistic constructed using a simple local-quadratic estimator without bias cor-

rection. Thus, this choice of bandwidths gives a simple possible implementation for our approach:

choose hn to be the cross-validated or MSE-optimal bandwidth choice for the local-linear RD esti-

mator, but form confidence intervals for τSRD using the local-quadratic RD estimator. We summarize

10



important features of our main result in the remarks below.

Remark 1. The distributional approximation in Theorem 1 permits one bandwidth (but not both)
to be fixed, provided it is not too large; i.e., both must satisfy κmax{hn, bn} < κ0, but only

one needs to vanish.

Remark 2. Three main limiting cases are obtained depending on the limit ρn → ρ ∈ [0,∞].

Case 1 : ρ = 0. In this case hn = o(bn) and CbcSRD(hn, bn) = op(VSRD(hn)), thus making

our approach asymptotically equivalent to the standard approach to bias-correction. Here

VbcSRD(hn, bn) �p VSRD(hn).

Case 2 : ρ ∈ (0,∞). In this case hn = ρbn and CbcSRD(hn, bn) �p VSRD(hn). This is the knife-edge

case where both τ̂SRD(hn) and h2nB̂SRD(hn, bn) contribute asymptotically and thus VbcSRD(hn, bn)

captures the additional contribution of the bias-correction.

Case 3 : ρ =∞. In this case bn = o(hn) and VSRD(hn) = op(CbcSRD(hn, bn)), which implies that

the bias-estimate is first-order while the actual estimator τ̂SRD(hn) is of smaller order. Here

VbcSRD(hn, bn) �p V[h2nB̂SRD(hn, bn)|X1, · · · , Xn].

Remark 3. If hn = bn (and the same kernel function k(·) is used), then τ̂bcSRD(hn, hn) is numerically

equivalent to the local-quadratic estimator (p = 2) of τSRD. This gives a simple relationship

between local polynomial estimators of order p and p+ 1, and their relation to manual bias-

correction. See the appendix and the online supplemental appendix for further details and

generalizations.

Remark 4. Theorem 1 and Remark 3 give a simple, formal justification for an approach based

on the order of the local polynomial: a theoretically valid choice of hn is to select the MSE-

optimal bandwidth for the local-linear estimator, but construct confidence intervals using the

local-quadratic estimator instead. This approach corresponds exactly to the case hn = bn in

Theorem 1. See the appendix and the online supplemental appendix for further details and

generalizations.

Remark 5. All the results in this paper apply immediately when different bandwidths (h+,n,
h−,n, b+,n, b−,n, say) are employed to construct the estimators µ̂+,p(h+,n), µ̂−,p(h−,n) and

their associated bias-correction terms.

3 Other RD Designs

In this section, we discuss three applications of our main idea to other practically relevant settings:

sharp kink RD, fuzzy RD and fuzzy kink RD designs. All the results briefly summarized here are

special cases of Theorems A1 and A2 presented in the Appendix. In all cases, the construction

follows the same logic: (i) the conventional large-sample distribution is characterized, (ii) the

leading bias is presented and a plug-in bias-correction is proposed, and (iii) the alternative large-

sample distribution is derived to obtain the robust confidence intervals.
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3.1 Sharp Kink RD

In this setting, the interest lies on the difference of the first derivative of the regression functions at

the cutoff, as opposed to the differences in the levels of those functions. For details on identification

and inference procedures using conventional approaches see, e.g., Card, Lee, Pei, and Weber (2012),

Dong (2012), Dong and Lewel (2012), and references therein. The estimand of interest is

τSKRD = µ
(1)
+ − µ

(1)
− .

Although a local-linear estimator could still be used in this context, it is perhaps more appro-

priate to employ a local-quadratic estimator due to boundary-bias considerations. Thus, letting

µ̂
(1)
+,2(hn) and µ̂(1)−,2(hn) denote local-quadratic estimators of µ(1)+ and µ(1)− (see Section A.2 in the

Appendix), we focus on the local-quadratic RD estimator

τ̂SKRD(hn) = µ̂
(1)
+,2(hn)− µ̂(1)−,2(hn).

Lemma A1 in the Appendix gives conditions so that

TSKRD(hn) =
τ̂SKRD(hn)− τSKRD√

VSKRD(hn)
→d N (0, 1), VSKRD(hn) = V[τ̂SKRD(hn)|X1, X2, · · · , Xn],

which corresponds to the conventional distributional approximation. Following Imbens and Kalya-

naraman (2012), a MSE-optimal bandwidth choice for τSKRD can be derived (see Lemma 2 in Section

4). This choice, among others, will again lead to a non-negligible first-order bias. Proceeding as

before, we also have E[τ̂SKRD(hn)|X1, X2, · · · , Xn]− τSKRD ≈ h2nBSKRD(hn) with

BSKRD(hn) =
µ
(3)
+

3!
B+,SKRD(hn)−

µ
(3)
−
3!
B−,SKRD(hn),

where B+,SKRD(hn) and B−,SKRD(hn) are asymptotically bounded observed quantities (function of

X1, X2, · · · , Xn, k(·) and hn), also given in Lemma A1. Therefore, a bias-corrected local-quadratic
estimator of τSKRD, now using a local-cubic bias-correction, is given by

τ̂bcSKRD(hn, bn) = τ̂SKRD(hn)− h2nB̂SKRD(hn, bn)

with

B̂SKRD(hn, bn) =
µ̂
(3)
+,3(bn)

3!
B+,SKRD(hn)−

µ̂
(3)
−,3(bn)

3!
B−,SKRD(hn),

where µ̂(3)+,3(bn) and µ̂(3)−,3(bn) are the local-cubic estimators of µ(3)+ and µ(3)− , respectively, as discussed

in Section A.2 of the Appendix.

With these preliminaries, we can present our main result for the kink RD bias-corrected esti-

mator τ̂bcSKRD(hn, bn).

Theorem 2. Suppose Assumptions A1—A2 hold with S ≥ 4. If nmin{h7n, b7n}max{h2n, b2n} → 0
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and nmin{hn, bn} → ∞, then

T rbcSKRD(hn, bn) =
τ̂bcSKRD(hn, bn)− τSKRD√

VbcSKRD(hn, bn)
→d N (0, 1),

provided κmax{hn, bn} < κ0. The exact form of VbcSKRD(hn, bn) is given in Theorem A1 in the

Appendix in equation (A-1).

This theorem is an analogue of Theorem 1 for the sharp kink RD design. In particular, it

derives the new asymptotic variance formula VbcSKRD(hn, bn) capturing the additional contribution of

the bias-correction to the sampling variability. In this case, the new variance also takes the form

VbcSKRD(hn, bn) = VSKRD(hn) + CbcSKRD(hn, bn), where CbcSKRD(hn, bn) is the correction term. This result

theoretically justifies the following more robust 100(1− α)-percent confidence interval for τSKRD:

IrbcSKRD(hn, bn) =

[
τ̂bcSKRD(hn, bn)± Φ−11−α/2

√
VbcSKRD(hn, bn)

]
.

3.2 Fuzzy RD

In the fuzzy design, actual treatment status may differ from treatment assignment and is thus only

partially determined by the running variable. Identification and conventional inference approaches

are discussed in Hahn, Todd, and van der Klaauw (2001) and Porter (2003). To handle this case,

we introduce the following additional notation: (Yi(0), Yi(1), Ti(0), Ti(1), Xi)
′, i = 1, 2, . . . , n, is a

random sample from the random vector (Y (0), Y (1), T (0), T (1), X)′, where in this case treatment

status for each unit is determined by

Ti = Ti(0) · 1(Xi < 0) + Ti(1) · 1(Xi ≥ 0) =

{
Ti(0) if Xi < 0

Ti(1) if Xi ≥ 0
,

with Ti(0), Ti(1) ∈ {0, 1}, and the corresponding observed outcome variable is

Yi = Yi(0) · (1− Ti) + Yi(1) · Ti =

{
Yi(0) if Ti = 0

Yi(1) if Ti = 1
.

The observed random sample now is {(Yi, Ti, Xi)
′ : i = 1, 2, . . . , n}. The estimand of interest is

τFRD =
E[Yi(1)|X = 0]− E[Yi(0)|X = 0]

E[Ti(1)|X = 0]− E[Ti(0)|X = 0]
,

provided that E[Ti(1)|X = 0] − E[Ti(0)|X = 0] 6= 0. For further discussion on the interpretation

of τFRD also see Imbens and Lemieux (2008). Under appropriate conditions, this estimand is also

nonparametrically identifiable as

τFRD =
τY,SRD
τT,SRD

=
µY+ − µY−
µT+ − µT−

13



where here, and elsewhere as needed, we make explicit the outcome variable underlying the popu-

lation parameter. That is, τY,SRD = µY+ − µY− with

µY+ = lim
x→0+

µY (x), µY− = lim
x→0−

µY (x), µY (x) = E[Yi|Xi = x],

and τT,SRD = µT+ − µT− with

µT+ = lim
x→0+

µT (x), µT− = lim
x→0−

µT (x), µT (x) = E[Ti|Xi = x].

A popular estimator in this setting is simply the ratio of two reduced form, sharp local-linear

RD estimators:

τ̂FRD(hn) =
τ̂Y,SRD(hn)

τ̂T,SRD(hn)
=
µ̂Y+,1(hn)− µ̂Y−,1(hn)

µ̂T+,1(hn)− µ̂T−,1(hn)
,

again now making explicit the outcome variable being used in each expression. That is, for a

random variable U (equal to either Y or T ) we set µ̂U+,1(hn) and µ̂U−,1(hn) to be the local-linear

estimators employing Ui as outcome variable; see Section A.2 in the Appendix for details.

To describe the large-sample results for τ̂FRD(hn) we employ the additional standard Assump-

tion A3 in Section A.1 of the Appendix. Under Assumptions A1—A3, and appropriate bandwidth

conditions, the conventional large-sample properties of τ̂FRD are characterized by noting that

τ̂FRD(hn)− τFRD = τ̃FRD(hn) +Rn

with

τ̃FRD(hn) =
1

τT,SRD
(τ̂Y,SRD(hn)− τY,SRD)−

τY,ν
τ2T,SRD

(τ̂T,SRD(hn)− τT,SRD)

and Rn = op((τ̂T,SRD(hn)− τT,SRD)2+ (τ̂Y,SRD(hn)− τY,SRD)(τ̂T,SRD(hn)− τT,SRD)). This shows that, to
first-order, the fuzzy RD estimator behaves like a linear combination of two sharp RD estimators.

Thus, as Lemma A2 in the appendix shows,

TFRD(hn) =
τ̂FRD(hn)− τFRD√

VFRD(hn)
→d N (0, 1), VFRD(hn) = V[τ̃FRD(hn)|X1, X2, · · · , Xn].

In this case, the leading (smoothing) bias of the local-linear fuzzy RD estimator τ̂FRD(hn) is

given by E[τ̃FRD(hn)|X1, X2, · · · , Xn] ≈ h2nBFRD(hn) with

BFRD(hn) =

(
1

τT,SRD

µ
(2)
Y+

2!
− τY,SRD
τ2T,SRD

µ
(2)
T+

2!

