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Abstract

In the regression-discontinuity (RD) design, units are assigned to treatment based on whether
their value of an observed covariate exceeds a known cutoff. In this design, local polynomial es-
timators are now routinely employed to construct confidence intervals for treatment effects. The
performance of these confidence intervals in applications, however, may be seriously hampered
by their sensitivity to the specific bandwidth employed. Available bandwidth selectors typically
yield a “large” bandwidth, leading to data-driven confidence intervals that may be severely bi-
ased, with empirical coverage well below their nominal target. We propose new, more robust,
theory-based confidence interval estimators for average treatment effects in sharp RD, kink RD,
fuzzy RD and fuzzy kink RD designs. Our proposed confidence intervals rely on a recentered
RD estimator together with a novel standard-error estimator. For practical implementation,
we propose a consistent standard-error estimator that does not require an additional band-
width choice, as well as valid bandwidth choices compatible with our underlying large-sample
theory. In a simulation study, we find that our novel data-driven confidence intervals exhibit
close-to-correct empirical coverage and good empirical interval length on average, remarkably
improving upon the alternatives available in the literature. We illustrate the performance of
our proposed methods with household data from Progresa/Oportunidades, a conditional cash
transfer program in Mexico. All the results in this paper are readily available in STATA using

our companion package (rdrobust) described in Calonico, Cattaneo, and Titiunik (2013).
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1 Introduction

The regression discontinuity (RD) design has become one of the leading non-experimental empirical
strategies in Economics, Political Science and many other social and behavioral sciences.! In this
design, units are assigned to treatment based on their value of an observed covariate, with the
probability of treatment assignment jumping discontinuously at a known cutoff. For example, in
its original application, Thistlethwaite and Campbell (1960) used this design to study the effects of
receiving an award on future academic achievement, where the award was given to students whose
test scores were above a certain cutoff. The idea of the RD design is to study the effects of the
treatment using only observations near the cutoff to control for smoothly varying unobserved con-
founders. Flexible estimation of RD treatment effects approximates the outcome’s (and treatment
status’) regression function given the score near the cutoff for control and treated groups separately,
and computes the estimated effect as the difference (or ratio of differences) of the appropriate values
of the regression functions at the cutoff for each group.

Nonparametric local polynomial estimators have received great attention in the recent RD
literature, and have become the standard choice for estimation of RD average treatment effects.
This estimation strategy involves approximating the regression functions above and below the cutoff
by means of weighted local polynomial regressions, typically of order one, with weights computed
by applying a kernel function on the distance of each observation’s score to the cutoff. These kernel-
based estimators require a choice of bandwidth for implementation, and several bandwidth selectors
are now available in the literature. These bandwidth selectors are obtained by balancing squared-
bias and variance of the RD estimator, a procedure that typically leads to bandwidth choices that
are too “large” to ensure the validity of the distributional approximations usually invoked; that is,
these bandwidth selectors lead to a non-negligible bias in the distributional approximation of the
estimator. As a consequence, the resulting data-driven confidence intervals for RD treatment effects
may be biased, having empirical coverage well below their nominal target. This implies that, for
example, these conventional confidence intervals may substantially over-reject the null hypothesis
of no treatment effect in empirical applications.

To address this drawback in conventional RD inference, we propose new confidence intervals for
RD treatment effects that offer robustness to “large” bandwidths such as those usually obtained
from cross-validation or asymptotic mean-square-error minimization. Qur proposed confidence in-
tervals are constructed as follows. We first bias-correct the RD estimator to account for the effect
of a “large” bandwidth choice; that is, we recenter the usual t-statistic with an estimate of the
leading bias. As it is well-known in the literature, however, conventional bias-correction alone
delivers very poor finite-sample performance because it relies on a low-quality distributional ap-
proximation. Thus, to improve the quality of the distributional approximation of the bias-corrected
t-statistic, we also introduce a novel standard-error formula to account for the additional variabil-

ity introduced by the estimated bias; that is, we rescale the bias-corrected t-statistic. The new

!See, among others, van der Klaauw (2008), Tmbens and Lemieux (2008), Lee and Lemieux (2010) and Dinardo
and Lee (2011) for recent reviews.



standard-error formula is theoretically justified by a non-standard large-sample distributional ap-
proximation of the bias-corrected estimator, which explicitly accounts for the potential contribution
that bias-correction may add to the finite-sample variability of the usual t-statistic. Altogether,
our proposed confidence intervals are more robust to the bandwidth choice (“small” or “large”),
as they are not only valid when the usual bandwidth conditions are satisfied (being asymptotically
equivalent to the conventional confidence intervals in this case; e.g., see Remark 2 below), but also
continue to offer correct coverage rates in large samples even when the conventional confidence
intervals do not (e.g., see Remark 1 below).

The main discussion focuses on the construction of robust confidence intervals for the RD av-
erage treatment effect at the cutoff in four settings: sharp RD, kink RD, fuzzy RD and fuzzy kink
RD designs. In all cases, the bias-correction technique follows the standard approach in the non-
parametrics literature (e.g., Fan and Gijbels (1996, Section 4.4, p. 116)), but our standard-error
formulas are different because they incorporate additional terms not present in the conventional
ones. The new confidence intervals are demonstrably more robust because they are valid under
strictly weaker bandwidth conditions than those required by their conventional counterparts. In
addition, we find in an empirically motivated simulation study that our proposed data-driven con-
fidence intervals exhibit close-to-correct empirical coverage and good empirical interval length on
average, remarkably improving upon the alternatives available in the literature. We also illustrate
the performance of our proposed confidence intervals, as well as several of the conventional alterna-
tives, in an empirical application that studies the effects of Progresa/Oportunidades, a large-scale
anti-poverty conditional cash transfer program in Mexico, on households’ consumption outcomes.
Our illustration shows that in some, but not all, cases the conclusions drawn from conventional
methods are not supported when our robust inference procedures are employed.

Our paper contributes to the emerging literature on inference for treatment effects in the RD de-
sign. Hahn, Todd, and van der Klaauw (2001) and Lee (2008) develop identification results, Porter
(2003) gives optimality results of local polynomial estimators, McCrary (2008) studies specification
testing, Imbens and Kalyanaraman (2012) develop bandwidth selection procedures for local-linear
estimators, Otsu and Xu (2011) study empirical likelihood methods applied to local-linear esti-
mators, Frandsen, Frolich, and Melly (2012) consider quantile treatment effects, Card, Lee, Pei,
and Weber (2012), Dong (2012) and Dong and Lewel (2012) study the so-called kink RD designs,
Marmer, Feir, and Lemieux (2012) discuss robust to weak-IV inference in fuzzy RD designs, and
Cattaneo, Frandsen, and Titiunik (2013) propose randomization-inference methods.?

The rest of the paper is organized as follows. Section 2 describes the basic sharp RD design,
reviews conventional results, provides simulation evidence to motivate our approach, and outlines
the details of our proposed robust confidence intervals. Section 3 discusses extensions of the ap-
proach to kink RD, fuzzy RD and fuzzy kink RD designs. Mean-square-error optimal bandwidths

and their theoretical validity when using our approach is discussed in Section 4 (e.g., see Remark

2From a more general perspective, our results also contribute to the literature on asymptotic approximations for
nonparametric local polynomial estimators (Fan and Gijbels (1996)), which are useful in econometrics (see, e.g.,
Ichimura and Todd (2007) and references therein).



6 below), while valid standard-errors are proposed in Section 5. Results from the simulation study
and empirical illustration are given in Sections 6 and 7, respectively, while Section 8 concludes.
Our general theoretical results are summarized in the Appendix, but most technical details such as
proofs and other derivations are relegated to the online supplemental appendix. Our new confidence
intervals together with all other results presented in this paper are implemented in the companion
STATA package (rdrobust) described in Calonico, Cattaneo, and Titiunik (2013).?

2 Sharp RD Design: Local-Linear Estimator, Its Potential Pitfalls
and The New Robust Alternative

We first focus attention on constructing confidence intervals for the average treatment effect in
the sharp RD framework where the probability of treatment assignment changes from zero to one
at the threshold, but Section 3 discusses the extension of our main approach to other settings of
empirical interest.

In the canonical sharp RD design, we assume that (Y;(0),Y;(1), X;)’, i =1,2,...,n, is a random
sample from the triplet of random variables (Y (0),Y (1), X)" with f(z) the Lebesgue density of
X;. Given a known threshold z, which we set to £ = 0 without loss of generality, the observed
“score” or “forcing” variable X; determines whether unit 7 is assigned treatment (X; > 0) or not
(X; < 0), while the random variables Y;(1) and Y;(0) denote the potential outcome with and
without treatment, respectively. As a consequence, the observed random sample is {(Y;, X;)" :
i=1,2,...,n} with

Y;(0) if X; <0
Yi(1) if X; >0

YZ-—Yi(O)-l(XZ-<0)+Y;(1)-1(Xi20)—{ )
where 1(-) denotes the indicator function.

The population parameter of interest is 7spp = E[Y (1) — Y (0)|X; = Z], the average treatment
effect at the threshold. As discussed in Hahn, Todd, and van der Klaauw (2001), under a mild conti-
nuity condition, this parameter is nonparametrically identifiable as the difference of two conditional

expectations evaluated at the (induced) boundary point Z = 0, that is,

TsRD = My — H—, Hy = lim p(z), po = lim p(z), w(z) = BlY;|X; = =],

z—0t z—0~

where here, and elsewhere, we drop the evaluation point of functions whenever possible to simplify
notation. Estimation in RD designs naturally focuses on the flexible approximation of the regression
functions p_(z) = E[Y;(0)|X; = =] and p (x) = E[Y;(1)|X; = ] near the cutoff z = 0. Section A.1
in the Appendix describes the conventional assumptions on the basic RD model employed in this
paper. In particular, near the cutoff, for all x € [—kg, ko] with kg > 0, we assume continuity of f(z)

(which rules out discrete-valued running variables; see, e.g., Lee and Card (2008)) and smoothness

3Computer code in R is also available upon request.



of the underlying regression functions p_(x) and p, (). Since the higher-order derivatives of these
unknown regression functions are closely related to the bias of the RD estimators considered, we

also introduce notation to describe these derivatives at either side of the threshold:

() _ d” ) _ iy &
0= g )= (0
(By definition, p, = uf) and p_ = ,u@.)

Following Hahn, Todd, and van der Klaauw (2001) and Porter (2003), we consider confidence
intervals based on the popular local-linear estimator of 7sgp, which is simply the difference in inter-

cepts of two first-order local polynomial estimators, one from each side of the threshold. Formally,

7A—SRD(h'rL) = [L-s—,l(hn) - ﬂ_’l(hn);

. . . X;
(MJr,l(hn)nuSrl)l(hn)), = arg min 1(X; > 0)(Y; — bo — Xib1)* k <) )
’ bo,b1ER hn

i1 (hn), 1) (hn)) = in Y 1(X; < 0)(Y; — bo — Xib)? k|~
(fi_ 1 (hn), 17 (ha)) argbol’l;igﬂ%:l (Xi < 0)( 0 1) no )

where h,, denotes the bandwidth chosen and k(x) denotes the kernel function supported on [0, k]
for some k > 0. Indeed, we will employ local polynomial regression estimators of various orders
to approximate unknown regression functions throughout the paper, as these estimators are par-
ticularly well-suited for inference in the RD design (Fan and Gijbels (1996) and Cheng, Fan, and
Marron (1997)). Section A.2 in the Appendix describes these estimators in detail. Our results
cover all commonly used kernels, including the triangular kernel k(u) = (1 —«)1(0 < u < 1) and
uniform kernel k(u) = 1(0 < wu < 1).