)
B+,FRD(hn)−

(
1

τT,SRD

µ
(2)
Y−
2!
− τY,SRD
τ2T,SRD

µ
(2)
T−
2!

)
B−,FRD(hn),

where B+,FRD(hn) and B−,FRD(hn) are also asymptotically bounded observed quantities (function of

X1, X2, · · · , Xn, k(·) and hn) and given in Lemma A2. Therefore, we construct a bias-corrected
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estimator of τSRD employing a local-quadratic estimate of the leading biases, which is given by

τ̂bcFRD(hn, bn) = τ̂FRD(hn)− h2nB̂FRD(hn, bn)

with

B̂FRD(hn, bn) =

 1

τ̂T,SRD(hn)

µ̂
(2)
Y+,2(bn)

2!
− τ̂Y,SRD(hn)

τ̂2T,SRD(hn)

µ̂
(2)
T+,2(bn)

2!

B+,FRD(hn)

−

 1

τ̂T,SRD(hn)

µ̂
(2)
Y−,2(bn)

2!
− τ̂Y,SRD(hn)

τ̂2T,SRD(hn)

µ̂
(2)
T−,2(bn)

2!

B−,FRD(hn).

In this case, we propose to bias-correct the fuzzy RD estimator using its first-order linear approx-

imation, as opposed to directly bias-correct τ̂Y,SRD(hn) and τ̂T,SRD(hn) separately in the numerator

and denominator of τ̂FRD(hn). The former approach seems more intuitive as it captures the leading

bias of the actual estimator of interest.

With these preliminaries, we obtain the following theorem resembling the previous discussion

for sharp RD designs.

Theorem 3. Suppose Assumptions A1—A3 hold with S ≥ 3, and τT,SRD 6= 0. If nmin{h5n, b5n}max{h2n, b2n} →
0 and nmin{hn, bn} → ∞, then

T rbcFRD (hn, bn) =
τ̂bcFRD(hn, bn)− τFRD√

VbcFRD(hn, bn)
→d N (0, 1),

provided that hn → 0 and κbn < κ0. The exact form of VbcFRD(hn, bn) is given in Theorem A2

in equation (A-2).

3.3 Fuzzy Kink RD

Our final extension considers confidence intervals for average treatment effects in the fuzzy kink RD

design (see, e.g., Card, Lee, Pei, and Weber (2012) and references therein for further discussion).

We retain the notation and assumptions introduced for the fuzzy RD design above. In this setting

the parameter of interest is

τFKRD =
τY,SKRD
τT,SKRD

=
µ
(1)
Y+ − µ

(1)
Y−

µ
(1)
T+ − µ

(1)
T−
,

and therefore a natural estimator based on two local-quadratic (reduced form) estimates is

τ̂FKRD(hn) =
τ̂Y,SKRD(hn)

τ̂T,SKRD(hn)
=
µ̂
(1)
Y+,2(hn)− µ̂(1)Y−,2(hn)

µ̂
(1)
T+,2(hn)− µ̂(1)T−,2(hn)

,

where, as before, the formal definitions of these local polynomial estimators are given in Section

A.2 in the Appendix.
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The linearization argument given for the fuzzy RD estimator applies here as well, leading to

τ̂FKRD(hn)− τFKRD = τ̃FKRD(hn) +Rn

with

τ̃FKRD(hn) =
1

τT,SKRD
(τ̂Y,SKRD(hn)− τY,SKRD)−

τY,ν
τ2T,SKRD

(τ̂T,SKRD(hn)− τT,SKRD)

and Rn = op((τ̂T,SKRD(hn) − τT,SKRD)2 + (τ̂Y,SKRD(hn) − τY,SKRD)(τ̂T,SKRD(hn) − τT,SKRD)). Employing
Lemma A2 in the appendix once more, we verify that

TFKRD(hn) =
τ̂FKRD(hn)− τFKRD√

VFKRD(hn)
→d N (0, 1), VFKRD(hn) = V[τ̃FKRD(hn)|X1, X2, · · · , Xn],

and E[τ̃FKRD(hn)|X1, X2, · · · , Xn] ≈ h2nBFKRD(hn) with

BFKRD(hn) =

(
1

τT,SKRD

µ
(3)
Y+

3!
− τY,SKRD
τ2T,SKRD

µ
(3)
T+

3!

)
B+,FKRD(hn)

−
(

1

τT,SKRD

µ
(3)
Y−
3!
− τY,SKRD
τ2T,SKRD

µ
(3)
T−
3!

)
B−,FKRD(hn),

where B+,FKRD(hn) and B−,FKRD(hn) are asymptotically bounded observed quantities (function of

X1, X2, · · · , Xn, k(·) and hn), also given in Lemma A2.
Thus, we propose a plug-in bias-corrected estimator of τFKRD employing a local-cubic estimate

of the leading biases, which gives the bias-corrected estimator

τ̂bcFKRD(hn, bn) = τ̂FKRD(hn)− h2nB̂FKRD(hn, bn)

with

B̂FKRD(hn, bn) =

 1

τ̂T,SKRD(hn)

µ̂
(3)
Y+,3(bn)

3!
− τ̂Y,SKRD(hn)

τ̂2T,SKRD(hn)

µ̂
(3)
T+,3(bn)

3!

B+,FKRD(hn)

−

 1

τ̂T,SKRD(hn)

µ̂
(3)
Y−,3(bn)

3!
− τ̂Y,SKRD(hn)

τ̂2T,SKRD(hn)

µ̂
(3)
T−,3(bn)

3!

B−,FKRD(hn).

The following theorem describes our result for the case of the fuzzy kink RD design.

Theorem 4. Suppose Assumptions 1—3 hold with S ≥ 4, and τT,SKRD 6= 0. If nmin{h7n, b7n}max{h2n, b2n} →
0 and nmin{h3n, bn} → ∞, then

T rbcFKRD(hn, bn) =
τ̂bcFKRD(hn, bn)− τFKRD√

VbcFKRD(hn, bn)
→d N (0, 1),
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provided that hn → 0 and κbn < κ0. The exact form of VbcFKRD(hn, bn) is given in Theorem A2

in equation (A-2).

4 Validity of MSE-Optimal Bandwidths Selectors

The purpose of this paper is to present more robust confidence intervals for RD estimands, based

on bias-correction techniques and an alternative asymptotic approximation. These results were

obtained using bandwidth sequences that in practice need to be chosen in some way. Imbens

and Kalyanaraman (2012) give a recent overview on bandwidth selection in the RD design, where

MSE-minimizing and cross-validation procedures are described.

In this section we derive MSE-optimal bandwidth choices for hn and bn, which apply to the main

four RD settings of interest discussed previously, and show that these choices are fully compatible

with our asymptotic distribution results (but not with the conventional ones). In the appendix,

we also propose direct plug-in, data-driven bandwidth selectors for the sharp designs. In Section

6, we explore in a simulation study the performance of these bandwidth selectors as well as sev-

eral alternatives available in the literature, while in Section 7 we employ them in an empirical

illustration.

4.1 Sharp Designs

Assuming ν ≤ p, the estimands in the sharp RD designs can be written as

τν = µ
(ν)
+ − µ

(ν)
− ,

where, in particular, τSRD = τ0 and τSKRD = τ1. As described in Section A.2 in the Appendix, the

corresponding p-th order local-polynomial estimators are

τ̂ν,p(hn) = µ̂
(ν)
+,p(hn)− µ̂(ν)−,p(hn),

where, in particular, τ̂SRD(hn) = τ̂0,1(hn) and τ̂SKRD(hn) = τ̂1,2(hn).

Therefore, we consider the generic MSE objective function

MSEν,p(hn) = E
[

(τ̂ν,p(hn)− τν)2
∣∣∣X1, X2, · · · , Xn

]
.

Lemma 2. Suppose Assumptions 1—2 hold with S ≥ p+ 1. Let ν ∈ N with ν ≤ p.

(MSE) If hn → 0 and nhn →∞, then

MSEν,p(hn) = h2(p+1−ν)n

[
B2ν,p,p+1 + op(1)

]
+

1

nh1+2νn
[Vν,p + op(1)] ,

where

Bν,p,r =
µ
(r)
+ − µ

(r)
−

r!
e′νΓ−1p ϑp,r, Vν,p =

σ2− + σ2+
f

e′νΓ−1p ΨpΓ
−1
p eν .
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The exact form of the other matrices is given in Section A.3 in the Appendix.

(OB) If µ(p+1)+ 6= µ
(p+1)
− , then the (asymptotic) MSE-optimal bandwidth is

hMSE,ν,p = CMSE,ν,p n
− 1
2p+3 , CMSE,ν,p =

(
(1 + 2ν)Vν,p

2(p+ 1− ν)B2ν,p,p+1

) 1
2p+3

.

This lemma justifies a set of MSE-optimal (infeasible) choices for hn and bn: hn = hMSE,0,1

and bn = hMSE,2,2 for Theorem 1, and hn = hMSE,1,2 and bn = hMSE,3,3 for Theorem 2. This result

generalizes the work in Imbens and Kalyanaraman (2012), who proposed the choice hMSE,0,1 for

local-linear estimators. In Section A.6 in the Appendix we also construct direct plug-in (DPI)

selectors for hn and bn based on these choices. Our construction employs the fact that Vν,p =

limn→∞ nh1+2νn V[τ̂ν,p(hn)|X1, X2, · · · , Xn] if hn → 0 and nhn → ∞, together with the standard-
errors estimators proposed in the next section, to construct consistent plug-in estimates of the

variance terms (Theorem 5), which thus avoids using consistent estimators of σ2+, σ
2
− and f directly.

Following Imbens and Kalyanaraman (2012), we also incorporate “regularization” to avoid small

denominators. The online supplemental appendix contains a detailed discussion of our approach,

and a comparison to other methods available in the RD literature. Theorem A-3 in the Appendix

also shows that our bandwidth selectors are consistent and optimal in the sense of Li (1987).

Remark 6. The MSE-optimal bandwidth choices for the sharp designs are fully compatible with
our asymptotic approximations given above, as they satisfy the rate-restrictions in Theorems

1—2. For example, in the case of Theorem 1, nmin{hMSE,0,1, bMSE,2,2} → ∞,
nmin{h5MSE,0,1, b5MSE,2,2}max{h2MSE,0,1, b2MSE,2,2} → 0.

Remark 7. The MSE-optimal bandwidth choices satisfy ρn = hMSE,ν,p/bMSE,p+1,q → 0. It remains

an open question whether the choice ρn → 0 is “optimal”from a distributional approximation

point of view. Although beyond the scope of this paper, research on this question is underway.

4.2 Fuzzy Designs

Assuming ν ≤ p, the estimands in the fuzzy RD designs can be written as

ςν =
τY,ν
τT,ν

, τY,ν = µ
(ν)
Y+ − µ

(ν)
Y−, τT,ν = µ

(ν)
T+ − µ

(ν)
T−,

where, in particular, τFRD = ς0 and τFKRD = ς1. As described in Section A.2 in the Appendix, the

corresponding p-th order local-polynomial estimators are

ς̂ν,p(hn) =
τ̂Y,ν(hn)

τ̂T,ν(hn)
, τ̂Y,ν(hn) = µ̂

(ν)
Y+,p(hn)− µ̂(ν)Y−,p(hn), τ̂T,ν(hn) = µ̂

(ν)
T+,p(hn)− µ̂(ν)T−,p(hn),
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and its first-order linear approximation is

ς̃ν,p(hn) =
1

τT,ν
(τ̂Y,ν,p(hn)− τY,ν)− τY,ν

τ2T,ν
(τ̂T,ν,p(hn)− τT,ν).

Notice that, in particular, τ̂FRD(hn) = ς̂0,1(hn) and τ̂FKRD(hn) = ς̂1,2(hn).

Following Imbens and Kalyanaraman (2012), we consider the generic MSE objective function

MSEF,ν,p(hn) = E
[

(ς̃ν,p(hn))2
∣∣∣X1, X2, · · · , Xn

]
.

Lemma 3. Suppose Assumptions 1—3 hold with S ≥ p+ 1. Let ν ∈ N with ν ≤ p.

(MSE) If hn → 0 and nhn →∞, then

MSEF,ν,p(hn) = h2(p+1−ν)n

[
B2F,ν,p,p+1 + op(1)

]
+

1

nh1+2νn
[VF,ν,p + op(1)] ,

where

BF,ν,p,r =

(
1

τT,ν

µ
(r)
Y+ − µ

(r)
Y−

r!
− τY,ν
τ2T,ν

µ
(r)
T+ − µ

(r)
T−

r!

)
e′νΓ−1p ϑp,r,

VF,ν,p =

(
1

τT,ν

σ2Y Y− + σ2Y Y+
f

− 2τY,ν
τ3T,ν

σ2Y T− + σ2Y T+
f

+
τ2Y,ν
τ4T,ν

σ2TT− + σ2TT+
f

)
e′νΓ−1p ΨpΓ

−1
p eν .

The exact form of the other matrices is also given in Section A.3 in the Appendix.

(OB) If BF,ν,p,p+1 6= 0, then the (asymptotic) MSE-optimal bandwidth is

hMSE,F,ν,p = CMSE,F,ν,p n
− 1
2p+3 , CMSE,F,ν,p =

(
(2ν + 1)VF,ν,p

2(p+ 1− ν)B2F,ν,p,p+1

) 1
2p+3

.

Proceeding as in the sharp RD cases, and using Lemma 2, infeasible bandwidth choices for hn
and bn in Theorems 3—4 are readily available: hn = hMSE,F,0,1 and bn = hMSE,F,2,2 for Theorem 3, and

hn = hMSE,F,1,2 and bn = hMSE,F,3,3 for Theorem 4. Feasible versions could also be developed along

the lines discussed in Section A.6 in the Appendix. Importantly, just as in the sharp RD cases, the

resulting optimal bandwidth choices are fully compatible with our asymptotic theory.

5 Standard Errors

In this section we propose valid standard-error estimators to implement the infeasible statistics

presented in the previous sections. The exact formulas for the new proposed variances VbcSRD(hn, bn)

[sharp RD], VbcSKRD(hn, bn) [sharp kink RD], VbcFRD(hn, bn) [fuzzy RD] and VbcFKRD(hn, bn) [fuzzy kink RD]

in Theorems 1—4, respectively, are straightforward to derive but notationally cumbersome. They

all have the same structure as they are derived by computing the conditional variance of (linear

combinations of) weighted linear least-squares estimators. Thus, the only unknowns are diagonal
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matrices whose diagonal terms contain different conditional covariances depending on the setting

under consideration.

In general, for all the cases considered in this paper, the key matrices containing unknown

quantities are

ΨY Y+,p,q(hn, bn), ΨY T+,p,q(hn, bn), ΨTT+,p,q(hn, bn),

ΨY Y−,p,q(hn, bn), ΨY T−,p,q(hn, bn), ΨTT−,p,q(hn, bn),

with p, q ∈ N+, and with the generic notation

ΨUV+,p,q(hn, bn) =
1

n

n∑
i=1

1(Xi ≥ 0)Khn(Xi)Kbn(Xi)rp

(
Xi

hn

)
rq

(
Xi

bn

)′
σ2UV (Xi),

ΨUV−,p,q(hn, bn) =
1

n

n∑
i=1

1(Xi < 0)Khn(Xi)Kbn(Xi)rp

(
Xi

hn

)
rq

(
Xi

bn

)′
σ2UV (Xi),

σ2UV (x) = Cov[U, V |X = x].

Here U and V are placeholders for either Yi or Ti. This generality is required to handle the

fuzzy designs, where the covariances between Yi and Ti naturally arise. Theorems A-1 and A-

2 in the Appendix give the exact formulas for the standard-errors, showing how the matrices

ΨUV+,p,q(hn, bn) and ΨUV−,p,q(hn, bn) are employed.

The (p+1)×(q+1) matrices ΨUV+,p,q(hn, bn) and ΨUV−,p,q(hn, bn) are computed exactly in the

same way as, and are actually a generalization of the middle matrix in, the traditional Huber-Eicker-

White heteroskedasticity-robust standard-error formula from linear models. In fact, an analogue of

these standard-errors could be constructed by plugging in the corresponding estimated residuals.

This choice, although simple and convenient, may not perform well in finite-samples because it im-

plicitly employs the bandwidth choices used to construct the estimates of the underlying regression

functions.

As an alternative, following Abadie and Imbens (2006), we propose standard-error estimators

based on nearest-neighbor estimators with a fixed tuning parameter, which are more robust in

finite-samples because they do not depend on kernel-based regression estimators and thus avoid

the (implicit) bandwidth choices. Specifically, we define

Ψ̂UV+,p,q(hn, bn) =
1

n

n∑
i=1

1(Xi ≥ 0)Khn(Xi)Kbn(Xi)rp

(
Xi

hn

)
rq

(
Xi

bn

)′
σ̂2UV+(Xi),

Ψ̂UV−,p,q(hn, bn) =
1

n

n∑
i=1

1(Xi < 0)Khn(Xi)Kbn(Xi)rp

(
Xi

hn

)
rq

(
Xi

bn

)′
σ̂2UV−(Xi),

with

σ̂2UV+(Xi) = 1(Xi ≥ 0)
J

J + 1

Ui − 1

J

J∑
j=1

U`+,j(i)

Vi − 1

J

J∑
j=1

V`+,j(i)

 ,
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σ̂2UV−(Xi) = 1(Xi < 0)
J

J + 1

Ui − 1

J

J∑
j=1

U`−,j(i)

Vi − 1

J

J∑
j=1

V`−,j(i)

 ,
where `+j (i) is the j-th closest unit to unit i among {Xi : Xi ≥ 0} and `−j (i) is the j-th closest

unit to unit i among {Xi : Xi < 0}.7 These estimators are asymptotically valid for any choice of
J ∈ N+, because they are approximately conditionally unbiased (even though inconsistent when
the number of nearest-neighbors J is kept fixed).

The following result gives consistency of the proposed estimators to their infeasible counterparts.

Theorem 5. Suppose σ2(x) is Lipschitz continuous on (−κ0, 0] and on [0, κ0).

(1) If the conditions in Theorems 1-2 hold, then

Ψ̂Y Y+,p,q(hn, bn) = ΨY Y+,p,q(hn, bn) + op
(
min{h−1n , b−1n }

)
,

Ψ̂Y Y−,p,q(hn, bn) = ΨY Y−,p,q(hn, bn) + op
(
min{h−1n , b−1n }

)
.

(2) If the conditions in Theorem 3-4 hold, then

Ψ̂UV+,p,q(hn, bn) = ΨUV+,p,q(hn, bn) + op
(
min{h−1n , b−1n }

)
,

Ψ̂UV−,p,q(hn, bn) = ΨUV−,p,q(hn, bn) + op
(
min{h−1n , b−1n }

)
,

for U = Y, T and V = Y, T .

This theorem implies that employing Ψ̂UV+,p,q(hn, bn) and Ψ̂UV−,p,q(hn, bn) in place ofΨUV+,p,q(hn, bn)

andΨUV−,p,q(hn, bn), as appropriate in each case, to construct the estimators V̂bcSRD(hn, bn), V̂bcSKRD(hn, bn),

V̂bcFRD(hn, bn) and V̂bcFKRD(hn, bn) lead to consistent standard-error estimators. For example, in Theo-

rem 1, our standard-error formula V̂bcSRD(hn, bn) involves the following estimators:

Ψ̂Y Y+,1,1(hn, bn), Ψ̂Y Y+,1,2(hn, bn), Ψ̂Y Y+,2,1(hn, bn), Ψ̂Y Y+,2,2(hn, bn),

Ψ̂Y Y−,1,1(hn, bn), Ψ̂Y Y−,1,2(hn, bn), Ψ̂Y Y−,2,1(hn, bn), Ψ̂Y Y−,2,2(hn, bn),

leading to the feasible (for bandwidth choices hn and bn) confidence intervals:

ÎrbcSRD (hn, bn) =

[
τ̂bcSRD(hn, bn)± Φ−11−α/2

√
V̂bcSRD(hn, bn)

]
.

The other confidence intervals can be constructed analogously.

7Alternatively, we could use “local sample covariances”as proposed in Abadie and Imbens (2010).
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6 Simulation Evidence

We explored the main implications of our theoretical results in a Monte Carlo experiment. To facili-

tate comparisons, we employed the data generating process proposed in Imbens and Kalyanaraman

(2012, henceforth IK), focusing only on the sharp RD design. We conducted S = 10, 000 repli-

cations, and for each replication we generated a random sample {(Xi, εi)
′ : i = 1, ..., n} with size

n = 500, Xi ∼ 2B(2, 4)− 1 with B(p1, p2) denoting a beta distribution with parameters p1 and p2,

and εi ∼ N (0, σ2ε) with σε = 0.1295. We considered the three regression functions plotted in Figure

1, which are denoted µ1(x), µ2(x) and µ3(x), respectively, and thus generated Yi = µj(Xi) + εi,

i = 1, 2, · · · , n, for each regression model j = 1, 2, 3. The exact functional form of these regression

functions and all other details are given in the online supplemental appendix.

We focused on local-linear RD estimators with local-quadratic bias-correction, τ̂rbcSRD(hn, bn), as

discussed in Section 2. We investigated the empirical coverage and interval length of the following

three competing 95% confidence intervals for a variety of possible bandwidth choices:

“Conventional”(T̂SRD(hn)) : τ̂SRD(hn)± 1.96 ·
√

V̂SRD(hn),

“Bias-Corrected”(T̂ bcSRD(hn, bn)) : τ̂bcSRD(hn, bn)± 1.96 ·
√

V̂SRD(hn),

“Robust Approach”(T̂ rbcSRD (hn, bn)) : τ̂bcSRD(hn, bn)± 1.96 ·
√

V̂bcSRD(hn, bn),

where the estimators V̂SRD(hn) and V̂bcSRD(hn, bn) are constructed using the nearest-neighbor proce-

dure discussed in Section 5 with J = 3. For comparison, we also report the infeasible versions of

these confidence intervals employing VSRD(hn) and VbcSRD(hn, bn).