In the sharp RD design, the local-linear estimator 7gpp(hy,) is arguably the preferred and most
common choice in practice. Conventional approaches to constructing confidence intervals for 7ggp
using this estimator rely on the following large-sample approximation for the standardized t-statistic

(see Lemma Al in the Appendix for the general result):

Lemma 1. Suppose Assumptions A1-A2 hold with S > 3. If nh?> — 0 and nh,, — oo, then

T hp) — T R
TSRD(hn) = SRD(V )(h )SRD —d N(O, 1)7 VSRD(hn) = V[Tsnn(hn)|X17X2,"' 7Xn}-
SRD\/in

Conventional (infeasible) 100(1 — «)-percent confidence intervals for 7sgp are theoretically jus-

tified from this result, and take the familiar form
Isep(hn) = |Tsro(hn) £ ®1__1a/2 VSRD(hn)] )

where ®_! is the upper a-quantile of the standard normal distribution (e.g., ®, 51)5 ~ 1.96). In

practice, of course, a standard-error estimator is needed to construct feasible confidence intervals
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Figure 1: Regression Functions for Models 1-3 in simulations.

because Vsgp(hy,) involves unknown quantities, but here we assume Vgpp(h,,) is known and postpone
the issue of standard-errors until Section 5.* Even in this simplified case, the choice of the bandwidth
hy, is crucial. The condition nh? — 0 is explicitly imposed to eliminate the contribution of the
leading bias to the distributional approximation, which depends on the unknown second derivatives
uf) and ,u(f) as described in Lemma A1 in the Appendix. Thus, in general, the confidence intervals
Ispp(hy,) will have correct asymptotic coverage only if the bandwidth h,, is chosen to be “small”
enough so that the bias-condition nh3 — 0 is satisfied.

Several approaches are available in the literature to select h,,, including plug-in rules and cross-
validation procedures. Imbens and Kalyanaraman (2012) give a recent account of the state-of-the-
art in bandwidth selection for RD designs. Unfortunately, most (if not all) of these approaches
lead to bandwidths that are too “large” because they do not satisfy the bias-condition just de-
scribed. For example, minimizing the asymptotic mean squared error (MSE) of 7sgp(hy,) gives the
optimal plug-in bandwidth choice hysg = Cusg n~1/5 with Cysg a constant, which by construction
implies that n(husg)® — ¢ € (0,00) and hence leads to a first-order bias in the distributional ap-
proximation.® Moreover, implementing this MSE-optimal bandwidth choice in practice is likely to
introduce additional variability in the chosen bandwidth that may lead to “large” bandwidths as
well. Similarly, cross-validation bandwidth selectors tend to have low convergence rates, and thus
also typically lead to “large” bandwidth choices; see, e.g., Ichimura and Todd (2007) and references
therein. These observations suggest that commonly used local-linear RD confidence intervals may
not exhibit correct coverage in applications due to the presence of a potentially first-order bias in
their construction.

To illustrate the potential pitfalls of the conventional RD confidence intervals based on the
t-statistic Tspp(hy) presented above and its data-driven version TSRD(iLn) with A, a bandwidth

estimate, we briefly summarize some results from a Monte Carlo study further discussed in Section

4Note that because Fsro(hn) is a linear weighted least-squares estimator, an estimator of Vspp(hy) takes the familiar
form of Eicker-Huber-White heteroskedasticy-robust standard-errors after “plugging in” estimated residuals.
5This is a well-known problem in the nonparametric curve estimation literature (see, e.g., Fan and Gijbels (1996)).



Table 1: Empirical Coverage of different 95% Confidence Intervals

Conventional Robust Approach Bandwidths
C (%) C (%) P by
Model 1
Tswo(hwse)  93.9 TES (hwse, buse) 947 0.166  0.319
T (k) 84.4 TE (hax, bix) 93.3 0.335  0.337
T (hoy) 83.1 SRD(E hev) 93.1 0.381  0.381
TEE (hwse, hwse)  94.9 0.166  0.166
TERS (hax, hax) 94.7 0.335  0.335
Model 2
Tsro(huse)  92.5 TEE (hwse, buse) ~ 94.9 0.082  0.191
Tswo (hx) 24.1 TEws (ha, bx) 91.2 0.185  0.296
Tea (hev) 79.1 sr;}f(fz hev) 94.8 0.119  0.119
Ty (Puse, hwse) 94.8 0.082  0.082
TEE (g, bk 94.8 0.185 0.185
Model 3
TSRD(hMSE) 85.8 TSRD (hMSE7 bMSE) 95.0 0.260 0.292
Tso () 87.1 TR (hax, br) 95.1 0.231  0.340
Tero (hev) 93.9 T35 (hev, hev) 95.2 0.166  0.166
Taws (huse, hMSE) 94.9 0.260  0.260
TEES (ha, hax) 95.0 0.231  0.231

5: (i) EC = Empirical Coverage in percentage points, and (ii) columns under “Bandwidths” report the population and

average estimated bandwidths choices, as appropriate, for main bandwidth h,, and pilot bandwidth by,.

6.5 Table 1 presents the results. We consider three alternative models for the regression function
w(x) illustrated in Figure 1. The first two models are motivated by empirical RD problems: Model
1 corresponds to a regression function implied by Lee (2008)’s dataset, and Model 2 corresponds
to a regression function implied by Ludwig and Miller (2007)’s data. Model 3 is chosen to exhibit
a different regression function with more curvature. All other features of the simulation study are
held fixed, matching exactly the data generating process in Imbens and Kalyanaraman (2012).
Table 1 reports the empirical coverage of different 95% confidence intervals for each model under
two distinct approaches. The first group of columns, labeled “Conventional”, corresponds to the
conventional approach based on Lemma 1. We consider three different bandwidth choices: (i) the
infeasible MSE-optimal choice hysg, (i7) a data-driven, regularized choice EIK proposed by Imbens
and Kalyanaraman (2012), and (7ii) a data-driven, cross-validation (CV) choice hey proposed by
Ludwig and Miller (2007). The robust approach column in Table 1 is discussed further below.
The simulation results indeed show that the conventional confidence intervals constructed using
Lemma 1 may have poor empirical coverage. In Models 1 and 2, the infeasible confidence intervals
that use the MSE-optimal bandwidth (husg = 0.166 and hysg = 0.082, respectively) have reason-
ably good empirical coverage (93.9% and 92.5%, respectively), but their data-driven counterparts
that employ an estimated bandwidth exhibit substantial undercovering (e.g., for Model 1 the 95%

confidence intervals based on TSRD(BIK) and T SRD(iLCV) have empirical coverage of 84.4% and 83.1%,

SWe use these simulation results for motivational purposes only. Our results, presented in the upcoming sections,
are theory-based and enjoy certain demostrably superior theoretical properties when compared to the conventional
ones.



respectively). In Model 3, which has a regression function with more curvature, even the infeasible
confidence interval constructed using the MSE-optimal bandwidth (hysg = 0.260) is biased, showing
an empirical coverage of 85.8%.

These simulations illustrate that Lemma 1 may not give a good approximation whenever the
bandwidth employed is “large”. Since applied researchers often estimate RD treatment effects
employing MSE-optimal bandwidths in local-linear regressions and implicitly ignore the large-
sample bias of the estimator, the poor coverage of conventional confidence intervals we highlight
potentially affects many RD empirical applications. There are two main approaches to deal with
this problem, neither of which is commonly used in practice. One is to undersmooth the estimator,
that is, choose an ad-hoc “smaller” bandwidth. This approach, however, is not systematic and
its effectiveness unavoidably relies on the unknown features of the underlying data generating
process (i.e., it is difficult to know how much undersmoothing is needed in a given application).
Moreover, from a theoretical perspective, it has the unsatisfactory effect of leading to a suboptimal
rate of convergence for the resulting estimator, thereby affecting the local power properties of the
associated hypothesis test. Practically, this means that less observations are effectively used for
inference, leading to longer confidence intervals on average.

The second approach is to bias-correct the estimator. This approach is systematic and easy to
justify theoretically, but is believed to have poor performance in finite samples. The basic idea of
bias-correction is to remove the leading bias term by subtracting off a plug-in consistent estimator
of it. As described in detail below, our contribution takes bias-correction as a starting point, and
corrects this poor performance by providing a different asymptotic approximation that accounts for
the added variability introduced by the bias estimate. Before turning to our results, however, we
describe the details of bias-correction in the context of the RD estimate. The leading asymptotic

bias of the local-linear estimator is
El#sap(hn)| X1, X2, -+, Xn] — Tsrp = h2Bsro(hn) {1 + 0p(1)}

with
N(Q) #(2)
Bsap(hn) = TJF,BJr,SRD(hn) - TFBf,SRD(hn)a

where By spp(hyn) and B_ ggp(hy,) are observed quantities (function of X1, Xo, -+, Xy, k() and hy,),
which are asymptotically bounded. The exact forms of By spp(hy,) and B_ gpp(hy,) are given in

Lemma A1l in the Appendix. Therefore, an easy to implement plug-in bias-corrected estimator is

given by
%gﬁD(hna bn) = Tsrp(hn) — hiésnn(hn, by),
where " o
éSRD(h”’bn) = M_;!(bn)B-hSRD(hn) - 'u_;Ebn)B—,SRDmn)?

~(2) (2)

with ,&fé(bn) and fi;5(b,) denoting conventional local-quadratic estimators of p3” and M(Q)

, as



described in Section A.2 in the Appendix. Here, b, is the so-called pilot bandwidth sequence, usually
larger than h,. (We employ the same kernel function k(-) to form all estimators for simplicity.)
As mentioned above, bias-correction is theoretically appealing because, for example, it allows for a
MSE-optimal choice of bandwidth h,, and hence leads to a faster convergence rate of 7spp(hy,).

Under weaker conditions, allowing in particular for “larger” bandwidths h,,, the bias-corrected
(infeasible) t-statistic satisfies

~bc hn bn o
T8 ) = S0l T

VSRD(hn) —d N(0a1)7 (1)

which justifies theoretically confidence intervals for Tggp of the form:

L5y (hnsbn) = |3 (hn) £ @7, o/ Vemo(ln)|

— [ (ramolto) — B2Bsnolsb)) £ @12,/ Vanall)]

That is, the confidence intervals are re-centered to account for the presence of the (smoothing)
bias. In practice, b, may also be selected using an MSE-optimal choice, denoted bysg, which can be
implemented by a plug-in estimate, denoted busg (see Section 4 for details). As discussed in Section
6, these confidence intervals do not exhibit better empirical coverage than the conventional ones
based on Tspp(hy), and they do underperform in many cases. Bias-correction is not particularly
popular in empirical work, even though the bias-corrected statistic Ty (hn, by) may be preferred to
the classical statistic Tspp(hy) due to its demonstrably better theoretical (asymptotic) properties.

Our simulations are consistent with this empirical view on conventional bias-correction.

2.1 Robust Local-Linear RD Inference

While bias correction is an appealing theoretical idea, a natural concern with the conventional
large-sample approximation for the bias-corrected local-linear RD estimator is that it does not ac-
count for the additional variability introduced by the bias-estimates ﬂf?Q(bn) and [L@Z(bn). In other
words, this large-sample approximation relies on carefully tailored assumptions on the bandwidth
sequences h, and b, that make the variability of the bias-correction estimate disappear asymp-
totically. We propose an alternative asymptotic approximation for bias-corrected local polynomial
estimators that leads to confidence intervals for RD treatment effects capturing this additional
sampling variability. This is the main contribution of our paper.

To highlight the differences in our approach, note that the conventional approach to bias-
correction assumes that the bias-estimate is a consistent estimator of the asymptotic bias, and thus
forces éSRD(hnabn) to be a “consistent” estimator of Bggpp(hy,) (i-e., I§SRD(hn,bn)/BSRD(hn) —p 1).

Specifically, under the usual regularity conditions, if

5 (5 2
Nhn (BSRD(hna bn) - BSRD(hn)) —p 0 (2)



then (1) holds. This approach allows for potentially “larger” bandwidths h,, because the leading
asymptotic bias is manually removed from the distributional approximation, but the resulting dis-
tributional approximation for this bias-corrected estimator tends to provide a poor characterization
of the finite sample variability of the statistic. The approximation does not account for the bias-
correction component: condition (2) makes researchers proceed “as if” the leading bias is known.
In finite samples, however, the bias-correction component will affect the sampling distribution of
the estimator 755, (hn,by), which implies that the conventional distributional approximation may
not accurately represent the finite-sample distribution of Ty (i, by).

We propose an alternative asymptotic theory that accounts for the potential contribution of the
bias-correction estimate to the large sample distributional approximation of the sampling distrib-
ution of T8 (hn,by). The idea is to allow for bandwidth sequences, entering in the bias-estimate
Bsro(hn,bn), that potentially make the bias-correction term in 755 (hn,by) as important as the
main estimator 7spp(hy,), even asymptotically. These bandwidth sequences weaken the condition
(2) in an intuitive way, and lead to an alternative distributional approximation for 75, (hy, by,) with
a different asymptotic variance in general. The resulting distributional approximation therefore po-
tentially includes both the contribution of the main estimator 7gpp(hy,) as well as the contribution
of the bias-correction estimate.