To choose the main bandwidth hn we consider the following alternatives: (i) the infeasible MSE-

optimal choice hMSE,0,1, denoted hMSE; (ii) a plug-in, regularized MSE-optimal selector proposed by

IK, denoted ĥIK; (iii) the infeasible, each-side-squared MSE-optimal choice proposed by DesJardins

and McCall (2009), denoted hDM; (iv) a plug-in, each-side-squared MSE-optimal selector, denoted

ĥDM; (v) a cross-validation estimator proposed by Ludwig and Miller (2007), denoted ĥCV; and (vi)

our plug-in choice proposed in Section 4, denoted ĥCCT. Similarly, to choose the pilot bandwidth

bn, we constructed the appropriately modified versions of the choices enumerated above, with the

exception of ĥCV because it is not available for derivative estimation; these choices are denoted

bMSE, b̂IK, bDM, b̂DM, and b̂CCT, respectively. The online supplemental appendix provides a detailed

description of each of these procedures.

Tables 2—3 present the main results. Table 2 employs the infeasible standard-errors based on

VSRD(hn) and VbcSRD(hn, bn), while Table 3 employs the fully data-driven standard-errors V̂SRD(hn) and

V̂bcSRD(hn, bn). The simulation results across both tables are qualitative very similar but, as expected,

the feasible versions of the 95% confidence intervals exhibit slightly more empirical coverage distor-

tion and longer intervals on average. In the online supplemental appendix, we also report results

employing the traditional standard-error estimators constructed using plug-in estimated residuals

(also mentioned in Section 5), which lead to even more undercoverage in our simulations. In all
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cases, the robust standard-error estimators lead to important improvements in empirical coverage

with only moderate increments in the average empirical length of the resulting confidence intervals.

The choice ρn = 1 is not only simple and intuitive, but also performed well in our simulation setup.

In terms of actual results, these tables suggest that the empirical coverage of intervals based on

T rbcSRD (hn, bn) exhibits an improvement of about 10-15 percentage points on average, depending on

the particular data-driven bandwidths employed. Although not the main goal of this paper, we

also found that our two-stage direct plug-in rule selector of hn performs very well relative to the

other plug-in selectors, and on par with the cross-validation bandwidth selector.

In sum, based on our theoretical results and the simulation evidence presented, we recommend

employing the new robust standard-error estimates introduced in this paper when constructing

confidence intervals for treatment effects in the RD design.

7 Empirical Illustration

We illustrate the performance of our methods and compare them to other conventional alternatives

employing household data from Oportunidades (formerly known as Progresa), a well-known large-

scale anti-poverty conditional cash transfer program in Mexico. Our goal is to show how the

different methods perform in a substantive, realistic empirical application. Most details regarding

data construction and implementation, as well as other results not reported in this section, are given

in the online supplemental appendix to conserve space. All estimates and figures were constructed

using the STATA package rdrobust, described in Calonico, Cattaneo, and Titiunik (2013).

Progresa/Oportunidades was first instituted in rural communities in 1998, and later was ex-

panded to urban areas in 2003. This social program is best known for its experimental component:

treatment was initially randomly assigned at the locality level in rural areas.8 Indeed, its exper-

imental features have spiked a huge body of work focusing on a variety of economic, health and

related outcomes.9 In order to target the program to poor households in both rural and urban

areas, Mexican offi cials constructed a pre-intervention (at baseline) household poverty-index that

determined each household’s eligibility. In rural communities, seven distinct poverty cutoffs were

used depending on the geographic area, while one common cutoff was used in all urban localities.

Thus, Progresa/Oportunidades’eligibility assignment rule naturally leads to eight sharp (intention-

to-treat) regression-discontinuity designs. Buddelmeyer and Skoufias (2004) were the first to note

the RD features of this social program.

We illustrate our methods employing data from the urban RD design and one of the seven rural

RD designs (the one corresponding to the median household population size, Region 3, Sierra-Negra-

Zongolica-Mazateca). We do not pool the RD designs, nor we compare them with each other or

to the experimental estimates from the rural areas, since without further (strong) assumptions the

8 In urban areas, however, treatment was not randomly assigned.
9Recent examples include Attanasio, Meghir, and Santiago (2011), Behrman, Gallardo-García, Parker, Todd, and

Vélez-Grajales (2012), Djebbari and Smith (2008), Dubois, de Janvry, and Sadoulet (2012), Fernald, Gertler, and
Neufeld (2009), among many others. These papers also include references to early reviews and research work.
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associated estimands need not to coincide with each other. Instead, we treat the RD designs as

different examples, which vary in observable, and possibly unobservable, characteristics.

Our empirical exercise investigates the program treatment effect on two mutually exclusive

measures of household consumption expenditures: food and non-food consumption.10 Related

literature on this topic include Hoddinott and Skoufias (2004), Angelucci and Attanasio (2009),

Angelucci and De Giorgi (2009), Gertler, Martinez, and Rubio-Codina (2012) and Angelucci and

Attanasio (2013), who have also investigated the effect of Oportunidades/Progresa on consumption

using experimental methods (in rural areas) and non-experimental matching methods (in urban

areas). Our illustrative results therefore contribute to this literature by presenting new empirical

evidence based on non-experimental RD estimates. In this application, Xi denotes the household’s

poverty-index, x̄ = 0 denotes the centered cutoff for each RD design, and Yi denotes the two

different measures of household consumption.

Our final database contains 691 control households (Xi < 0) and 2, 118 intention-to-treat house-

holds (Xi ≥ 0) in the urban RD design (n = 2, 809, Xi ∈ [−2.25 , 4.11]), and 315 control house-

holds (Xi < 0) and 618 intention-to-treat households (Xi ≥ 0) in the rural RD design (n = 933,

Xi ∈ [−456.6 , 338.4]). In the online supplemental appendix, we address the empirical validity

of these RD designs by conducting standard balance and falsification tests on pre-intervention co-

variates. These results give empirical support for the RD assumptions. Figures 2 and 3 present,

respectively, the usual RD plots for the urban and rural areas (c.f. Figure 1). In these figures,

the solid lines correspond to distinct fourth-order global polynomial fits for control and treatments

units, and the solid dots correspond to sample averages of the outcome variable for each bin (or

partition) of the running variable. The number of bins was chosen using an integrated mean-square

error formula derived in Cattaneo and Farrell (2013), as explained in Calonico, Cattaneo, and

Titiunik (2013, Section 2.7).

Our main empirical results are reported in Table 4. Panel A and B correspond, respectively, to

the urban and rural RD designs. We consider three time periods: pre-intervention (as a falsifica-

tion test), one year after the program started (1-year Treatment), and two years after the program

started (2-year Treatment). Thus, each panel reports six groups of RD estimates (i.e., 2 outcomes

× 3 periods). For each combination of outcome and time period, we conduct RD estimation and

inference employing the same setup as in our simulation study: local-linear estimator of τSRD, con-

ventional confidence interval and robust confidence interval (with local-quadratic bias-correction),

each implemented with the three different data-driven bandwidth choices ĥCCT, ĥIK and ĥCV. To

be specific, for each panel, outcome, period and bandwidth selection method we report τ̂SRD(ĥn),

ÎSRD(ĥn), ÎrbcSRD (ĥn, b̂n), ĥn and b̂n.

This empirical exercise offers an array of interesting examples to discuss the performance of our

proposed methods. First of all, using the pre-intervention data (columns 1—3, Panels A and B),

we find no effects of the program in any case (i.e., food or non-food consumption in urban or rural

localities).11 This result gives additional evidence in favor of the validity of the RD designs, since
10 In the online supplemental appendix we also examine total consumption expenditures for all the RD designs.
11 In rural areas, pre and post-intervention food consumption data differs in two main aspects. First, the pre-
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households in control and treatment areas exhibit on average the same levels of pre-intervention

consumption. In the 1-year after treatment data, we find statistically significant effects of the

program on food consumption in rural areas (columns 4—6, Panel B). This result is present in all

cases when using both the conventional as well as the robust confidence intervals. On the other

hand, in the same period, we find no statistically significant effects on non-food consumption in

rural areas (columns 4—6, Panel B) nor on any of the outcomes in urban areas (columns 4—6, Panel

A). These results are consistent across inference procedures.

The results from the 2-year after treatment data are the most interesting. In this case, for

food consumption in urban areas (columns 7—9, Panel A), we find statistically significant results

when using the conventional confidence intervals but these results are not statistically significant

when using the robust confidence intervals proposed in this paper. This empirical example offers

an instance where the conventional inference approach suggests the presence of a strong positive

treatment effect, but our methods cast doubt on such a conclusion. On the other hand, when

examining non-food consumption in urban areas (still columns 7—9, Panel A) the results appear

to be more robust, as they are statistically significant at standard levels when using both the

conventional and the robust confidence intervals. Finally, in the case of the rural RD design

(columns 7—9, Panel B), we find no statistically significant effects on food consumption using

either method, but we find a statistically significant (10-percent level) treatment effect on non-

food consumption when using conventional confidence intervals. The latter result, however, is not

particularly robust based on our proposed confidence intervals.

To summarize, the findings from the small empirical illustration suggest that the program

Progresa/Oportunidades had (i) a positive, significant effect on non-food consumption in urban

areas two years after its introduction, and (ii) a positive, significant effect on food consumption

in rural areas one year after its introduction. Both results appear to be robust according to our

proposed methods. In addition, the empirical findings using conventional methods suggest that

the program had positive, significant effects on food consumption in urban areas and on non-

food consumption in rural areas two years after its introduction, but these findings are not robust

according to our proposed inference procedures.

8 Conclusion

We introduced new confidence interval estimators for several regression-discontinuity estimands

that enjoy demonstrably superior robustness properties. The results cover the sharp (level or kink)

and fuzzy (level or kink) RD designs. Our confidence intervals were constructed using an alterna-

tive asymptotic theory for bias-corrected local polynomial estimators in the context of RD designs,

which leads to a different asymptotic variance in general and thus justifies a new standard-error

estimator. We found that the resulting data-driven confidence intervals performed very well in simu-

intervention survey only provides information on expenditures (that is, it omits home production). Second, it reports
expenditures only by food groups rather than asking detailed item-by-item questions, as in later waves. See, e.g.,
Angelucci and De Giorgi (2009) for further details.
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lations, suggesting in particular that they provide a robust (to the choice of bandwidths) alternative

when compared to the conventional confidence intervals routinely employed in empirical work. In

addition, in an empirical illustration addressing the program effects of Progresa/Oportunidades

on consumption, we found that in some cases the conventional confidence intervals offer results

that are validated by our proposed confidence intervals, while in other cases our robust confidence

intervals cast doubt on the results obtained by conventional methods.

A Appendix

In this appendix we summarize our main results for arbitrary order of local polynomials. Here p denotes
the order of main RD estimator, while q denotes the order in the bias correction. All the results stated in
this Appendix, as well as other results discussed in the main text, are proven in the online supplemental
appendix.

A.1 Assumptions

We employ the following conventional assumption on the basic sharp RD model.