The intuition behind our result is quite simple. We have

755 (B b) — 7
TG () = 0 bn) 75w e gy e (1, ),
Vsro (hn)
where
7 — — h2B h% IgSRD(hn,bn) — Bsap ()
Ysep(hn) = Psro(ftn) ~ 7w — inBso (fn) and  Yoap(hn,bn) = ( )

VSRD(hn) VSRD(hn)

It is easy to see that Yspp(hy) —¢ N (0,1). In addition, under appropriate conditions,

5/2
YSep (hns bn) = /nh30, <\/T+b> Op<(};”) + nh;’;b%),

implying that Y, (hn, by) is asymptotically negligible if (and only if)

Z: —0 and  nhdb2 — 0. (3)

The conditions in (3) specialize the high-level condition (2) underlying the classical approach
to bias-correction. Specifically, the restriction h, /b, — 0 controls the additional variability that
the bias-correction term introduces to 75ep (hn, by ), while the condition nh2b2 — 0 ensures that the
bias-correction term is asymptotically unbiased after proper scaling. In finite samples, however,

hy /by, is never zero. Thus, to capture the (possibly first-order) effect of the bias-correction to the



distributional approximation, we study the alternative large-sample approximation for the (properly

centered and scaled) estimator 755, (hn, b,) based on the condition

Pr = Z: — p € [0,00],
which in particular allows for a pilot bandwidth b, of the same order of (and potentially equal to)
the main bandwidth h,. This approach implies that the bias-correction term will not be consistent
for its population counterpart in general, and whenever inconsistent will converge in distribution
to a centered at zero normal random variable, provided the asymptotic bias is small enough.

This idea is formalized in the following theorem.

Theorem 1. Suppose Assumptions 1-2 hold with S > 3. If nmin{A3,b3} max{h2 b2} — 0 and

n’n n»-n

nmin{h,, b,} — oo, then

7o hn bn B
Tsr;[)c(hmbn)_TSRD( ) ) TSRD

—d N(Oa 1)7
VEip (hen, by)

where

VggD(hn7 bn) = VSRD<h ) CSRD(hTL7 bn)

provided kmax{hy,b,} < ro. The exact variance formula V& (hy,by,) is notationally cum-

bersome and thus given in the Appendix in equation (A-1).

Theorem 1 shows that by standardizing the bias-corrected estimator by its (conditional) vari-
ance, the asymptotic distribution of the resulting bias-corrected statistic Tgpy (hn,by) is Gaussian
even when the condition h,, /b, — 0 is violated. This leads to a different asymptotic variance for
the bias-corrected estimator 755, (hy, by) in general, which depends on the behavior of p,, = hy,/by,.
In the new variance V8, (hy,by) provided in this theorem, C8p(hy,b,) may be interpreted as a
standard-error correction to account for the variability of the estimated bias-correction term.

The key practical implication of Theorem 1 is that it justifies the more robust, theory-based

100(1 — «)-percent confidence intervals:

IZRS (M, by) = |:(7A—SRD(hn) — h2Bsgo (A, bn)> + ‘I)f /2\/VSRD ) + Cip (hn, by)

The group of columns in Table 1 labeled “Robust Approach” exhibits the performance of the
new confidence intervals employing TEs¢(hy,,b,) for different bandwidth choices, which perform
remarkably well when compared to the other alternatives. We also present results for the choice
hy, = by (i.e., p = 1) because, as mentioned in Remark 3 below, in this special case Tggs (I, hp)
coincides with the statistic constructed using a simple local-quadratic estimator without bias cor-
rection. Thus, this choice of bandwidths gives a simple possible implementation for our approach:
choose h,, to be the cross-validated or MSE-optimal bandwidth choice for the local-linear RD esti-

mator, but form confidence intervals for Tggp using the local-quadratic RD estimator. We summarize
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important features of our main result in the remarks below.

Remark 1. The distributional approximation in Theorem 1 permits one bandwidth (but not both)
to be fixed, provided it is not too large; i.e., both must satisfy xmax{h,,b,} < kg, but only

one needs to vanish.

Remark 2. Three main limiting cases are obtained depending on the limit p,, — p € [0, c0].

Case 1: p = 0. In this case h, = o(b,) and Cgp(hn,bn) = 0p(Vsrp(hn)), thus making
our approach asymptotically equivalent to the standard approach to bias-correction. Here
Vgﬁb(hnv bn) =p Verp(hn).

Case 2: p € (0,00). In this case h,, = pby, and C5p(hn, bn) =, Vsrp(hy). This is the knife-edge
case where both 7ggp(hy,) and h%QSRD(hn, b,) contribute asymptotically and thus VES (hn, by)

captures the additional contribution of the bias-correction.

Case 3: p = oo. In this case b, = o(hy,) and Verp(hy) = 0p(C85p(hn, b)), which implies that
the bias-estimate is first-order while the actual estimator 7sgp(hy,) is of smaller order. Here
Vaip (hn, bn) =p V[h%éSRD(hm b)| X1, -+, Xal.

Remark 3. If h,, = b, (and the same kernel function k() is used), then 785, (hn, hy,) is numerically
equivalent to the local-quadratic estimator (p = 2) of 7sgp. This gives a simple relationship
between local polynomial estimators of order p and p + 1, and their relation to manual bias-
correction. See the appendix and the online supplemental appendix for further details and

generalizations.

Remark 4. Theorem 1 and Remark 3 give a simple, formal justification for an approach based
on the order of the local polynomial: a theoretically valid choice of h,, is to select the MSE-
optimal bandwidth for the local-linear estimator, but construct confidence intervals using the
local-quadratic estimator instead. This approach corresponds exactly to the case h,, = b, in
Theorem 1. See the appendix and the online supplemental appendix for further details and

generalizations.

Remark 5. All the results in this paper apply immediately when different bandwidths (h4 .,
h—n, byn, b n, say) are employed to construct the estimators fi, ,(hyn), ii— ,(h—y) and

their associated bias-correction terms.

3 Other RD Designs

In this section, we discuss three applications of our main idea to other practically relevant settings:
sharp kink RD, fuzzy RD and fuzzy kink RD designs. All the results briefly summarized here are
special cases of Theorems Al and A2 presented in the Appendix. In all cases, the construction
follows the same logic: (i) the conventional large-sample distribution is characterized, (i) the
leading bias is presented and a plug-in bias-correction is proposed, and (i) the alternative large-

sample distribution is derived to obtain the robust confidence intervals.
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3.1 Sharp Kink RD

In this setting, the interest lies on the difference of the first derivative of the regression functions at
the cutoff, as opposed to the differences in the levels of those functions. For details on identification
and inference procedures using conventional approaches see, e.g., Card, Lee, Pei, and Weber (2012),

Dong (2012), Dong and Lewel (2012), and references therein. The estimand of interest is

1 1
TSKRD — /JJS_) - ,U(_)-

Although a local-linear estimator could still be used in this context, it is perhaps more appro-
priate to employ a local-quadratic estimator due to boundary-bias considerations. Thus, letting

(1) (j) (

,&Srl’)Q(hn) and ﬂ(_lj)Q(hn) denote local-quadratic estimators of p}’ and p>’ (see Section A.2 in the

Appendix), we focus on the local-quadratic RD estimator
. ~(1 ~(1
Faxmo(hn) = il () — i ().
Lemma A1l in the Appendix gives conditions so that

o
Tauo () — 2590Utn) Z T80 e 1) Vg (hn) = Vizsian(in) | X1, Xo, - X,
VSKRD(hn)

which corresponds to the conventional distributional approximation. Following Imbens and Kalya-
naraman (2012), a MSE-optimal bandwidth choice for Tskrp can be derived (see Lemma 2 in Section

4). This choice, among others, will again lead to a non-negligible first-order bias. Proceeding as

before, we also have E[#skrp(hn)| X1, X2, , Xn] — Tskap & h2Bskap () with
M(3) ,U(S)
Bsian () = By sian(hn) = B s (hn),

where B skrp(hn) and B_ skrp(hy) are asymptotically bounded observed quantities (function of
X1,Xo, -+, Xy, k(-) and hy,), also given in Lemma A1l. Therefore, a bias-corrected local-quadratic

estimator of Tgxpp, now using a local-cubic bias-correction, is given by

7880 (P, b)) = Tsxrn (en) — 72 Bsgrn (o, b))

with " o
B ﬂ (bn) ﬂf (bn)
Bskap (fon, bn) = LB+,SKRD(hn) - %

3!
where 48 (b,,) and 3% (b he local-cubic esti £ 1Y and
1175 (bn) and 1”3 (by,) are the local-cubic estimators of p” and p

in Section A.2 of the Appendix.

B_ skap(hn),

3)

, respectively, as discussed

With these preliminaries, we can present our main result for the kink RD bias-corrected esti-

mator 7agap (A, bn).-

Theorem 2. Suppose Assumptions A1-A2 hold with S > 4. If nmin{h’, b’} max{h2,b2} — 0

n»-n n
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and n min{h,, b,} — oo, then

~bc

hnabn -
Tgl;blsD( B, by) = 7skan( ) — Tskep

—d N(O) 1)7

provided x max{hy,b,} < ro. The exact form of Vgp(hn, by) is given in Theorem Al in the

Appendix in equation (A-1).

This theorem is an analogue of Theorem 1 for the sharp kink RD design. In particular, it
derives the new asymptotic variance formula V&gzp (hp, by) capturing the additional contribution of
the bias-correction to the sampling variability. In this case, the new variance also takes the form
Vegan (P, bn) = Vekro(hn) + Chgp (R, br), where Clepp(hn, by) is the correction term. This result

theoretically justifies the following more robust 100(1 — «)-percent confidence interval for Tgggpp:

I35 n) = | s ) £ 07 VBl )|

3.2 Fuzzy RD

In the fuzzy design, actual treatment status may differ from treatment assignment and is thus only
partially determined by the running variable. Identification and conventional inference approaches
are discussed in Hahn, Todd, and van der Klaauw (2001) and Porter (2003). To handle this case,
we introduce the following additional notation: (Y;(0),Y;(1),7;(0),T;(1), X;)', i = 1,2,...,n, is a
random sample from the random vector (Y(0),Y(1),7(0),7(1), X)’, where in this case treatment

status for each unit is determined by

T.(0)  if X; <0
T;(1) if X; >0

)

ﬂzﬂwyu&<m+ﬂuyu&zm:{

with 7;(0), T;(1) € {0,1}, and the corresponding observed outcome variable is

Y;(0) ifT; =0
Y, =Yi(0)-(1-T) +Y;(1) - T =
P Y0 (- T) + V() T, {nu) )
The observed random sample now is {(Y;,7;, X;) : 4 =1,2,...,n}. The estimand of interest is

_ E[Y;(1)|X = 0] - E[Yi(0)|X = 0]
T T BT (1)]X = 0] - BT,(0)]X = 0]’

provided that E[T;(1)|X = 0] — E[T;(0)|X = 0] # 0. For further discussion on the interpretation
of Trpp also see Imbens and Lemieux (2008). Under appropriate conditions, this estimand is also

nonparametrically identifiable as

TYSSRD _ Hy4 — My —
TT,SRD My — Hp_




where here, and elsewhere as needed, we make explicit the outcome variable underlying the popu-

lation parameter. That is, 7y,spp = py . — py_ with

Py = xlil}; py(z),  py_ = lim py(z),  py(z) = EBY]X; =z,

z—0~

and 77 gpp = ppy — pp_ With

pry = L, pr(),  pr- = Im pp(z),  pp(e) = B[TG]X; = .

rz—0~

A popular estimator in this setting is simply the ratio of two reduced form, sharp local-linear

RD estimators: X . .
Tyseo(bn) By 1(hn) — iy _ 1(ha)

trseo(hn)  firy 1 (ha) — i 1 (hn)

7A—FRD (hn) =

)

again now making explicit the outcome variable being used in each expression. That is, for a
random variable U (equal to either Y or T') we set fi;;1 1(hn) and fiy;_ 1 (hn) to be the local-linear
estimators employing U; as outcome variable; see Section A.2 in the Appendix for details.