Assumption A1. For some κ0 > 0, the following holds in the neighborhood (−κ0, κ0) around the cutoff
x̄ = 0:
(a) E[Y 4i |Xi] <∞.
(b) f(x), the density of Xi, is continuous and bounded away from zero.
(c) For some S ≥ 1, µ−(x) = E[Yi(0)|Xi = x] and µ+(x) = E[Yi(1)|Xi = x] are S-times continuously
differentiable.
(d) σ2(x) = V[Yi|Xi = x] is bounded away from zero, bounded, and right and left continuous at x = 0.

Part (a) in Assumption 1 imposes existence of moments. Part (b) requires that the running variable
Xi be continuously distributed near the cutoff, and also ensures the presence of observations arbitrarily
close to the cutoff in large samples. Part (c) imposes standard smoothness conditions on the underlying
regression functions, which is the key ingredient used to control the leading biases of the RD estimators
considered in this paper. Finally, part (d) imposes standard restrictions on the conditional variance of the
observed outcome, but allows it to be potentially different at either side of the threshold. Thus, we set
σ2+ = limx→0+ σ

2(x) and σ2− = limx→0− σ
2(x).

Throughout the paper we employed local polynomial regression estimators of various orders to approx-
imate unknown regression functions. The following standard assumption on the kernel function is used to
construct the estimators.

Assumption A2. For some κ > 0, the kernel function k(·) : [0, κ] 7→ R is bounded and nonnegative on
[0, κ], positive and continuous on (0, κ), and zero outside its support.

This assumption permits all kernels commonly used in empirical work. Although our results extend to
the case where possibly different kernels are used at either side of the threshold, to simplify the exposition
we set K(u) = k(−u) · 1(u < 0) + k(u) · 1(u ≥ 0), implying that, for κ > 0 given in Assumption A2, K(·)
is symmetric, bounded and nonnegative on [−κ, κ], positive and continuous on (−κ, κ), and zero outside its
support.

Finally, to handle the fuzzy RD designs we impose the following additional assumption.

Assumption A3. For some κ0 > 0, the following holds in the neighborhood (−κ0, κ0) around the cutoff
x̄ = 0:
(a) For some S ≥ 1, µT−(x) = E[Ti(0)|Xi = x] and µT+(x) = E[Ti(1)|Xi = x] are S-times continuously
differentiable.
(b) σ2T (x) = V[Ti|Xi = x] is bounded away from zero and right and left continuous at x = 0.

This assumption is analogous to Assumption A1, but involving as outcome variable the treatment as-
signment and treatment status for each unit.
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A.2 Local Polynomial Estimators

For any ν, p ∈ N with ν ≤ p, the p-th order local polynomial estimators of the ν-th order derivatives µ(ν)+
and µ(ν)− are given by

µ̂
(ν)
Y+,p(hn) = ν!e′ν β̂Y+,p(hn) and µ̂

(ν)
Y−,p(hn) = ν!e′ν β̂Y−,p(hn),

with

β̂Y+,p(hn) = arg min
β∈Rp+1

n∑
i=1

1(Xi ≥ 0)(Yi − rp(Xi)
′β)2Khn(Xi),

β̂Y−,p(hn) = arg min
β∈Rp+1

n∑
i=1

1(Xi < 0)(Yi − rp(Xi)
′β)2Khn(Xi),

where rp(x) = (1, x, · · · , xp)′, eν is the conformable (ν + 1)-th unit vector (e.g., e1 = (0, 1, 0)′ if p = 2),
Kh(u) = K(u/h)/h, and hn is a positive bandwidth sequence. (We drop the evaluation point of functions
at x̄ = 0 to simplify notation.) For example, β̂+,1(hn) is a bivariate vector containing the two coeffi cients
(intercept and slope) obtained from using weighted least-squares to estimate a linear model employing only
observations with Xi to the right and near the discontinuity x̄ = 0 (i.e., for observations with Xi ∈ [0, κhn]).
Similarly, β̂+,2(hn) and β̂+,3(hn) correspond, respectively, to local-quadratic and local-cubic regression co-
effi cient vectors using the same observations.

It is well-known that, under appropriate regularity conditions and bandwidth restrictions, β̂+,p(hn)→p

β+,p = (µ+, µ
(1)
+ /1!, µ

(2)
+ /2!, · · · , µ(p)+ /p!)′ and β̂−,p(hn)→p β−,p = (µ−, µ

(1)
− /1!, µ

(2)
− /2!, · · · , µ(p)− /p!)′, imply-

ing that local polynomial regression estimates consistently the level of the unknown regression function (µ+
and µ−) as well as its first p derivatives (up to a known scale). In the sequel, we set µ̂+,p(hn) = µ̂

(0)
+,p(hn)

and µ̂+,p(hn) = µ̂
(0)
+,p(hn) to improve notation.

Note that, whenever possible, we drop the outcome variable subindex notation from µ̂
(ν)
Y+,p(hn), µ̂(ν)Y−,p(hn),

β̂Y+,p(hn), β̂Y−,p(hn), etc.

A.3 Further Notation

We employ the following notation: Y = [Y1, · · · , Yn]′, ε = [ε1, · · · , εn]′ with εi = Yi − µ(Xi), Xn =
[X1, · · · , Xn]′, and Σ = E[εε′|Xn] = diag(σ2(X1), · · · , σ2(Xn)) where diag(a1, ..., an) denotes the (n × n)
diagonal matrix with diagonal elements a1, ..., an.

We also set:

Xp(h) = [rp(X1/h), · · · , rp(Xn/h)]′, Sp(h) = [(X1/h)p, · · · , (Xn/h)p]′,

W+(h) = diag(1(X1 ≥ 0)Kh(X1), · · · ,1(Xn ≥ 0)Kh(Xn)),

W−(h) = diag(1(X1 < 0)Kh(X1), · · · ,1(Xn < 0)Kh(Xn)).

In addition, we define the following (scaled) matrices

Γ+,p(h) = Xp(h)′W+(h)Xp(h)/n, Γ−,p(h) = Xp(h)′W−(h)Xp(h)/n,

ϑ+,p,q(h) = Xp(h)′W+(h)Sq(h)/n, ϑ−,p,q(h) = Xp(h)′W−(h)Sq(h)/n,

Ψ+,p,q(h, b) = Xp(h)′W+(h)ΣW+(b)Xq(b)/n, Ψ−,p,q(h, b) = Xp(h)′W−(h)ΣW−(b)Xq(b)/n,

where we set for brevity Ψ+,p(h) = Ψ+,p,p(h, h) and Ψ−,p(h) = Ψ−,p,p(h, h).
We will also use repeatedly the large sample matrices

Γp =

∫ ∞
0

K(u)rp(u)rp(u)′du, ϑp,q =

∫ ∞
0

K(u)uqrp(u)du, Ψp =

∫ ∞
0

K(u)2rp(u)rp(u)′du.
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Letting Hp(h) = diag(1, h−1, · · · , h−p), it follows that

β̂+,p(hn) = Hp(hn)Γ−1+,p(hn)Xp(hn)′W+(hn)Y/n,

β̂−,p(hn) = Hp(hn)Γ−1+,p(hn)Xp(hn)′W+(hn)Y/n.

Finally, recall that in the fuzzy designs we add a further subindex to denote the underlying outcome(s)
used whenever appropriate. That is, for random variables U and V , we set ΣUV = diag(σ2UV (X1), · · · , σ2UV (Xn))
with σ2UV (x) = Cov[U, V |X = x] = E[(U −E[U |X])(V −E[V |X])|X = x], and similarly for other parameters
(and also the estimators).

A.4 Sharp RD Designs

As in the main text, in this section we drop the notational dependence on the outcome variable Y . The
general estimand of interest in the sharp RD design is

τν = µ
(ν)
+ − µ

(ν)
− , µ

(ν)
+ = ν!e′νβ+,p, µ

(ν)
− = ν!e′νβ−,p (ν ≤ p),

and recall that τ SRD = τ0 and τ SKRD = τ1.
In this context, for any ν ≤ p, the conventional p-th order local polynomial RD estimator is

τ̂ν,p(hn) = µ̂
(ν)
+,p(hn)− µ̂(ν)−,p(hn), µ̂

(ν)
+,p(hn) = ν!e′ν β̂+,p(hn), µ̂

(ν)
−,p(hn) = ν!e′ν β̂−,p(hn),

and recall that τ̂ SRD(hn) = τ̂0,1(hn) and τ̂ SKRD(hn) = τ̂1,2(hn).

A.4.1 Lemma A1

This lemma describes the asymptotic bias, variance and distribution of τ̂ν,p(hn). This result follows from
known results in the local polynomial literature applied to the RD context (e.g., Fan and Gijbels (1996)).

Lemma A1. Suppose Assumptions A1—A2 hold with S ≥ p+ 2. Let ν, r ∈ N with ν ≤ p.
(B) If hn → 0 and nhn →∞, then

E[τ̂ν,p(hn)|Xn] = τν + hp+1−νn Bν,p,p+1(hn) + hp+2−νn Bν,p,p+2(hn) + op(h
p+2−ν
n ),

where

Bν,p,r(hn) =
µ
(r)
+

r!
B+,ν,p,r(hn)−

µ
(r)
−
r!
B−,ν,p,r(hn),

B+,ν,p,r(hn) = e′νΓ−1+,p(hn)ϑ+,p,r(hn) = e′νΓ−1p ϑp,r + op(1),

B−,ν,p,r(hn) = e′νΓ−1−,p(hn)ϑ−,p,r(hn) = e′νΓ−1p ϑp,r + op(1).

(V) If hn → 0 and nhn →∞, then V[τ̂ν,p(hn)|Xn] = Vν,p(hn), where

Vν,p(hn) = V+,ν,p(hn) + V−,ν,p(hn),

V+,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1+,p(hn)Ψ+,p(hn)Γ−1+,p(hn)eν =

1

nh1+2νn

σ2+
f
ν!2e′νΓ−1p ΨpΓ

−1
p eν [1 + op(1)],

V−,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1−,p(hn)Ψ−,p(hn)Γ−1−,p(hn)eν =

1

nh1+2νn

σ2−
f
ν!2e′νΓ−1p ΨpΓ

−1
p eν [1 + op(1)].

(D) If nh2p+5n → 0 and nhn →∞, then

τ̂ν,p(hn)− τν − hp+1−νn Bν,p,p+1(hn)√
Vν,p(hn)

→d N (0, 1).
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Therefore, for any p < q, the q-th order local polynomial bias-corrected estimator is

τ̂ bcν,p,q(hn, bn) = τ̂p(hn)− hp+1n B̂ν,p,q(hn, bn),

with
B̂ν,p,q(hn, bn) = (e′p+1β̂+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂−,q(bn))B−,ν,p,p+1(hn).

A.4.2 Theorem A1

This theorem summarizes the asymptotic bias, variance and distribution of τ̂ bcν,p,q(hn, bn). Theorems 1 and
2 are special cases with (ν, p, q) = (0, 1, 2) and (ν, p, q) = (1, 2, 3), respectively.