To describe the large-sample results for 7gpp(h,,) we employ the additional standard Assump-
tion A3 in Section A.1 of the Appendix. Under Assumptions A1-A3, and appropriate bandwidth

conditions, the conventional large-sample properties of 7rrp are characterized by noting that

7rro(An) — Trrp = Trro(hn) + Ry,

with
- 1 N TYy ;4
TFRD(hn) = (TY,SRD(hn) - TY,SRD) - T(TT,SRD(hn) - TT,SRD)
TT,SRD TT SRD

and Rn = Op((%T,SRD(hn) - TT,SRD)Q + (%Y,SRD(hn) — TY,SRD)(%T,SRD(hn) — TT,SRD))~ This shows that, to
first-order, the fuzzy RD estimator behaves like a linear combination of two sharp RD estimators.

Thus, as Lemma A2 in the appendix shows,

T hn B ~
T () = T 00,1), Vemole) = ViFemo() X, X, X
Verp (hn)

In this case, the leading (smoothing) bias of the local-linear fuzzy RD estimator 7ggp(hy) is
given by E[%FRD(hn”Xl; XQ, e 7X'n,] ~ h%BFRD<hn) Wlth

(2) (2) (2) (2)

1 p Ty srp M 1 py_  Tygep Hp—
BFRD(hn) — Y+ 27SRD T+ B+7FRD(hn) o Y- 27SRD T B—,FRD(hn)a
TT,SRD 2! TT,SR,D 2! TT,SRD 2! TT,SRD 2!

where By grp(hr) and B grp(hy,) are also asymptotically bounded observed quantities (function of

X1,X9,--+, Xp, k(-) and hy) and given in Lemma A2. Therefore, we construct a bias-corrected
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estimator of Tgpp employing a local-quadratic estimate of the leading biases, which is given by

72 (s bn) = 7o (hn) — h2 Berp (o, b))

with
_(2) R @
FRD(/n; On #1.sro () 2! 7&%3@(@) 91 +,FRD(/n

(2 T
_ 1 Mg/),g(bvﬂ _ Tysro(hn) ’u(Tl’Q(bTJ B_ rro(hn)
%T,SRD(hn) 21 %%,SRD(hn) 2! T n)-

In this case, we propose to bias-correct the fuzzy RD estimator using its first-order linear approx-
imation, as opposed to directly bias-correct 7y spp(hn) and 77 srp(hy) separately in the numerator
and denominator of 7ggp(hy,). The former approach seems more intuitive as it captures the leading
bias of the actual estimator of interest.

With these preliminaries, we obtain the following theorem resembling the previous discussion

for sharp RD designs.

Theorem 3. Suppose Assumptions A1-A3 hold with S > 3, and 77ggp # 0. If nmin{h3, b3} max{h2, b2} —

n’-n n»-n

0 and nmin{h,,b,} — oo, then

~bc B
T;;;(hn, bn) — TFRD(h:‘; bn) TFRD
VFRD (hn, bn)

—q N(0,1),

provided that h,, — 0 and kb, < k. The exact form of VB, (I, b,) is given in Theorem A2
in equation (A-2).

3.3 Fuzzy Kink RD

Our final extension considers confidence intervals for average treatment effects in the fuzzy kink RD
design (see, e.g., Card, Lee, Pei, and Weber (2012) and references therein for further discussion).
We retain the notation and assumptions introduced for the fuzzy RD design above. In this setting
the parameter of interest is

1 1
T'Y,SKRD #gfl - g/)—

TFKRD — = s
TT,SKRD :“(TlJ)r — M(le

and therefore a natural estimator based on two local-quadratic (reduced form) estimates is

:‘Fv

R A A (1
Fexan (hn) = 7y,skro (hn) My o(hn) — Mg/)_g(hn)
FKRD\/tn ) — 7A—T SKRD(hn) - A(l) (h ) . A(l) (h )7
’ Hpy o\ln) — fopZ o(lon,

where, as before, the formal definitions of these local polynomial estimators are given in Section
A.2 in the Appendix.
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The linearization argument given for the fuzzy RD estimator applies here as well, leading to

7rkep(Pn) — Trkrp = Trkap (hn) + R

with
~ 1 ~ TYv ~
TFKRD(hn) = (TY,SKRD(hn) - TY,SKRD) — 3 (TT,SKRD(hn) - TT7SKRD)
TT,SKRD TT SKRD

and R, = Op((%T,SKRD(hn) - TT,SKRD)2 + (%Y,SKRD(hn) - TY,SKRD)(%T,SKRD(hn) - TT,SKRD))- Employing
Lemma A2 in the appendix once more, we verify that

Tro (hon) = Trao(fin) — Trao —aN(0,1),  Vixao(hn) = V[7rxap (ha)| X1, X2, -+ 5 X0),
VFKRD(hn)

and B[Tegrp (hn)| X1, Xo, - -+, Xp] ~ h%BFKRD(hn) with
3) (3)

1 ByL  Tyskeo Hri
B h = — B h
rkaD (n) <TT,SKRD 3l TQT,SKRD 3] +,Fkep (M)

(3) (3)
1y s
_ ( Y— _ TY,SKRD T' > B—,FKRD(hn),

TTskrp 3! T%”,SKRD 3!
where By pkrp(hn) and B_ gxap(hy) are asymptotically bounded observed quantities (function of
X1, X, , Xy, k(-) and hy,), also given in Lemma A2.

Thus, we propose a plug-in bias-corrected estimator of Tgxkpp employing a local-cubic estimate

of the leading biases, which gives the bias-corrected estimator
7o (s bn) = o (hn) — i Biwwo (Fo, )

with

~(3 R (3
é (h b ) _ 1 M§/)+,3(bn) B TY,SKRD(hn) :u’gu)r’g(bn) B (h )
FKRD\/Un, On %TSKRD(hn) 3! %%,SKRD(hn) 3 +,FKRD/in,

1 i a0 Fysao(ha) i 5(bn)

71 skro (n) 3! 7A'tzr,smn(hn) 3!

B—,FKRD(hn)-

The following theorem describes our result for the case of the fuzzy kink RD design.

Theorem 4. Suppose Assumptions 1-3 hold with S > 4, and 77 sggp # 0. If nmin{h?, b7} max{h2,b2} —

n'-n n’»-n

0 and nmin{h3,b,} — oo, then

~bc

hnvbn -
Tigap (Fons b) = rke ( ) — TFKRD

VEiap (tn, bn)

—d N(()? 1)a
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provided that h,, — 0 and kb, < rg. The exact form of VR (hn, by) is given in Theorem A2
in equation (A-2).

4 Validity of MSE-Optimal Bandwidths Selectors

The purpose of this paper is to present more robust confidence intervals for RD estimands, based
on bias-correction techniques and an alternative asymptotic approximation. These results were
obtained using bandwidth sequences that in practice need to be chosen in some way. Imbens
and Kalyanaraman (2012) give a recent overview on bandwidth selection in the RD design, where
MSE-minimizing and cross-validation procedures are described.

In this section we derive MSE-optimal bandwidth choices for h,, and b,,, which apply to the main
four RD settings of interest discussed previously, and show that these choices are fully compatible
with our asymptotic distribution results (but not with the conventional ones). In the appendix,
we also propose direct plug-in, data-driven bandwidth selectors for the sharp designs. In Section
6, we explore in a simulation study the performance of these bandwidth selectors as well as sev-
eral alternatives available in the literature, while in Section 7 we employ them in an empirical

illustration.

4.1 Sharp Designs

Assuming v < p, the estimands in the sharp RD designs can be written as

Ty = NS,-V) _N(—V)7

where, in particular, 7ggp = 79 and Tskgp = 71. As described in Section A.2 in the Appendix, the

corresponding p-th order local-polynomial estimators are
Fralhn) = B (hn) = A, (),

where, in particular, 7sgp(hyn) = 70,1(hn) and Tsgrp(hpn) = T1,2(hn).

Therefore, we consider the generic MSE objective function
MSE, p(hn) =B | (Fu,p(hn) — TV)2 X1, Xo, -+ 7X”} '

Lemma 2. Suppose Assumptions 1-2 hold with S > p+ 1. Let v € N with v < p.
(MSE) If hy,, — 0 and nh,, — oo, then

MSE, (1) = H20F) (82,01 + 0p(1)] &~y Moy + 0p(0)],
where . .
T ' 2 2
By — pl _ ol +oy _ _
Bvav'r = r! e;/Fp 119]),7"7 Vl/,p - fe;jrp 1\:[}pr 1€V.



The exact form of the other matrices is given in Section A.3 in the Appendix.

(OB) 1f u P £ PV then the (asymptotic) MSE-optimal bandwidth is

_1
(1420)V,,, ) 23

p+1—v)B?

__1
hMSE,y,p = CMSE,y,p n 23, CMSE,v,p = (2(
v,p,p+1

This lemma justifies a set of MSE-optimal (infeasible) choices for h, and b,: h, = husgo,1
and b, = hugg2,2 for Theorem 1, and h,, = hwusg,1,2 and b, = husg,3 3 for Theorem 2. This result
generalizes the work in Imbens and Kalyanaraman (2012), who proposed the choice husgo,1 for
local-linear estimators. In Section A.6 in the Appendix we also construct direct plug-in (DPI)
selectors for h,, and b, based on these choices. Our construction employs the fact that V, , =
limy, — 00 nh}b‘*'Q”V[f',,,p(hn)\Xl,Xg, -, Xy if by — 0 and nh, — oo, together with the standard-
errors estimators proposed in the next section, to construct consistent plug-in estimates of the
variance terms (Theorem 5), which thus avoids using consistent estimators of a%r, o2 and f directly.
Following Imbens and Kalyanaraman (2012), we also incorporate “regularization” to avoid small
denominators. The online supplemental appendix contains a detailed discussion of our approach,
and a comparison to other methods available in the RD literature. Theorem A-3 in the Appendix

also shows that our bandwidth selectors are consistent and optimal in the sense of Li (1987).

Remark 6. The MSE-optimal bandwidth choices for the sharp designs are fully compatible with
our asymptotic approximations given above, as they satisfy the rate-restrictions in Theorems

1-2. For example, in the case of Theorem 1, n min{husg 1, busg2,2} — 00,

(15 5 2 2
n mm{hMSE,o,la bMSE,2,2} max{hMSE,O,l? bMSE,2,2} — 0.

Remark 7. The MSE-optimal bandwidth choices satisfy p,, = husg,p/buse,p+1,4 — 0. It remains
an open question whether the choice p,, — 0 is “optimal” from a distributional approximation

point of view. Although beyond the scope of this paper, research on this question is underway.

4.2 Fuzzy Designs
Assuming v < p, the estimands in the fuzzy RD designs can be written as

_TYw _ ., _ W _ ., _
Sv = ) Tywy = Hyy — KRy, TTw = KHpy — BHpZs
TTv
where, in particular, Terp = <o and Trxkrp = <1. As described in Section A.2 in the Appendix, the
corresponding p-th order local-polynomial estimators are
_ 7A'Y,V(hn)

Suplhn) = 2200 o) = 1505 () = 157 (), Fan) = iy () = A (),
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and its first-order linear approximation is

. 1 . TYw .
Svplhn) = ;(Txu,p(hn) —Tyy) — TT’V(TT,u,p(hn) —TTw)-
14 Tv

Notice that, in particular, 7epp(hy) = So,1(hn) and Tegap(hn) = S1.2(hn).

Following Imbens and Kalyanaraman (2012), we consider the generic MSE objective function
MSErup(hn) = B | Guplhn))*| X1, Xz, -+, Xa]

Lemma 3. Suppose Assumptions 1-3 hold with S > p+ 1. Let v € N with v < p.
(MSE) If hy, — 0 and nh,, — oo, then

—y 1
MSEr .y p(hn) = hi(pﬂ ) [Bg,u,p,pﬂ + Op(l)] + m [VEup +0p(1)],

where

2

(r) (r) (r) (r)

B I R s R A7 S el VRS

Fv,p,r — | | el/ P p,m
TT,I/ T 'TT v r.

2 2 2 2 2 9 2

_ - + v - + v - B

1 oyy_ +oyy 2Ty Oyp_ + 0y TYw Opp— + 07

VEvp = -3 ] e, 'y Ul ey
TTvV f TT7V f TT7V f

The exact form of the other matrices is also given in Section A.3 in the Appendix.

(OB) If By ppt1 # 0, then the (asymptotic) MSE-optimal bandwidth is

_1
(20 + 1)Ve,, ) 2 ¥3

o1
huservp = Cusepup M 203, CusEFpvp = 5
> 1. 9, 2 1 _ B
p+ V)BF,vppt+1

Proceeding as in the sharp RD cases, and using Lemma 2, infeasible bandwidth choices for A,
and b, in Theorems 3—4 are readily available: h,, = hysgr,0,1 and b, = husgr2,2 for Theorem 3, and
hy, = husgr,1,2 and b, = husgr 3.3 for Theorem 4. Feasible versions could also be developed along
the lines discussed in Section A.6 in the Appendix. Importantly, just as in the sharp RD cases, the

resulting optimal bandwidth choices are fully compatible with our asymptotic theory.

5 Standard Errors

In this section we propose valid standard-error estimators to implement the infeasible statistics
presented in the previous sections. The exact formulas for the new proposed variances Vg, (b, by,)
[sharp RD], V&p (An, by) [sharp kink RD], VRsy (hn, by) [fuzzy RD] and VEgap (An, by) [fuzzy kink RD]
in Theorems 1-4, respectively, are straightforward to derive but notationally cumbersome. They
all have the same structure as they are derived by computing the conditional variance of (linear

combinations of) weighted linear least-squares estimators. Thus, the only unknowns are diagonal
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matrices whose diagonal terms contain different conditional covariances depending on the setting
under consideration.
In general, for all the cases considered in this paper, the key matrices containing unknown

quantities are
\IIYY+,p,q(hm bn)7 \IJYT—I—,p,q(hm bn)a \I’TT—&-,p,q(hm bn)a

\IIYY—,p,qULm bn), ‘DYT—,nq(hna bn)a \I’TT—m,q(hnv bn):

with p,q € N4, and with the generic notation

5N Xi X\’
Bl ) = & D105 2 00, (6o, (6 (32 ) () v X0,

=1
Ly X X\
Byl b) = & 310 < 00, (), O (32 4 () v 30,
i=1 " n

oty (z) = Cov[U,V|X = a].

Here U and V are placeholders for either Y; or 7;. This generality is required to handle the
fuzzy designs, where the covariances between Y; and 7T; naturally arise. Theorems A-1 and A-
2 in the Appendix give the exact formulas for the standard-errors, showing how the matrices
Vv 4 p.g(hn, by) and Yyy_ o (hn, by) are employed.

The (p+1) x (¢+1) matrices Vv p g(hn, by) and Yy — p o (hn, by) are computed exactly in the
same way as, and are actually a generalization of the middle matrix in, the traditional Huber-Eicker-
White heteroskedasticity-robust standard-error formula from linear models. In fact, an analogue of
these standard-errors could be constructed by plugging in the corresponding estimated residuals.
This choice, although simple and convenient, may not perform well in finite-samples because it im-
plicitly employs the bandwidth choices used to construct the estimates of the underlying regression
functions.

As an alternative, following Abadie and Imbens (2006), we propose standard-error estimators
based on nearest-neighbor estimators with a fixed tuning parameter, which are more robust in
finite-samples because they do not depend on kernel-based regression estimators and thus avoid

the (implicit) bandwidth choices. Specifically, we define

. 1 o X Xi\' .

Vv pa(hn,bn) = > X = 0) K, (Xi) Ky, (Xi)ry <h> rq <) v (Xi),
i=1 " "

A 1 i Xi Xz ' A

B palhnsb) = £ 3106 < 0K, (), (X (32 (32) o (0,
i=1 " "

with



J J

J 1 1

-2

Ohv-(Xi) = 1K <O7=7 | Ui= 53 U o | | Vim 52 Ve, |
j=1 j=1

where éj(z) is the j-th closest unit to unit ¢ among {X;: X; > 0} and £; (i) is the j-th closest
unit to unit ¢+ among {X; : X; < 0}.” These estimators are asymptotically valid for any choice of
J € N, because they are approximately conditionally unbiased (even though inconsistent when
the number of nearest-neighbors J is kept fixed).

The following result gives consistency of the proposed estimators to their infeasible counterparts.

Theorem 5. Suppose o(x) is Lipschitz continuous on (—kg, 0] and on [0, kp).
(1) If the conditions in Theorems 1-2 hold, then

\iIYYJr,p,q(hm bn) = \I’YY+,p,q(hna bn) + Op (min{hﬁl, b;l ) ’

\i’YY*,p,q(hm bn) = Vyy— pq(hn, bn) + 0p (min{h;l, bﬁl}) :

(2) If the conditions in Theorem 3-4 hold, then
Yoyt pg(hns bn) = Cuves pg (b, b) + 0p (minfhy ! 0,

Uuv— pg(hns bn) = Vuv— pg(hn, bn) + 0p (min{hy, ', b, 1})

forU=Y,Tand V =Y,T.

This theorem implies that employing \ilyvﬁpyq(hn, by,) and \iIUV,7p,q(hn, b,) in place of Wiry 4 4 (A, by)
and Uy — p q(hn, by), as appropriate in each case, to construct the estimators \7§§D(hn, bn), \A/'éﬁnp(hn, bn),
VEE (B, by) and VBSap (A, by) lead to consistent standard-error estimators. For example, in Theo-

rem 1, our standard-error formula VgﬁD(hn, by,) involves the following estimators:
Uyyra1a(bnbn),  Uyvero(imbn),  Uyyioi(hn,bn),  Uyyio2(hn,bn),

Tyy_ 1.1(n, bn), Tyy_ 12(hn, bn), Tyy 91 (hn, bn), Tyy_ 99(hn, bn),

leading to the feasible (for bandwidth choices h,, and b,,) confidence intervals:

3t b) = | Sl ) £ 01,y Uil )|

The other confidence intervals can be constructed analogously.

" Alternatively, we could use “local sample covariances” as proposed in Abadie and Tmbens (2010).
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6 Simulation Evidence

We explored the main implications of our theoretical results in a Monte Carlo experiment. To facili-
tate comparisons, we employed the data generating process proposed in Imbens and Kalyanaraman
(2012, henceforth IK), focusing only on the sharp RD design. We conducted S = 10,000 repli-
cations, and for each replication we generated a random sample {(X;, ;)" : i = 1,...,n} with size
n = 500, X; ~ 2B(2,4) — 1 with B(p1,p2) denoting a beta distribution with parameters p; and pa,
and g; ~ N(0,02) with o = 0.1295. We considered the three regression functions plotted in Figure
1, which are denoted py (), po(x) and pg(z), respectively, and thus generated Y; = pu;(X;) + &,
1=1,2,--- ,n, for each regression model j = 1,2,3. The exact functional form of these regression
functions and all other details are given in the online supplemental appendix.

We focused on local-linear RD estimators with local-quadratic bias-correction, %gﬁg(hn, by), as
discussed in Section 2. We investigated the empirical coverage and interval length of the following

three competing 95% confidence intervals for a variety of possible bandwidth choices:

“Conventional” (TSRD(hn)) : Tsrp(hn) £ 1.96 - \A/SRD(hn),
“Bias-Corrected” (155 (hn,bp)) - 728 (hn s by) £ 1.96 - \/ Vapp (hn),
“Robust Approach” (TEX¢(h,,, b)) - 758 (M, b)) £ 1.96 - / VB (B, ),

where the estimators Vsgp(hy) and VB, (hn, by) are constructed using the nearest-neighbor proce-
dure discussed in Section 5 with J = 3. For comparison, we also report the infeasible versions of
these confidence intervals employing Vspp(hy,) and VESy (A, by)-

To choose the main bandwidth h,, we consider the following alternatives: (i) the infeasible MSE-
optimal choice hysg0,1, denoted hysg; (ii) a plug-in, regularized MSE-optimal selector proposed by
IK, denoted iLIK; (ii1) the infeasible, each-side-squared MSE-optimal choice proposed by DesJardins
and McCall (2009), denoted hpy; (iv) a plug-in, each-side-squared MSE-optimal selector, denoted
how; (v) a cross-validation estimator proposed by Ludwig and Miller (2007), denoted hgy; and (vi)
our plug-in choice proposed in Section 4, denoted heer. Similarly, to choose the pilot bandwidth
b,, we constructed the appropriately modified versions of the choices enumerated above, with the
exception of hey because it is not available for derivative estimation; these choices are denoted
busk, EIK, bom, ISDM, and BCCT, respectively. The online supplemental appendix provides a detailed
description of each of these procedures.

Tables 2-3 present the main results. Table 2 employs the infeasible standard-errors based on
Vsgp(hn) and VEy (hy, by,), while Table 3 employs the fully data-driven standard-errors \A/SRD(hn) and
\A/gﬁD(hn, by,). The simulation results across both tables are qualitative very similar but, as expected,
the feasible versions of the 95% confidence intervals exhibit slightly more empirical coverage distor-
tion and longer intervals on average. In the online supplemental appendix, we also report results
employing the traditional standard-error estimators constructed using plug-in estimated residuals

(also mentioned in Section 5), which lead to even more undercoverage in our simulations. In all
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cases, the robust standard-error estimators lead to important improvements in empirical coverage
with only moderate increments in the average empirical length of the resulting confidence intervals.
The choice p,, = 1 is not only simple and intuitive, but also performed well in our simulation setup.
In terms of actual results, these tables suggest that the empirical coverage of intervals based on
TEEE (hy, by) exhibits an improvement of about 10-15 percentage points on average, depending on
the particular data-driven bandwidths employed. Although not the main goal of this paper, we
also found that our two-stage direct plug-in rule selector of h,, performs very well relative to the
other plug-in selectors, and on par with the cross-validation bandwidth selector.

In sum, based on our theoretical results and the simulation evidence presented, we recommend
employing the new robust standard-error estimates introduced in this paper when constructing

confidence intervals for treatment effects in the RD design.

7 Empirical Illustration

We illustrate the performance of our methods and compare them to other conventional alternatives
employing household data from Oportunidades (formerly known as Progresa), a well-known large-
scale anti-poverty conditional cash transfer program in Mexico. Our goal is to show how the
different methods perform in a substantive, realistic empirical application. Most details regarding
data construction and implementation, as well as other results not reported in this section, are given
in the online supplemental appendix to conserve space. All estimates and figures were constructed
using the STATA package rdrobust, described in Calonico, Cattaneo, and Titiunik (2013).

Progresa/Oportunidades was first instituted in rural communities in 1998, and later was ex-
panded to urban areas in 2003. This social program is best known for its experimental component:
treatment was initially randomly assigned at the locality level in rural areas.® Indeed, its exper-
imental features have spiked a huge body of work focusing on a variety of economic, health and
related outcomes.” In order to target the program to poor households in both rural and urban
areas, Mexican officials constructed a pre-intervention (at baseline) household poverty-index that
determined each household’s eligibility. In rural communities, seven distinct poverty cutoffs were
used depending on the geographic area, while one common cutoff was used in all urban localities.
Thus, Progresa/Oportunidades’ eligibility assignment rule naturally leads to eight sharp (intention-
to-treat) regression-discontinuity designs. Buddelmeyer and Skoufias (2004) were the first to note
the RD features of this social program.

We illustrate our methods employing data from the urban RD design and one of the seven rural
RD designs (the one corresponding to the median household population size, Region 3, Sierra-Negra-
Zongolica-Mazateca). We do not pool the RD designs, nor we compare them with each other or

to the experimental estimates from the rural areas, since without further (strong) assumptions the

8In urban areas, however, treatment was not randomly assigned.

9Recent examples include Attanasio, Meghir, and Santiago (2011), Behrman, Gallardo-Garcia, Parker, Todd, and
Vélez-Grajales (2012), Djebbari and Smith (2008), Dubois, de Janvry, and Sadoulet (2012), Fernald, Gertler, and
Neufeld (2009), among many others. These papers also include references to early reviews and research work.
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associated estimands need not to coincide with each other. Instead, we treat the RD designs as
different examples, which vary in observable, and possibly unobservable, characteristics.

Our empirical exercise investigates the program treatment effect on two mutually exclusive
measures of household consumption expenditures: food and non-food consumption.'® Related
literature on this topic include Hoddinott and Skoufias (2004), Angelucci and Attanasio (2009),
Angelucci and De Giorgi (2009), Gertler, Martinez, and Rubio-Codina (2012) and Angelucci and
Attanasio (2013), who have also investigated the effect of Oportunidades/Progresa on consumption
using experimental methods (in rural areas) and non-experimental matching methods (in urban
areas). Our illustrative results therefore contribute to this literature by presenting new empirical
evidence based on non-experimental RD estimates. In this application, X; denotes the household’s
poverty-index, £ = 0 denotes the centered cutoff for each RD design, and Y; denotes the two
different measures of household consumption.