Theorem A1. Suppose Assumptions A1—A2 hold with S ≥ q + 1 and q ≥ p+ 1. Let ν ∈ N with ν ≤ p.

(B) If max{hn, bn} → 0 and nmin{hn, bn} → ∞, then

E[τ̂ bcν,p,q(hn, bn)|Xn] = τ + hp+2−νn Bν,p,p+2(hn) [1 + op(1)]

−hp+1−νn bq−pn Bbcν,p,q(hn, bn) [1 + op(1)],

where

Bbcν,p,q(h, b) =
µ
(q+1)
+

(q + 1)!
B+,p+1,q,q+1(b)

B+,ν,p,p+1(h)

(p+ 1)!
−

µ
(q+1)
−

(q + 1)!
B−,p+1,q,q+1(b)

B−,ν,p,p+1(h)

(p+ 1)!
.

(V) If nmin{hn, bn} → ∞, then V[τ̂ bcν,p,q(hn, bn)|Xn] = Vbcν,p,q(hn, bn), where

Vbcν,p,q(hn, bn) = Vbc+,ν,p,q(hn, bn) + Vbc−,ν,p,q(hn, bn),

Vbc+,ν,p,q(h, b) = V+,ν,p(h)− 2hp+1−νC+,ν,p,q(h, b)
B+,ν,p,p+1(h)

(p+ 1)!
+ h2(p+1−ν)V+,p+1,q(b)

B2+,ν,p,p+1(h)

(p+ 1)!2
,

Vbc−,ν,p,q(h, b) = V−,ν,p(h)− 2hp+1−νC−,ν,p,q(h, b)
B−,ν,p,p+1(h)

(p+ 1)!
+ h2(p+1−ν)V−,p+1,q(b)

B2−,ν,p,p+1(h)

(p+ 1)!2
,

C+,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1+,p(h)Ψ+,p,q(h, b)Γ

−1
+,q(b)ep+1,

C−,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1−,p(h)Ψ−,p,q(h, b)Γ

−1
−,q(b)ep+1,

for dim(e0) = p and dim(ep+1) = q.

(D) If nmin{h2p+3n , b2p+3n }max{h2n, b
2(q−p)
n } → 0 and nmin{hn, bn} → ∞, then

T rbcp,q (hn, bn) =
τ̂ bcν,p,q(hn, bn)− τν√

Vbcν,p,q(hn, bn)
→d N (0, 1),

provided κmax{hn, bn} < κ0.

From this theorem we obtain for Theorems 1 and 2:

VbcSRD(hn, bn) = Vbc0,1,2(hn, bn) and VbcSKRD(hn, bn) = Vbc1,2,3(hn, bn). (A-1)

Remark A1. Remark 1 in the main text remains true: the distributional approximation in Theorem A1
permits one bandwidth (but not both) to be fixed, provided it is not too “large”; i.e., both must satisfy
κmax{hn, bn} < κ0, but only one needs to vanish.
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Remark A2. Remark 2 in the main text generalizes as follows. Three main limiting cases are obtained
depending on the limit ρn → ρ ∈ [0,∞].

Case 1 : ρ = 0. In this case hn = o(bn) and

V[τ̂ bcν,p,q(hn, bn)|Xn] = V[τ̂ν,p(hn)|Xn]{1 + op(1)} =
1

nh1+2νn

σ2+ + σ2−
f

(e′νΓ−1p ΨpΓ
−1
p e0){1 + op(1)},

which is the classical approach to bias-correction.

Case 2 : ρ ∈ (0,∞). In this case hn = ρbn and

V[τ̂ bcp,q(hn, bn)|Xn]

=
1

nh1+2νn

[
σ2+ + σ2−

f
(e′νΓ−1p ΨpΓ

−1
p e0) + ρ2p+3

σ2+ + σ2−
f

(e′pΓ
−1
q ΨqΓ

−1
q ep+1)(e

′
νΓ−1p ϑp,p+1)

2

− ρp+2
(
e′νΓ−1p

(
σ2+
f

Ψp,q(ρ) +
σ2−
f

Ψp,q(−ρ)

)
Γ−1q ep+1

)
(e′νΓ−1p ϑp)

]
{1 + op(1)},

with Ψp,q(ρ) =
∫∞
0
K(u)K(ρu)rp(u)rq(ρu)′du. For conventional choices of kernel K(·), the limiting

variance is increasing in ρ.

Case 3 : ρ =∞. In this case bn = o(hn) and

V[τ̂ bcp,q(hn, bn)|Xn] = h2(p+1−ν)n V[B̂ν,p,q(hn, bn)|Xn]{1 + op(1)}

=
ρ
2(p+1−ν)
n

nb1+2νn

σ2+ + σ2−
f

(e′p+1Γ
−1
q ΨqΓ

−1
q ep+1)(e

′
νΓ−1p ϑp,p+1)

2{1 + op(1)},

which implies that the bias-estimate is first-order while the actual estimator τ̂p(hn) is of smaller order.

Remark A3. If hn = bn (and the same kernel function K(·) is used), then τ̂ bcν,p,p+1(hn, hn) = τ̂ν,p+1(hn).
This gives a simple relationship between local polynomial estimators of order p and p + 1, and their
relation to manual bias-correction. This implies that T rbcν,p,p+1(hn, hn) = Tν,p+1(hn). The result extends
to τ̂ bcν,p,p+r(hn, hn) = τ̂ν,p+r(hn) and T rbcν,p,p+r(hn, hn) = Tν,p+r(hn) when the natural generalization of
the bias-correction estimate is used. See the supplemental appendix for details.

Remark A4. It is well known that bias-correction can be seen as another way of undersmoothing the orig-
inal estimator. An interesting implication of Remark 3 is that our approach provides a formalization
of this idea. In particular, it justifies a simple approach based on the order of the local polynomial: a
systematic choice of hn that leads to undersmoothing is to select the MSE-optimal bandwidth for the
estimator τ̂p(hn), but construct confidence intervals using the estimator τ̂p+1(hn). This is the special
case ρn = hn/bn = 1 in Theorem 1.

Remark A5. The previous results can be described using the Equivalent Kernel Representation of local
polynomials (e.g., Fan and Gijbels (1996, Section 3.2.2)). For simplicity, consider the one-sided bias-
corrected estimate of µ+: τ̂

bc
+,0,p,q(hn, bn) = µ̂+,p(hn) − hp+1n (e′p+1β̂+,q(bn))B+,0,p,p+1(hn). Letting

hn = ρbn with ρ ∈ (0,∞),

τ̂ bc+,0,p,q(hn, bn) =
1

nhnf

n∑
i=1

1(Xi ≥ 0)Kp,q
(
Xi

hn
; ρ

)
Yi {1 + op(1)} ,

Kp,q(x; ρ) = Kp(x)− ρp+2Kbcp,q(ρx),

where Kp(x) = e′0Γ
−1
p rp(x)K(x) is the equivalent kernel of the local polynomial estimator µ̂+,p(hn),

andKbcp,q(x) = (e′p+1Γ
−1
q rq(x))(e′0Γ

−1
p ϑp,p+1)K(x) is the equivalent kernel induced by the bias-correction

estimate (e′p+1β̂+,q(bn))B+,0,p,p+1(hn).

(i) Because hn = ρbn, the asymptotics in Theorem A1 “convexify” the kernel function employed to
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construct the estimator τ̂ bc+,0,p,q(hn, bn), because

lim
ρ→0+

Kp,q(x; ρ) = Kp(x) and Kp,p+1(x; 1) = Kp+1(x).

(ii) The asymptotic bias and variance reduce to

E[τ̂ bc+,0,p,q(hn, hn/ρ)|Xn] = µ+ + hp+2n

µ
(p+2)
+

(p+ 2)!
Bp(ρ) {1 + op(1)} ,

V[τ̂ bc+,0,p,q(hn, hn/ρ)|Xn] =
1

nhn

σ2+
f
Vp(ρ) {1 + op(1)} ,

Bp(ρ) =

∫ ∞
0

xp+2Kp,p+1 (x; ρ) dx, Vp(ρ) =

∫ ∞
0

(Kp,p+1 (x; ρ))2dx,

For conventional choices of kernel K(·), Bp(ρ) is decreasing and Vp(ρ) is increasing in ρ. See the
supplemental appendix for further details.

Remark A6. Cheng, Fan, and Marron (1997) study the optimal choice of boundary kernel of order p in
a conditional MSE minimax sense for one-sided nonparametric regression estimation at a boundary
point. Although not the focus of this paper, from this point estimation perspective, the induced
equivalent kernel Kp−1,p(x; ρ) dominates Kp(x) for an appropriate choice of ρ, when a conventional
kernel K(·) is used. (For ρ > 0, Kp−1,p(x; ρ) is also a boundary kernel of order p or larger.) See the
supplemental appendix for further details.

A.5 Fuzzy RD Designs

Here we consider the ν-th fuzzy RD estimand

ςν =
τY,ν
τT,ν

, τY,ν = µ
(ν)
Y+ − µ

(ν)
Y−, τT,ν = µ

(ν)
T+ − µ

(ν)
T−,

provided that ν ≤ S. Note that τ FRD = ς0 and τ FKRD = ς1.
The fuzzy RD estimator based on the p-th order local polynomial estimators τ̂Y,ν,p(hn) and τ̂T,ν,p(hn)

therefore is

ς̂ν,p(hn) =
τ̂Y,ν,p(hn)

τ̂T,ν,p(hn)
, τ̂Y,ν,p(hn) = µ̂

(ν)
Y+,p(hn)− µ̂(ν)Y−,p(hn), τ̂T,ν,p(hn) = µ̂

(ν)
T+,p(hn)− µ̂(ν)T−,p(hn),

with
µ̂
(ν)
Y+,p(hn) = ν!e′ν β̂Y+,p(hn), µ̂

(ν)
Y−,p(hn) = ν!e′ν β̂Y−,p(hn),

µ̂
(ν)
T+,p(hn) = ν!e′ν β̂T+,p(hn), µ̂

(ν)
T−,p(hn) = ν!e′ν β̂T−,p(hn),

and with the notation

β̂Y+,p(hn) = Hp(hn)Γ−1+,p(hn)Xp(hn)′W+(hn)Y/n, β̂Y−,p(hn) = Hp(hn)Γ−1−,p(hn)Xp(hn)′W−(hn)Y/n,

β̂T+,p(hn) = Hp(hn)Γ−1+,p(hn)Xp(hn)′W+(hn)T/n, β̂T−,p(hn) = Hp(hn)Γ−1−,p(hn)Xp(hn)′W−(hn)T/n.

Note that τ̂ FRD(hn) = ς̂0,1(hn) and τ̂ FKRD(hn) = ς̂1,2(hn).

A.5.1 Lemma A2

This lemma gives an analogue of Lemma A1 for fuzzy designs. Using the expansion

â

b̂
− a

b
=

1

b
(â− a)− a

b2
(b̂− b) +

a

b2b̂
(b̂− b)2 − 1

bb̂
(â− a)(b̂− b)
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we obtain
ς̂ν,p(hn)− ςν = ς̃ν,p(hn) +Rn

with
ς̃ν,p(hn) =

1

τT,ν
(τ̂Y,ν,p(hn)− τY,ν)− τY,ν

τ2T,ν
(τ̂T,ν,p(hn)− τT,ν)

Rn =
τY,ν

τ2T,ν τ̂T,ν,p(hn)
(τ̂T,ν,p(hn)− τT,ν)2 − 1

τT,ν τ̂T,ν,p(hn)
(τ̂Y,ν,p(hn)− τY,ν)(τ̂T,ν,p(hn)− τT,ν).

Lemma A2. Suppose Assumptions A1—A3 hold with S ≥ p+ 2. Let ν, r ∈ N with ν ≤ p.

(R) If hn → 0 and nh1+2νn →∞, then

Rn = Op

(
1

nh1+2νn

+ h2(p+1−ν)n

)
.

(B) If hn → 0 and nhn →∞, then

E[ς̃ν,p(hn)|Xn] = hp+1−νn BF,ν,p,p+1(hn) + hp+2−νn BF,ν,p,p+2(hn) + op(h
p+2−ν
n ),

where
BF,ν,p,r(hn) =

1

τT,ν
BY,ν,p,r(hn)− τY,ν

τ2T,ν
BT,ν,p,r(hn),

with

BY,ν,p,r(hn) =
µ
(r)
Y+

r!
B+,ν,p,r(hn)−

µ
(r)
Y−
r!
B−,ν,p,r(hn),

BT,ν,p,r(hn) =
µ
(r)
T+

r!
B+,ν,p,r(hn)−

µ
(r)
T−
r!
B−,ν,p,r(hn).

(V) If hn → 0 and nhn →∞, then V[ς̃ν,p(hn)|Xn] = VF,ν,p(hn), where

VF,ν,p(hn) = VF,+,ν,p(hn) + VF,−,ν,p(hn),

where

VF,+,ν,p(hn) =
1

τ2T,ν
VY Y+,ν,p(hn)− 2τY,ν

τ3T,ν
VY T+,ν,p(hn) +

τ2Y,ν
τ4T,ν
VTT+,ν,p(hn),

with

VY Y+,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1+,p(hn)ΨY Y+,p(hn)Γ−1+,p(hn)eν =

1

nh1+2νn

σ2Y Y+
f

ν!2e′νΓ−1p ΨpΓ
−1
p eν [1+op(1)],

VY T+,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1+,p(hn)ΨY T+,p(hn)Γ−1+,p(hn)eν =

1

nh1+2νn

σ2Y T+
f

ν!2e′νΓ−1p ΨpΓ
−1
p eν [1+op(1)],

VTT+,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1+,p(hn)ΨTT+,p(hn)Γ−1+,p(hn)eν =

1

nh1+2νn

σ2TT+
f

ν!2e′νΓ−1p ΨpΓ
−1
p eν [1+op(1)],

and

VF,−,ν,p(hn) =
1

τ2T,ν
VY Y−,ν,p(hn)− 2τY,ν

τ3T,ν
VY T−,ν,p(hn) +

τ2Y,ν
τ4T,ν
VTT−,ν,p(hn)

with

VY Y−,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1−,p(hn)ΨY Y−,p(hn)Γ−1−,p(hn)eν =

1

nh1+2νn

σ2Y Y−
f

ν!2e′νΓ−1p ΨpΓ
−1
p eν [1+op(1)],
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VY T−,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1−,p(hn)ΨY T−,p(hn)Γ−1−,p(hn)eν =

1

nh1+2νn

σ2Y T−
f

ν!2e′νΓ−1p ΨpΓ
−1
p eν [1+op(1)],

VTT−,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1−,p(hn)ΨTT−,p(hn)Γ−1−,p(hn)eν =

1

nh1+2νn

σ2TT−
f

ν!2e′νΓ−1p ΨpΓ
−1
p eν [1+op(1)].

(D) If nh2p+5n → 0 and nhn →∞, then

ς̃ν,p(hn)− hp+1−νn BF,ν,p,p+1(hn)√
VF,ν,p(hn)

→d N (0, 1).

A.5.2 Theorem A2

This theorem gives an analogue of Theorem A1 for the bias-corrected fuzzy RD estimator

ς̂bcν,p,q(hn, bn) = ς̂ν,p(hn)− hp+1−νn B̂F,ν,p,q(hn, bn),

with

B̂F,ν,p,q(hn, bn) =
1

τ̂T,ν,p(hn)

(
(e′p+1β̂Y+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂Y−,q(bn))B−,ν,p,p+1(hn)

)
− τ̂Y,ν,p(hn)

τ̂T,ν,p(hn)2

(
(e′p+1β̂T+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂T−,q(bn))B−,ν,p,p+1(hn)

)
.

Linearizing the estimator we obtain

ς̂bcν,p,q(hn, bn)− ςν = ς̂ν,p(hn)− hp+1−νn B̂F,ν,p,q(hn, bn)− ςν
= ς̃ν,p(hn) +Rn − hp+1−νn B̂F,ν,p,q(hn, bn)

= ς̃bcν,p,q(hn, bn) +Rn − hp+1−νn

(
B̂F,ν,p,q(hn, bn)− B̌F,ν,p,q(hn, bn)

)
= ς̃bcν,p,q(hn, bn) +Rn −Rbcn

with
ς̃bcν,p,q(hn, bn) =

1

τT,ν
(τ̂ bcY,ν,p,q(hn, bn)− τY,ν)− τY,ν

τ2T,ν
(τ̂ bcT,ν,p,q(hn, bn)− τT,ν),

Rn =
τY,ν

τ2T,ν τ̂T,ν,p(hn)
(τ̂T,ν,p(hn)− τT,ν)2 − 1

τT,ν τ̂T,ν,p(hn)
(τ̂Y,ν,p(hn)− τY,ν)(τ̂T,ν,p(hn)− τT,ν),

B̌F,ν,p,q(hn, bn) =
1

τT,ν

(
(e′p+1β̂Y+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂Y−,q(bn))B−,ν,p,p+1(hn)

)
− τY,ν
τ2T,ν

(
(e′p+1β̂T+,q(bn))B+,ν,p,p+1(hn)− (e′p+1β̂T−,q(bn))B−,ν,p,p+1(hn)

)
,

Rbcn = hp+1−νn

(
B̂F,ν,p,q(hn, bn)− B̌F,ν,p,q(hn, bn)

)
.

The following theorem summarizes the asymptotic bias, variance and distribution of ς̂bcν,p,q(hn, bn). The-
orems 3 and 4 are special cases with (ν, p, q) = (0, 1, 2) and (ν, p, q) = (1, 2, 3), respectively.

Theorem A2. Suppose Assumptions A1—A3 hold with S ≥ p+ 2. Let ν, r ∈ N with ν ≤ p.

(Rbc) If max{hn, bn} → 0, nh1+2νn →∞ and nbn →∞, then

Rbcn = Op

(
hp+1−νn√
nh1+2νn

+ h2(p+1−ν)n

)
Op

(
1 +

1√
nb3+2pn

)
.
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(B) If max{hn, bn} → 0 and nmin{hn, bn} → ∞, then

E[ς̃bcν,p,q(hn, bn)|Xn] = hp+2−νn BF,ν,p,p+2(hn)[1 + op(1)] + hp+1−νn bq−pn BbcF,ν,p,q(hn, bn)[1 + op(1)],

where
BbcF,ν,p,q(h, b) =

1

τT,ν
BbcY,ν,p,q(hn, bn)− τY,ν

τ2T,ν
BbcT,ν,p,q(hn, bn),

with

BbcY,ν,p,q(h, b) =
µ
(q+1)
Y+

(q + 1)!
B+,p+1,q,q+1(b)

B+,ν,p,p+1(h)

(p+ 1)!
−

µ
(q+1)
Y−

(q + 1)!
B−,p+1,q,q+1(b)

B−,ν,p,p+1(h)

(p+ 1)!
,

BbcT,ν,p,q(h, b) =
µ
(q+1)
T+

(q + 1)!
B+,p+1,q,q+1(b)

B+,ν,p,p+1(h)

(p+ 1)!
−

µ
(q+1)
T−

(q + 1)!
B−,p+1,q,q+1(b)

B−,ν,p,p+1(h)

(p+ 1)!
.

(V) If max{hn, bn} → 0 and nmin{hn, bn} → ∞, then V[ς̃bcν,p,q(hn, bn)|Xn] = VbcF,ν,p,q(hn, bn), where

VbcF,ν,p,q(hn, bn) = VbcF,+,ν,p,q(hn, bn) + VbcF,−,ν,p,q(hn, bn),

where

VbcF,+,ν,p,q(h, b) = VF,+,ν,p(h)−2hp+1−νCF,+,ν,p,q(h, b)
B+,ν,p,p+1(h)

(p+ 1)!
+h2p+2−2νVF,+,p+1,q(b)

B2+,ν,p,p+1(h)

(p+ 1)!2
,

VbcF,−,ν,p,q(h, b) = VF,−,ν,p(h)−2hp+1−νCF,−,ν,p,q(h, b)
B−,ν,p,p+1(h)

(p+ 1)!
+h2p+2−2νVF,−,p+1,q(b)

B2−,ν,p,p+1(h)

(p+ 1)!2
,

CF,+,ν,p,q(h, b) =
1

τ2T,ν
CY Y+,ν,p,q(h, b)−

2τY,ν
τ3T,ν

CY T+,ν,p,q(h, b) +
τ2Y,ν
τ4T,ν
CTT+,ν,p,q(h, b),

CF,−,ν,p,q(h, b) =
1

τ2T,ν
CY Y−,ν,p,q(h, b)−

2τY,ν
τ3T,ν

CY T−,ν,p,q(h, b) +
τ2Y,ν
τ4T,ν
CTT−,ν,p,q(h, b),

where
CY Y+,ν,p,q(h, b) =

1

nhνbp+1
ν!(p+ 1)!e′νΓ−1+,p(h)ΨY T+,p,q(h, b)Γ

−1
+,q(b)ep+1,

CY T+,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1+,p(h)ΨY T+,p,q(h, b)Γ

−1
+,q(b)ep+1,

CTT+,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1+,p(h)ΨTT+,p,q(h, b)Γ

−1
+,q(b)ep+1,

CY Y−,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1−,p(h)ΨY Y−,p,q(h, b)Γ

−1
−,q(b)ep+1,

CY T−,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1−,p(h)ΨY T−,p,q(h, b)Γ

−1
−,q(b)ep+1,

CTT−,ν,p,q(h, b) =
1

nhνbp+1
ν!(p+ 1)!e′νΓ−1−,p(h)ΨTT−,p,q(h, b)Γ

−1
−,q(b)ep+1.