Our final database contains 691 control households (X; < 0) and 2, 118 intention-to-treat house-
holds (X; > 0) in the urban RD design (n = 2,809, X; € [—-2.25 , 4.11]), and 315 control house-
holds (X; < 0) and 618 intention-to-treat households (X; > 0) in the rural RD design (n = 933,
X; € [-456.6 , 338.4]). In the online supplemental appendix, we address the empirical validity
of these RD designs by conducting standard balance and falsification tests on pre-intervention co-
variates. These results give empirical support for the RD assumptions. Figures 2 and 3 present,
respectively, the usual RD plots for the urban and rural areas (c.f. Figure 1). In these figures,
the solid lines correspond to distinct fourth-order global polynomial fits for control and treatments
units, and the solid dots correspond to sample averages of the outcome variable for each bin (or
partition) of the running variable. The number of bins was chosen using an integrated mean-square
error formula derived in Cattaneo and Farrell (2013), as explained in Calonico, Cattaneo, and
Titiunik (2013, Section 2.7).

Our main empirical results are reported in Table 4. Panel A and B correspond, respectively, to
the urban and rural RD designs. We consider three time periods: pre-intervention (as a falsifica-
tion test), one year after the program started (1-year Treatment), and two years after the program
started (2-year Treatment). Thus, each panel reports six groups of RD estimates (i.e., 2 outcomes
x 3 periods). For each combination of outcome and time period, we conduct RD estimation and
inference employing the same setup as in our simulation study: local-linear estimator of 7spp, con-
ventional confidence interval and robust confidence interval (with local-quadratic bias-correction),
each implemented with the three different data-driven bandwidth choices iLCCT, EIK and fzcv. To
be specific, for each panel, outcome, period and bandwidth selection method we report %SRD(iLn),
Ispo (ha)y TERS (B, by, By, and by,.

This empirical exercise offers an array of interesting examples to discuss the performance of our
proposed methods. First of all, using the pre-intervention data (columns 1-3, Panels A and B),
we find no effects of the program in any case (i.e., food or non-food consumption in urban or rural

localities).!! This result gives additional evidence in favor of the validity of the RD designs, since

10Tn the online supplemental appendix we also examine total consumption expenditures for all the RD designs.
"In rural areas, pre and post-intervention food consumption data differs in two main aspects. First, the pre-
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households in control and treatment areas exhibit on average the same levels of pre-intervention
consumption. In the 1-year after treatment data, we find statistically significant effects of the
program on food consumption in rural areas (columns 4-6, Panel B). This result is present in all
cases when using both the conventional as well as the robust confidence intervals. On the other
hand, in the same period, we find no statistically significant effects on non-food consumption in
rural areas (columns 4-6, Panel B) nor on any of the outcomes in urban areas (columns 4-6, Panel
A). These results are consistent across inference procedures.

The results from the 2-year after treatment data are the most interesting. In this case, for
food consumption in urban areas (columns 7-9, Panel A), we find statistically significant results
when using the conventional confidence intervals but these results are not statistically significant
when using the robust confidence intervals proposed in this paper. This empirical example offers
an instance where the conventional inference approach suggests the presence of a strong positive
treatment effect, but our methods cast doubt on such a conclusion. On the other hand, when
examining non-food consumption in urban areas (still columns 7-9, Panel A) the results appear
to be more robust, as they are statistically significant at standard levels when using both the
conventional and the robust confidence intervals. Finally, in the case of the rural RD design
(columns 7-9, Panel B), we find no statistically significant effects on food consumption using
either method, but we find a statistically significant (10-percent level) treatment effect on non-
food consumption when using conventional confidence intervals. The latter result, however, is not
particularly robust based on our proposed confidence intervals.

To summarize, the findings from the small empirical illustration suggest that the program
Progresa/Oportunidades had (i) a positive, significant effect on non-food consumption in urban
areas two years after its introduction, and (ii) a positive, significant effect on food consumption
in rural areas one year after its introduction. Both results appear to be robust according to our
proposed methods. In addition, the empirical findings using conventional methods suggest that
the program had positive, significant effects on food consumption in urban areas and on non-
food consumption in rural areas two years after its introduction, but these findings are not robust

according to our proposed inference procedures.

8 Conclusion

We introduced new confidence interval estimators for several regression-discontinuity estimands
that enjoy demonstrably superior robustness properties. The results cover the sharp (level or kink)
and fuzzy (level or kink) RD designs. Our confidence intervals were constructed using an alterna-
tive asymptotic theory for bias-corrected local polynomial estimators in the context of RD designs,
which leads to a different asymptotic variance in general and thus justifies a new standard-error

estimator. We found that the resulting data-driven confidence intervals performed very well in simu-

intervention survey only provides information on expenditures (that is, it omits home production). Second, it reports
expenditures only by food groups rather than asking detailed item-by-item questions, as in later waves. See, e.g.,
Angelucci and De Giorgi (2009) for further details.
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lations, suggesting in particular that they provide a robust (to the choice of bandwidths) alternative
when compared to the conventional confidence intervals routinely employed in empirical work. In
addition, in an empirical illustration addressing the program effects of Progresa/Oportunidades
on consumption, we found that in some cases the conventional confidence intervals offer results
that are validated by our proposed confidence intervals, while in other cases our robust confidence

intervals cast doubt on the results obtained by conventional methods.

A Appendix

In this appendix we summarize our main results for arbitrary order of local polynomials. Here p denotes
the order of main RD estimator, while ¢ denotes the order in the bias correction. All the results stated in
this Appendix, as well as other results discussed in the main text, are proven in the online supplemental
appendix.

A.1 Assumptions
We employ the following conventional assumption on the basic sharp RD model.

Assumption Al. For some kg > 0, the following holds in the neighborhood (—kq, ko) around the cutoff
z =0
(a) BY1|X] < oc.
(b) f(z), the density of X;, is continuous and bounded away from zero.
(c) For some S > 1, p_(x) = B[Y;(0)|X; = 2] and p, (z) = E[Y;(1)|X; = 2] are S-times continuously
differentiable.
(d) o%(z) = V[Y;|X; = z] is bounded away from zero, bounded, and right and left continuous at z = 0.

Part (a) in Assumption 1 imposes existence of moments. Part (b) requires that the running variable
X; be continuously distributed near the cutoff, and also ensures the presence of observations arbitrarily
close to the cutoff in large samples. Part (¢) imposes standard smoothness conditions on the underlying
regression functions, which is the key ingredient used to control the leading biases of the RD estimators
considered in this paper. Finally, part (d) imposes standard restrictions on the conditional variance of the
observed outcome, but allows it to be potentially different at either side of the threshold. Thus, we set
0% =lim, o+ 0?(z) and o2 = lim, - o?(z).

Throughout the paper we employed local polynomial regression estimators of various orders to approx-
imate unknown regression functions. The following standard assumption on the kernel function is used to
construct the estimators.

Assumption A2. For some k > 0, the kernel function k(-) : [0,%] — R is bounded and nonnegative on
[0, k], positive and continuous on (0, k), and zero outside its support.

This assumption permits all kernels commonly used in empirical work. Although our results extend to
the case where possibly different kernels are used at either side of the threshold, to simplify the exposition
we set K(u) = k(—u) - 1(u < 0) + k(u) - 1(u > 0), implying that, for £ > 0 given in Assumption A2, K(-)
is symmetric, bounded and nonnegative on [—k, x|, positive and continuous on (—x, k), and zero outside its
support.

Finally, to handle the fuzzy RD designs we impose the following additional assumption.

Assumption A3. For some kg > 0, the following holds in the neighborhood (—kq, kg) around the cutoff
z=0:
(a) For some S > 1, pp_(x) = E[T;(0)|X; = x| and pp (z) = E[T;(1)|X; = ] are S-times continuously
differentiable.
(b) 02.(z) = V[T;|X; = ] is bounded away from zero and right and left continuous at = 0.

This assumption is analogous to Assumption Al, but involving as outcome variable the treatment as-
signment and treatment status for each unit.
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A.2 Local Polynomial Estimators

For any v,p € N with v < p, the p-th order local polynomial estimators of the v-th order derivatives ,ugf)

)

and p>/ are given by

A (ha) = vlel By p(hn)  and A (ha) = el By, (ha),
with

By 4p(hn) = arg Bé%izgl 1(X; > 0)(Y; — rp(X4)'B)* Kn, (X),
i=1

n

BY ,p(hn) = argﬁglﬂg;g 1(X; <0)(Y; — Tp(Xi)/ﬂ)QKhn (Xi)s

=1
where r,(z) = (1,z,--- ,2P)’, e, is the conformable (v + 1)-th unit vector (e.g., e7 = (0,1,0)" if p = 2),
Kp(u) = K(u/h)/h, and h,, is a positive bandwidth sequence. (We drop the evaluation point of functions
at £ = 0 to simplify notation.) For example, B +.1(hy) is a bivariate vector containing the two coefficients
(intercept and slope) obtained from using weighted least-squares to estimate a linear model employing only
observations with X; to the right and near the discontinuity Z = 0 (i.e., for observations with X; € [0, kh,]).
Similarly, B +’Q(hn) and B +.3(hn) correspond, respectively, to local-quadratic and local-cubic regression co-
efficient vectors using the same observations.

It is well-known that, under appropriate regularity conditions and bandwidth restrictions, B +7p(hn) —p

By = (s D1 H D121, P 1) and By () —p B = (s f /1L 22, i I, imply-
ing that local polynomial regression estimates consistently the level of the unknown regression function (u

and p_) as well as its first p derivatives (up to a known scale). In the sequel, we set ji, ,(h,) = u(f)p(h )

and fiy ,(hn) = ug_)p(h ) to improve notation.

Note that, whenever possible, we drop the outcome variable subindex notation from /ng)r p(n), ﬂg’l o (),

ﬁY-‘,—p( ) ﬁY p( ),etc.

A.3 Further Notation

We employ the following notation: Y = [Y1,---,Y,], ¢ = [e1,-+- ,en] with ¢; = V; — u(X)), &, =
(X1, , X,), and ¥ = Elee’|X,,] = diag(0?(X1), -+ ,0%(X,,)) where diag(ay, ..., a,) denotes the (n x n)
diagonal matrix with diagonal elements a1, ..., a,.

We also set:

Xp(h) = [rp(Xa/h), - rp(Xn/R)]', - Sp(h) = [(X1/R)",- -+, (Xn/B)),
Wi (h) = diag(1(X1 > 0)Kp(X1), -+, 1(X,, > 0)Kn(Xy)),
W_(h) = diag(1(Xy < 0)Kn(X1), -, 1(X, < 0)Kn(X,).

In addition, we define the following (scaled) matrices
Ly p(h) = Xp(h)' W () Xp(h)/n, T p(h) = Xp(h)'W_(h) Xy (h)/n,
Oy pa(h) = Xp(R) Wi (R)Sq(h)/n, D pq(h) = Xp(h)W_(h)Sy(h)/n,
U pg(hyb) = Xp(h) Wi () EWL(0) X (0)/n, W pq(h,b) = Xp(h) W_(R)EW_(0) X4(b)/n,
where we set for brevity ¥ ,(h) = ¥4 , »(h, k) and ¥_ (k) = V_, ,(h,h).

We will also use repeatedly the large sample matrices

_ [ ! _ [ I, (u)du :wuzruru'u
r, = / K(u)rp(u)rp(u)du, Oy = / K(wulry(w)du, T, / K (u)?ry () (u)' du.
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Letting H,(h) = diag(1,h~!,--- ,h7P), it follows that
By p(hn) = Hy(h)T3 (hn) X (h) W (R )Y/,

B—,p(hn) = Hp(hn)r-_f-,lp(hn)Xp(hn),W—&-(hn)Y/n-

Finally, recall that in the fuzzy designs we add a further subindex to denote the underlying outcome(s)
used whenever appropriate. That is, for random variables U and V', we set Spy = diag(ofy (X1), -+, 051 (Xn))
with 0%, (z) = Cov[U,V|X = z] = E[(U — E[U|X])(V —E[V|X])|X = z], and similarly for other parameters
(and also the estimators).