(D) If nmin{h2p+3n , b2p+3n }max{h2n, b
2(q−p)
n } → 0 and nmin{h1+2νn , bn} → ∞, then

ς̂bcν,p,q(hn, bn)− ςν√
VbcF,ν,p,q(hn, bn)

→d N (0, 1),

provided that hn → 0 and κbn < κ0.
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From this theorem we obtain for Theorems 3 and 4:

VbcFRD(hn, bn) = VbcF,0,1,2(hn, bn) and VbcFKRD(hn, bn) = VbcF,1,2,3(hn, bn). (A-2)

A.6 Sharp RD Bandwidth Selectors

Using the results in Section 5 we propose data-driven bandwidth selector for sharp RD designs. For any
ν ≤ p, we denote

V̂ν,p(hn) = V̂+,ν,p(hn) + V̂−,ν,p(hn),

V̂+,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1+,p(hn)Ψ̂Y Y+,p(hn)Γ−1+,p(hn)eν ,

V̂−,ν,p(hn) =
1

nh2νn
ν!2e′νΓ−1−,p(hn)Ψ̂Y Y−,p(hn)Γ−1−,p(hn)eν ,

where Ψ̂Y Y+,p(hn) and Ψ̂Y Y−,p(hn) are constructed as described in Section 5.

Plug-in Bandwidths Selectors. Fix p, q ∈ N with q ≥ p+ 1. Let Bν,p = e′νΓ−1p ϑp,p+1.

Step 0: Initial Bandwidths (vn, cn).
(i) Suppose vn →p 0 and nvn →p ∞. In particular, let vn = 2.58 · ω · n−1/5 with

ω = min

{
SX ,

IQRX
1.349

}
,

where S2X denotes the sample variance of Xi, and IQRX is the interquartile range of Xi.

(ii) Suppose cn →p 0 and nc2q+3n →p ∞. In particular, let cn = Ĉq+1,q+1 n
−1/(2q+5) with

Ĉq+1,q+1 =

(
(2q + 3)nv2q+3n V̂q+1,q+1(vn)

2B2q+1,q+1
(
e′q+2β̌+,q+2 − e′q+2β̌−,q+2

)2
)1/(2q+5)

,

where β̌+,p and β̌−,p denote the estimated coeffi cients of a (p + 1)-th order global polynomial fit at
either side of the threshold; i.e.,

β̌+,p = arg min
β∈Rp

n∑
i=1

1(Xi ≥ 0)(Yi − rp(Xi)
′β)2,

β̌−,p = arg min
β∈Rp

n∑
i=1

1(Xi < 0)(Yi − rp(Xi)
′β)2.

Step 1: Pilot Bandwidth bn. Compute b̂p+1,q = Ĉp+1,q n
−1/(2q+3) with

Ĉp+1,q =

 (2p+ 3)nv2p+3n V̂p+1,q(vn)

2(q − p)B2p+1,q
{(

e′q+1β̂+,q+1(cn)− e′q+1β̂−,q+1(cn)
)2

+ 3V̂q+1,q+1(cn)

}

1/(2q+3)

.

Step 2: Main Bandwidth hn. Let bn = b̂p+1,q, and compute ĥν,p = Ĉν,p n
−1/(2p+3) with

Ĉν,p =

 (2ν + 1)nvnV̂p,0(vn)

2(p+ 1− ν)B2ν,p
{(

e′p+1β̂+,q(bn)− e′p+1β̂−,q(bn)
)2

+ 3V̂p+1,q(bn)

}

1/(2p+3)

.
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The selectors ĥν,p and b̂p+1,q are constructed following the idea of an `-stage DPI bandwidth selector for
density estimation (resp. with ` = 2 and ` = 1). See, e.g., Wand and Jones (1995, Section 3.6) for further
discussion. The following theorem shows that these bandwidths selectors are consistent, and also optimal in
the sense of Li (1987).

Theorem A3. Suppose Assumptions 1—2 hold with S ≥ q + 1 and q ≥ p + 1. In addition, suppose
e′q+2β̌+,q+2 − e′q+2β̌−,q+2 →p c 6= 0 and ν ≤ p.

(Step 1) If µ(q+1)+ 6= µ
(q+1)
− , then

b̂p+1,q
bMSE,p+1,q

→p 1 and
MSEp+1,q(b̂p+1,q)

MSEp+1,q(bMSE,p+1,q)
→p 1.

(Step 2) If µ(p+1)+ 6= µ
(p+1)
− , then

ĥν,p
hMSE,ν,p

→p 1 and
MSEν,p(ĥν,p)

MSEν,p(hMSE,ν,p)
→p 1.
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(ĥ
D
M
,b̂
D
M
)

89
.8

0.
26
7

0.
49
6

0.
42
3

T
S
R
D
(ĥ
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(ĥ
I
K
,ĥ
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(ĥ
D
M
,ĥ
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(ĥ
D
M
,b̂
D
M
)

82
.8

0.
20
6

T
r
b
c

S
R
D
(ĥ
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(ĥ
C
C
T
)

87
.6

0.
30
0

T
b
c
S
R
D
(ĥ
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(ĥ
C
C
T
,ĥ
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(ĥ
D
M
,b̂
D
M
)

95
.2

0.
22
9

0.
20
9

0.
39
0

T
S
R
D
(ĥ
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(ĥ
C
C
T
,ĥ

C
C
T
)

95
.2

0.
32
5

0.
18
1

0.
18
1

N
ot
es
:
(i
)
E
C
=
E
m
p
ir
ic
al
C
ov
er
ag
e
in
p
er
ce
nt
ag
e
p
oi
nt
s,
(i
i)
IL
=
A
ve
ra
ge
In
te
rv
al
L
en
gt
h
,
(i
ii
)
co
lu
m
n
s
u
n
d
er
“B
an
d
w
id
th
s”
re
p
or
t
th
e
p
op
u
la
ti
on

an
d
av
er
ag
e
es
ti
m
at
ed

b
an
d
w
id
th
s
ch
oi
ce
s,
as
ap
p
ro
p
ri
at
e,
fo
r
m
ai
n
b
an
d
w
id
th
h
n
an
d
p
il
ot
b
an
d
w
id
th
b n
.

39



T
ab
le
3:
E
m
pi
ri
ca
l
C
ov
er
ag
e
an
d
A
ve
ra
ge
In
te
rv
al
L
en
gh
t
of
di
ff
er
en
t

95
%
C
on
fid
en
ce
In
te
rv
al
s
(E
st
im
at
ed
A
sy
m
pt
ot
ic
V
ar
ia
nc
e
w
it
h

J
=

3
ne
ar
es
t-
ne
ig
hb
or
s)

C
on
ve
n
ti
on
al

B
ia
s-
C
or
re
ct
ed

R
ob
u
st
A
p
p
ro
ac
h

B
an
d
w
id
th
s

E
C
(%
)

IL
E
C
(%
)

IL
E
C
(%
)

IL
h
n

b n
M
o
d
el
1

T̂
S
R
D
(h
M
S
E
)

92
.3

0.
22
3

T̂
b
c
S
R
D
(h
M
S
E
,b
M
S
E
)

89
.7

0.
22
3

T̂
r
b
c

S
R
D
(h
M
S
E
,b
M
S
E
)

93
.4

0.
25
1

0.
16
6

0.
31
9

T̂
S
R
D
(h
D
M
)

92
.0

0.
21
1

T̂
b
c
S
R
D
(h
D
M
,b
D
M
)

87
.2

0.
21
1

T̂
r
b
c

S
R
D
(h
D
M
,b
D
M
)

93
.4

0.
25
9

0.
18
4

0.
27
1

T̂
S
R
D
(ĥ
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(ĥ
I
K
,b̂
I
K
)

76
.7

0.
15
8

T̂
r
b
c

S
R
D
(ĥ
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(ĥ
C
C
T
)

89
.9

0.
20
1

T̂
b
c
S
R
D
(ĥ
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(ĥ
C
C
T
,b̂
C
C
T
)

89
.8

0.
21
3

T̂
r
b
c

S
R
D
(ĥ
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(ĥ
C
C
T
,ĥ
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ĥ
C
V
=
0
.6
4

b̂ C
C
T
=
0
.9
1

b̂ I
K
=
0
.7
4

b̂ C
C
T
=
0
.8
0

b̂ I
K
=
1
.2
6

b̂ C
C
T
=
0
.5
9

b̂ I
K
=
0
.8
2

N
o
n
-F
o
o
d

−
1
0
.1

−
8
.7

−
1
0
.5

−
8
.8

−
0
.7

−
0
.8

4
0
.6

3
2
.8

3
6
.2

(−
3
4
.1
,
1
4
.0
)
(−
2
7
.9
,
1
0
.6
)
(−
3
1
.5
,
1
0
.4
)

(−
3
8
.0
,
2
0
.3
)
(−
2
1
.5
,
2
0
.0
)
(−
2
1
.8
,
2
0
.2
)

(0
.3
,
8
0
.9
)∗
∗

(5
.1
,
6
0
.4
)∗
∗

(5
.8
,
6
6
.7
)∗
∗

[−
3
7
.8
,
1
8
.0
]

[−
4
5
.9
,
2
1
.9
]

[−
3
9
.8
,
1
6
.2
]

[−
4
6
.2
,
2
1
.0
]

[−
3
7
.0
,
2
0
.6
]

[−
3
6
.1
,
2
0
.8
]

[−
7
.6
,
8
8
.0
]∗

[4
.7
,
7
7
.3
]∗
∗

[−
1
.4
,
8
7
.1
]∗

ĥ
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ĥ
C
C
T
=
0
.3
7

ĥ
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ĥ
C
V
=
0
.6
8

b̂ C
C
T
=
0
.9
0

b̂ I
K
=
0
.8
0

b̂ C
C
T
=
0
.6
3

b̂ I
K
=
0
.9
0

b̂ C
C
T
=
0
.5
5

b̂ I
K
=
1
.0
6

P
a
n
el
B
:
R
u
r
a
l
L
o
c
a
li
t
ie
s

P
re
-I
n
te
rv
en
ti
o
n

1
-y
ea
r
T
re
at
m
en
t

2
-y
ea
r
T
re
at
m
en
t

B
W
-C
C
T

B
W
-I
K

B
W
-C
V

B
W
-C
C
T

B
W
-I
K

B
W
-C
V

B
W
-C
C
T

B
W
-I
K

B
W
-C
V

F
o
o
d

1
6
.2

1
.6

6
.6

3
3
.4

3
3
.0

3
8
.2

1
3
.1

0
.9

3
.5

(−
2
2
.3
,
5
4
.7
)
(−
2
1
.3
,
2
4
.5
)
(−
1
8
.5
,
3
1
.6
)

(6
.6
,
6
0
.3
)∗
∗

(1
3
.1
,
5
2
.9
)∗
∗∗

(1
7
.1
,
5
9
.3
)∗
∗∗

(−
7
.8
,
3
4
.0
)

(−
2
1
.6
,
2
3
.4
)
(−
2
1
.5
,
2
8
.6
)

[−
3
2
.8
,
5
7
.1
]

[−
1
3
.2
,
5
5
.5
]

[−
1
1
.6
,
6
0
.6
]

[−
0
.3
,
6
1
.4
]∗

[2
3
.1
,
7
4
.6
]∗
∗∗

[2
2
.3
,
7
3
.5
]∗
∗∗

[−
8
.4
,
3
9
.8
]

[−
1
9
.8
,
3
1
.8
]

[−
1
1
.7
,
3
4
.3
]

ĥ
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