A.4 Sharp RD Designs

As in the main text, in this section we drop the notational dependence on the outcome variable Y. The
general estimand of interest in the sharp RD design is

o= = W =uep, WY =B, (v <p),

and recall that Tegp = 79 and Tegpp = 71.
In this context, for any v < p, the conventional p-th order local polynomial RD estimator is

Fop(bn) = 090 (ha) = %) (ha), AL (h) = Vel By y(h), B () = viel B, (ha),

and recall that %SRD(hn) = 7A'071(hn) and %SKRD(hn) = %172(hn).

A.4.1 Lemma Al

This lemma describes the asymptotic bias, variance and distribution of 7, ,(hs,). This result follows from
known results in the local polynomial literature applied to the RD context (e.g., Fan and Gijbels (1996)).

Lemma A1l. Suppose Assumptions A1-A2 hold with S > p+ 2. Let v,r € N with v < p.
(B) If hy, — 0 and nh,, — oo, then

El# s (ha) 8] = 70+ BBy i () + W77 By o) + 0p (RET2Y),
where '
Bupr () = "By () = P B (),
By ypr(bn) = e, U7 L ()04 pr(hn) = €T 0y 0 + 0p(1),
B_ypr(hy) = €, DL (h)0_ o (he) = €T, 0, 0 4 0,(1).
(V) If hy, — 0 and nh,, — oo, then V|7, ,(h,)|X,] = V. p(hy), where

Vl/,p(hn) = VJrﬂ/,p(h"ﬂ) + V*,l/,p(hn)a

1 _ , 1 o2 _ _
Vivplhn) = h2v V!Qei/FJr,lp(hn)\I/Jr,p(hn)FJr,lp(hn)eV = D2 TJFV!Q@:/Fp I\Pprp leu[l +op(1)],
n n
_ _ 1 o2 _ _
V—7y,p(h7l) = nh2V V!26;F_}p(hn)\I’_m(hn)r_}p(hn)ey = WTV!Z(E;FI] 1\1’pr 16,/[1 + Op(l)]

(D) If nh2P*> — 0 and nh,, — oo, then

7A-V,p(hn) —Tv — hfﬁ_l_yBu,p,erl(hn)
Vo p(hn)

—a N(0,1).
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Therefore, for any p < g, the g-th order local polynomial bias-corrected estimator is

Abc (hmb ) (hn) - hfﬁlév,p,q(hmbn)a

Tv,p.q
with A R
Bu,p,q(hnv bn) ( p+16+ q( ))B+ v,p, p+1(h ) - (e;ﬂrlﬁaq(bn))Bﬂl/,P,erl(hn)-

A.4.2 Theorem Al

This theorem summarizes the asymptotic bias, variance and distribution of ABCP ¢y bn). Theorems 1 and

2 are special cases with (v,p,q) = (0,1,2) and (v,p,q) = (1,2, 3), respectively.

Theorem A1l. Suppose Assumptions A1-A2 hold with S > g+ 1and ¢ > p+ 1. Let v € N with v < p.
(B) If max{h,,b,} — 0 and nmin{h,, b,} — oo, then

E[Ach q(hm bo)|Xn] = T+ hp+27VB v,p, p+2(h ) [+ Op(l)}
hp"'1 Yol pBECP q(hn, by) [1+ 0,(1)],
where
(g+1) (¢+1)
be My By vppri(h) ko B_uppt1(h)
BV P, q(h» b) ( + 1) B+,p+1,q q+1(b) (p + 1)! (q ¥ 1)!Bf,p+1,q,q+1(b) (p + 1)!

(V) If nmin{h,,b,} — oo, then V[72° (h,,b,)|X,] = V2,  (hn,by), where

v,p,q v,p.q

VB (R bn) = VB, (s b)) + V2%, (i, b,

—V,D,q
c —v B v (h) —v 82 sV (h)
V: v,p, q( ) = V+,v,p(h) - 2hp+1 C+,V,p,q(h b)% + h2(p+1 )V+,p+1,q(b)ﬁa
c —v Bf,u, s l(h) [y 627,11, s l(h)
Vb 9 p,q( ,b) = V,’%p(h) — 2hp+1 Cf’y’p,q(h7 b)ﬁ + h2(P+1 )Vi’p+1’q(b)ﬁ,
1 _ _
C-‘,—,u,p,q(h, b) = WV'(p + 1)!€;F+)1p(h)\ll+)p)q(h, b)F+}q(b)ep+1,
Covpa(hnb) = —— g vlp + e, = (h)W_ (R, DT =Y (B)epy,
for dim(eg) = p and dim(epy1) = q.
(D) If nmin{A2P+3 p2+3} max{h2, 5291 — 0 and nmin{hn, b, } — 0o, then
b Ach q(hnv b )
Tr c(hn’b ) —>dN(O,1),
VBCp q(h‘n7 bn)
provided x max{hy,b,} < Ko.
From this theorem we obtain for Theorems 1 and 2:
Vls)lin(hm bn) = V8?1,2(hm bn) and VIS)ERD(hm bn) = th’,c2,3(hna bn). (A-1)

Remark A1l. Remark 1 in the main text remains true: the distributional approximation in Theorem A1l
permits one bandwidth (but not both) to be fixed, provided it is not too “large”; i.e., both must satisfy
kmax{hy,b,} < Ko, but only one needs to vanish.
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Remark A2. Remark 2 in the main text generalizes as follows. Three main limiting cases are obtained
depending on the limit p,, — p € [0, x].

Case 1: p=0. In this case h,, = o(b,) and

1 02 +0o?
ViAbC (B )| X] = V[T, p(hn)| X {1 + 0p(1)} = x —

o (@ o) {1+ 0, (1)},
n

which is the classical approach to bias-correction.
Case 2: p € (0,00). In this case h,, = pb,, and

V[ peg (i, b )| o]

1 0% + 02 _ _ G 0L + 02 _ _
1+2v |: - (ei/Fp 1\11pr 160) + p2p+d+7(€;]1_‘q 1lquq 1€P+1)(€ F 7‘910 p-‘rl)
Y | ‘71 o2 -1 /-1
- p e, 'y 7\111941(/)) + T\IJp,q(*P) L epta (eurp Up) | {1 +0p(1)},
with W, 4(p) = [;° K(u)K (pu)ry(u)re(pu)’'du. For conventional choices of kernel K (-), the limiting

variance is 1ncrea51ng in p

Case 3: p = oo. In this case b, = o(h,,) and

V75 (R, ba) | Xa] = R TIOVIB, g (B, ba)| X {1 + 0, (1)}

PP t1I=0) 62 4 52

= nblF2v f (e ;+1Fq_1\Ijqrglezwl)(eizrz:lﬂp,erl)Q{l + 01)(1)}7

which implies that the bias-estimate is first-order while the actual estimator 7,(hy,) is of smaller order.

Remark A3. If h, = b, (and the same kernel function K(-) is used), then Aﬁcp p1 (s h) = 7o pya (hy).
This gives a simple relationship between local polynomial estimators of order p and p + 1, and their

relation to manual bias-correction. This implies that Tﬂ;f pi1(hns hn) =T, pr1(hy). The result extends
t0 72°, pir (hns hin) = Fo pir (hy) and TE5 4 (B, hyy) = Ty pir (hn) when the natural generalization of

the bias-correction estimate is used. See the supplemental appendix for details.

Remark A4. It is well known that bias-correction can be seen as another way of undersmoothing the orig-
inal estimator. An interesting implication of Remark 3 is that our approach provides a formalization
of this idea. In particular, it justifies a simple approach based on the order of the local polynomial: a
systematic choice of h,, that leads to undersmoothing is to select the MSE-optimal bandwidth for the
estimator 7,(h,,), but construct confidence intervals using the estimator 7,41 (h,). This is the special
case p,, = h, /b, =1 in Theorem 1.

Remark A5. The previous results can be described using the FEquivalent Kernel Representation of local
polynomials (e.g., Fan and Gijbels (1996, Section 3.2.2)). For simplicity, consider the one-sided bias-
corrected estimate of 4 : %$7o’p7q(hn,bn) = fiy p(hn) — BET (e p+16+ ¢(0n)) B 0.pptr1(hn). Letting
hyn, = pby, with p € (0, 00),

~bc Xi
th%,0,1>,¢1(h”7b nh f Z (Xi 2 0)Kp,q <h;p) Yi {1+0,(1)},

K@ p) = Kp(z) — pP 2K, (pa),

where Kp(x) = eI, 'rp(2) K () is the equivalent kernel of the local polynomial estimator fiy ,(hn),
and K2°, (x) = (e, T rq(@)) (€6, 19y pa1) K (2) is the equivalent kernel induced by the bias-correction

estimate (e;+13+7q(bn))5+,o7p7p+1(hn).

(i) Because h,, = pb,, the asymptotics in Theorem Al “convexify” the kernel function employed to
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construct the estimator 75, . (hp, by), because

T Kpglaip) = Kyple)  and Kppa(ai1) = Kpea (a).

(i) The asymptotic bias and variance reduce to

(p+2)
“be %
B#2 0 p.q (Pons B/ )| ) = py + hz+2w%p(p) {1+ 0,(1)},
~bc 1 O'i
VT2 0.p.g (s b/ p)| X] = WT%(’)) {1+0,(1)},

[e.°]

B, (p) = / P (ip)de, By (p) = / (Kppsr (3 9))?de,

For conventional choices of kernel K(-), B,(p) is decreasing and U,(p) is increasing in p. See the
supplemental appendix for further details.

Remark A6. Cheng, Fan, and Marron (1997) study the optimal choice of boundary kernel of order p in
a conditional MSE minimax sense for one-sided nonparametric regression estimation at a boundary
point. Although not the focus of this paper, from this point estimation perspective, the induced
equivalent kernel K, ,(z; p) dominates KC,,(x) for an appropriate choice of p, when a conventional
kernel K(-) is used. (For p > 0, Kp_1,,(z;p) is also a boundary kernel of order p or larger.) See the
supplemental appendix for further details.

A.5 Fuzzy RD Designs
Here we consider the v-th fuzzy RD estimand

TY,v v v v v
R Rt N O )

provided that v < S. Note that T7prp = 5o and Tgxkrp = S1-
The fuzzy RD estimator based on the p-th order local polynomial estimators 7y, ,(hy,) and 71, ,(hy)
therefore is

Tywp(hn) (V) ()

éu,p(hn) = Wa 7A—Y,V,p(hn) - /’[’Y+7p(h7l) - /‘Y_J;(hn); 7A—T,l/,p(hn) = /lglii,p(hn) - ﬂgﬂ,p(hn)v
VD n
with
A (ha) = vlel By (hn), i) () = vlel By _ (),
i) () = Vel Br (), i) (ha) = el By, (hn),

and with the notation
By 1 p(hn) = Hy(h) T35 (h) Xp(ha) Wy ()Y /0, By_ () = Hy(h) T2 (h) X (h) W (h )Y/,

BT+,p(hn) = Hp(hn)l—:,lp(hn)Xp(hn)IWJr(hn)T/nv BT—,p(hn) = Hp(hn)ri,lp(hn)Xp(hn)/Wf(hn)T/n-
Note that Terp(hn) = S0,1(hn) and Tekap (hn) = $1,2(hn)-

A.5.1 Lemma A2

This lemma gives an analogue of Lemma A1l for fuzzy designs. Using the expansion

,g:g(&fa)fb?(bfb)Jr—A(bfbe7(617@)(576)

S| Q>
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we obtain
éy,p(hn) —Sv = gv,p(hn) + R,

with 1 Y
Svp(hn) = ?(%vi,p(hn) —Tyw) — 7_27’11(%T,V7p(hn) —TT)
g T,v
R, = QATY—’D(%T,u,p(hn) - 7-T,V)Z - A;(%Y,V,p(hn) - TYW)(%TWaP(h”) o TTv”)'
TT’VTT,V,p(h’I’L) TT,VTT,ZI,p(hTL)

Lemma A2. Suppose Assumptions A1-A3 hold with S > p+ 2. Let v,r € N with v < p.
(R) If h,, — 0 and nh*?¥ — oo, then

1

e+ hi@“—”)) ,
nhn

m,=0,

(B) If hy, — 0 and nh,, — oo, then

ElSyp(hn)|Xn] = 15 7 Bry p 1 (h) + B2 7 Br oy ppa(hn) + 0p (R 27Y),

where 1
Ty, v
BF,V,p,T(hn) = T BY,IJ,p,'r(hn) - T%D BT7V,p,T(h’I’L>7
with
0 e
BY,y,p,r(hn) = 7"!+ B+,u,p,r(hn) - T_B—,u,p,r(hn)a
(r) (r)
Hr HpZ
BT,Vypﬂ“(hn) = T!JFBJr,v,p,T(hn) - TBf,VA,p,T(hn)'

(V) If hy, — 0 and nh,, — oo, then V[S, ,(hy)|X,] = Ve p(hy), where

VF,V,p(hn) = VF,Jr,V,p(hn) + VF,*,V,p(hn)7

where )
1 2Ty, Ty,
VF,+,y,p(hn) = ?VYY-i-,V,p(hn) - T:%iVYT-&-,u,p(hn) + #VTT+,V,p(hn)a
with
_ _ 1 o3 T
Vyy4wp(hn) = nhgyyzze;r L () Uyy g p(ha) T (ha)ey = — T YJ}“ V12e, D1, te, [140,(1)],
2 -1 -1 1 U%TJF 2 /-1 -1
Vyrtpp(hn) = e e, Uy (hn) Yy g p(ha)TY (hn)e, = R T viZe, I, W, mey [1+0,(1)],
_ _ 1 o7 e e
Vrrywp(hn) = WVV!Ze;n}p(hn)\yTu,p(hn)n}p(hn)e,, =~ TfT+ Ve, T M, e, [140,(1)],
and )
1 2Ty, Ty,
VF,*,V,p(hn) = TVYYf,V,p(hn) - TY’VYTf,u,p(hn) + }(’ VTT*,V,p(hn)
TT,V TT,I/ TT,V
with
1 2y -1 —1 1 U%/)ff 2 -1 —-1
Vyy—pplhn) = e e, I (hn)Wyy — p(hn)T 2 (hn)e, = R viZe, I W, e, [14+0,(1)],

n
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1 _ 1 o3 N N
Vyr— wp(hn) = o Vel T (hn) Uy ro p(h )DL (R ey = pYRRED YfT vPPe, T MW, e, [140,(1)],

1 _ 1 0Fp_ _ _
VTT—, ,p(hn) = nhz” 'QeZ/F_ p(h'n)\IJTT—,p(hn)F—,lp(h‘n)el/ = W TfT V!2€1//Fp 1\I/I)Fp 1eV[1+OP(1)]'

(D) If nh2P*> — 0 and nh,, — oo, then

6V,;D(hn) - hfﬁ_l_yBF,V’p’erl (hn)
VF,u,p(hn)

—qa N(0,1).

A.5.2 Theorem A2

This theorem gives an analogue of Theorem A1l for the bias-corrected fuzzy RD estimator

¢be (hns bn) —gvm(h ) — hﬁ+171}|§1¥%1)7q(hmbn)v

qu

with

1 A .
BF VoD, q(hm b ) TT (h ) ((eglo+15Y+,q(bﬂ))B%l«pwH(hn) - (€;+15Y7,q(bn))8—7v7p7p+l(hn))
v,p

_ TY,V,p (hn)

1o p(hn )2 <(6;+1BT+,11(bn))3+,u,p,p+1(h ) — (e p+1BT OBy ppir1(fn ))

Linearizing the estimator we obtain
ABCP q(h’Tu bn) —Sv = él/,p(hn) - h£+1_yéF,V,p,q(hn; bn) —Sv
= 51/ p(hn) + Rn - hzy)LleiuéF,y,p,q(hna bn)
= ~bc q(hny n) + Rn - h/IrJL+17U (éFyV:Ihq(h”v b’n) - BF,MPJJ(hna bn))
(hm bn) + Ry, — er):,c

= gv,pq
ith
wi N ) -
§,/pq(hn,bn) = m( Yl/p,q(hnab ) TY,I/) - ?( Typq(h”l’b7b ) TT,u)a
TY,v ~ 2 1 ~ ~
Rn:A—)Tl/ hn_TV N VA h’I’L_TIJTI/ hn_T v)
T%,VTT,v,p(hn)( Twp(hn) = T1.0) TT’yTT%p(hn)( Yp(hn) = 7v0) (Frwp(hn) — T70)
v 1 N o
BF,VJ),q(hnabn) = T ((e;+IBY+,q(bn))BJﬁVﬁUﬁU‘l‘l(hn)_(elp-i-lﬂY—,q(b7b))B—7VaPaP+1(h‘n))

TY,v p> >
*z ((6;;+15T+,q(bn))6+,u,p,p+1(hn) - (6;)+1BT7,(1(bn))B—,u,p,p+l(hn)) )

ch = hz—i_l_u (BF,V,p,Q(hna bn) - BF,Vﬁqu(hn’ bn)) '

The following theorem summarizes the asymptotic bias, variance and distribution of é'l'fn (s by). The-

orems 3 and 4 are special cases with (v,p,q) = (0,1,2) and (v,p,q) = (1,2, 3), respectively.

Theorem A2. Suppose Assumptions A1-A3 hold with S > p+ 2. Let v,r € N with v < p.

(R®®) If max{h,,b,} — 0, nh:t?” — co and nb,, — oo, then
hptt-v 1
bc __ n 2(p+1—v)
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(B) If max{h,,b,} — 0 and nmin{h,,b,} — oo, then

E[ibc (B b)) | Xn] = h£+2_VBF,V,p,p+2(hn)[1 + Op( )]+ hp+1 “by pBF v.p, q(hm bn)[1 + Op(l)]7

v,p,q
where
B, p.q(h:b) =
with
(g+1)

%
BY, p.q(h,b) = (7+),B+,p+1,q,q+1(b)

q+1)!

(g+1)

1
BT V,p,q(h‘7b) T+1)!B+,;D+1,q,q4r1(b)

(¢ +

(V) If max{hy,b,} — 0 and nmin{hy,,b,} — oo, then V2%,  (hn,bn)|X,] = VES

VE::Vngq(hn’ b ) VEC+ v,p, q(hTH b ) + VF y—U,D, q(h’ru b’n)7
where
c —v B+7V; B +1(h‘) —2v Bgrﬂ/, , +1(h)
VR b pa(Bb) = Ve oy (R) =207 Cr (R, b)ﬁﬂﬂpw 2 VF}+,p+1,q(b)W
; . B_., h oy B2, pps1(h)
VB (yb) = Ve ()20 CF,_7,,7p7q(h,b)ﬂ’I)1!()+h2p+2 Ve )22
1 QTYV T%/,u
CF,ﬁwhq(h’b) = TTCYY+7V7p,q(ha b) CYT+ v,p, q(h b) TTCTT-s-,u,p,q(ha b)»
T,v T71/ Tv
1 2Ty, 2
CF7—7l/,p,q(hab) Cyy- ,V,p,q(h b) Cyr— 7V,p,q(h b) —Mpyq(ha b),
T v TT,V TT,I/
where
Cyy+.wpa(hsb) = Wul(p + 1)!eLFI}p(h)\IIYT+,p,q(h, b)F;’lq(b)eerh
1 _
CyT+4v,p,q(h,b) = WV!(P + 1)!€/ur+,lp(h)‘I'YT+ 1)) q(b)ep+1a
Crriwpq(h,b) = WV!(P + 1)!e;F:—}p(h)\IITT+,p,q(h’ b)r—_i-,lq(b)ep-i-h
1 _ _
cyy,wmﬂ(mb)z;ﬁ?&ajuxp+auw;r,;unwyy,mﬂuhmr,gwy%+h
1 _
C}/T_7 ,p,q(h7 b) == WV'(T) + 1)'6VF_ p(h’)\IIYT—,p,q(ha b)F_}q(b)em_l,
1 _
Cr1—v,p,q(hs b) = WV!(I?‘F Ve, T=L (R)Wrr (B, b)TZ (b)epta-

(D) If nmin{h2P*3 p2P+3} max{h2 b

TT,v

sV

Abc (hn,b )

v,p,q

TY,v
BYupq(hnvbn) BTqu(hnabn)a

TT,I/
g+1)
B+,V,p,p+1(h) N ,ug/l_ B L 1(b) B*,V,p,val(h)
(p+1)! (q+ 1) Prheat (p+1)! 7
(q+1)
B+,V,p,p+1<h) o /1‘7?7 B L l(b)Bf,V,p,erl(h)
(p+1)! (qul)! —pt+1l,q,9+ (erl)!
2% p.g(hns bn), where

24P, 0 and nmin{h1+? b,} — 0o, then

Vbc

provided that h, — 0 and kb, < Kg.

= —4 N(0,1),

F,v,p, q(hna bn)
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From this theorem we obtain for Theorems 3 and 4:

V?;D(hn7 bn) = V}?,C(),l,2(hnv bn) and VI}T);RD(hTH bn) = V;,cl,z,s(hnv bn,)- (A-2)

A.6 Sharp RD Bandwidth Selectors

Using the results in Section 5 we propose data-driven bandwidth selector for sharp RD designs. For any

v < p, we denote ) A A
Vu,p(hn) = V+,u,p(hn) + V*,V,p(hn)7

- 1 _ - _
V—hv,p(hn) = nh2v V!Qe:/FJnlp(hn)\pYY-i-m(hn)FJr}p(hn)ew

V2l T (h)Wyy— p(h)TZY (Bn)es,

2’ vt —p —p
nh?! '

v—,z/,p(hn) =

where \i/yy_hp(h") and \i/yy_w(hn) are constructed as described in Section 5.

Plug-in Bandwidths Selectors. Fix p,q € N with ¢ > p+ 1. Let B, , = e;F;10p7p+1.

Step 0: Initial Bandwidths (v,, ¢;,).
(i) Suppose v, —, 0 and nwv,, —, co. In particular, let v, = 2.58 - w - n~/® with

IQRX}

W = min {SX, m

where S% denotes the sample variance of X;, and IQRx is the interquartile range of X;.

ii) Suppose ¢, —, 0 and nc24t3 —_ co. In particular, let ¢, = C Lar1 n~ Y/ (2a+5) with
P n P q+1,q+

A 1/(2q+5)
C - ( (2¢ + 3)nv72ﬂ+3Vq+1,q+1(vn) )
q+1,g+1 — )2 9

2 / 3 / e
28711041 (Cgr2Bgr2 — €2l gia

where 3 +p and B*,p denote the estimated coefficients of a (p 4+ 1)-th order global polynomial fit at
either side of the threshold; i.e.,

_ ; ) - N 22
Bip= argérel%}, Zl 1(X; > 0)(Y; —rp(X3)'B)7,

n

_ : i - N 2)\2
Bp = arg min 2 L(X; <0)(Yi —rp(X4)'B)".

Step 1: Pilot Bandwidth b,,. Compute lA)p_H,q = 5p+17q n~ Y (2a+3) with
1/(2q+3)
. (2p + 3)nv2P T3V, 11 4 (vn)

CP"FL(I = N R 2 R
2(q — p)B;%Jrl,q {(e;+16+,q+1(cn) - €;+157,q+1(cn)) + 3Vq+1,q+1(cn)}

Step 2: Main Bandwidth h,,. Let b, = Ap+1,q, and compute ﬁy,p = éy’p n~/(2P+3) with
1/(2p+3)

A

. (2v + Dnv,Vpo(vs)

Ou,p = 2
20+ 1= )82, { (cheayb0) = B y0)) 4 30p014(00)}
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The selectors h,,, and b, 1, are constructed following the idea of an f-stage DPI bandwidth selector for
density estimation (resp. with £ = 2 and ¢ = 1). See, e.g., Wand and Jones (1995, Section 3.6) for further
discussion. The following theorem shows that these bandwidths selectors are consistent, and also optimal in
the sense of Li (1987).

Theorem A3. Suppose Assumptions 1-2 hold with S > ¢+ 1 and ¢ > p + 1. In addition, suppose
q+2B4.qr2 — €qraB_ gp2 —p c# 0and v <p.

(Step 1) If ufﬂ) =+ ,u(_qﬂ), then

bp+17q —p 1 MSEp+l7q(bp+1,q)

and —, 1.
bMSE,p+1,q MSEp+1,q(bMSE,p+l,q) P
(Step 2) If ,quH) # /L(,pﬂ), then
h, MSE, , (h,,
— —p 1 and —S o(l.p) —p L.
hMSE,V,p MSEV,p(hMSE,V,p)
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